Supplementary material

Type of contribution: Article

Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro

Authors:

Evgenia Blagodatskaya^{1,2,6}*, Sergey Blagodatsky^{2,3}, Nikita Khomyakov⁴, Olga Myachina⁵, Yakov Kuzyakov^{1,6}

- ¹ Dept. of Soil Science of Temperate Ecosystems, University of Göttingen, 37077 Göttingen, Germany
- ² Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, 142290 Pushchino, Russia
- ³ Institute of Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, 70593 Stuttgart, Germany
- ⁴ Forensic Science Centre of the Ministry of Internal Affairs of the Russian Federation, 125130 Moscow Russia
- ⁵ Institute of General and Inorganic Chemistry, 100170 Tashkent, Uzbekistan
- ⁶ Department of Agricultural Soil Science, University of Göttingen, 37077 Göttingen, Germany

Corresponding author: Evgenia Blagodatskaya

phone: +495513920509

Email: janeblag@mail.ru

Correspondence address:

Dept. of Soil Science of Temperate Ecosystems, University of Göttingen, 37077 Göttingen,

Germany

Altitude, m a.s.l.	Altitudinal zone	Vegetation type	Corg	Ν	C/N	рН	MAT °C
			%	%			
950	colline zone	low mountain tropical forest	12.8	0.9	14.2	4.5	22
2010	middle mountane zone	Ocotea- Podocarpus forest	15.2	0.87	17.5	4.0	17.5
2435	upper mountane zone	Podocarpus forest	10.7	0.62	17.3	4.5	12.5
2780	lower subalpine zone	<i>Erica excelsa /</i> <i>Podocarpus</i> forest	20.9	1.2	17.4	3.7	8.5
3020	middle subalpine zone	<i>Erica excelsa /</i> Erica shrubland	11.6	0.7	16.6	4.3	7.2

Supplementary table S1. Characteristics of sampling sites and soils from altitudinal transect on Mt. Kilimanjaro, MAT – mean annual temperature.

Supplement 2. Derivation of Q_{10total} and S_{crit}.

Both V_{max} and K_m are responsible for the reaction rate (v) in Michaelis–Menten kinetics. As V_{max} increases with increasing temperature, the reaction rate can potentially increase, but as K_m also increases with increasing temperature, the affinity for the substrate decreases, so the reaction is slowed.

If a canceling effect occurs, the temperature increase does not cause the reaction rate to increase. Let the 10 °C shift in temperature cause $\mathbf{Q_{10}}^{Vmax}$ -fold increase in V_{max} and $\mathbf{Q_{10}}^{Km}$ -fold increase in K_m . Then the reaction rates at 10 °C: $\mathbf{v}^{10oC} = V_{max} * S/(K_m + S)$ and at 20 °C: $\mathbf{v}^{20oC} = \mathbf{Q_{10}}^{Vmax} * V_{max} * S/(\mathbf{Q_{10}}^{Km} * K_m + S)$

Accordingly, the Q_{10} of reaction rate (Q_{10}^{total}) is derived as:

$$\mathbf{Q_{10}^{total}} = \mathbf{v}^{200C} / \mathbf{v}^{100C} = \mathbf{Q_{10}^{Vmax}} * \mathbf{V_{max}} * \mathbf{S} * (\mathbf{K_m} + \mathbf{S}) / (\mathbf{Q_{10}^{Km}} * \mathbf{K_m} + \mathbf{S}) * \mathbf{V_{max}} * \mathbf{S},$$

Finally, $\mathbf{Q_{10}^{total}} = (\mathbf{Q_{10}^{Vmax}} * (\mathbf{K_m} + \mathbf{S})) / (\mathbf{Q_{10}^{Km}} * \mathbf{K_m} + \mathbf{S})$ (1S)

Canceling means: $\mathbf{v}^{10oC} = \mathbf{v}^{20oC}$, i.e.

$$V_{max} * S/(K_m + S) = Q_{10}^{Vmax} * V_{max} * S/(Q_{10}^{Km} * K_m + S)$$
(2S)

We transformed Eq.1S to analyze how high the Q_{10}^{Km} (i.e. the K_m increase) should be to counterbalance a V_{max} increase by the factor of Q_{10}^{Vmax} :

$$Q_{10}^{Km} = (Q_{10}^{Vmax} K_m) / K_m + (Q_{10}^{Vmax} - 1) * S) / K_m, \text{ or}$$

$$Q_{10}^{Km} = Q_{10}^{Vmax} + (Q_{10}^{Vmax} - 1) * S / K_m.$$
(38)

The substrate concentration in Equation 2S equals the critical substrate concentration (S_{crit}) below which the canceling effect occurs. Theoretically, three situations can occur as a response of Michaelis-Menten parameters to temperature increase:

- 1) both K_m and V_{max} increase equally: $S_{crit} = (Q_{10}^{Km} Q_{10}^{Vmax}) * K_m / (Q_{10}^{Vmax} 1)$. If $Q_{10}^{Km} = Q_{10}^{Vmax}$, canceling effect can occur only at zero substrate concentrations;
- 2) K_m increase is weaker than V_{max}: $Q_{10}^{Km} < Q_{10}^{Vmax}$. Canceling effect can occur only if $Q_{10}^{Vmax} < 1$, i.e. both V_{max} and K_m decrease with temperature increase;
- 3) K_m increase is greater than V_{max}: $\mathbf{Q}_{10}^{\mathrm{Km}} > \mathbf{Q}_{10}^{\mathrm{Vmax}}$. Canceling effect can occur at S_{crit} = [($\mathbf{Q}_{10}^{\mathrm{Km}} - \mathbf{Q}_{10}^{\mathrm{Vmax}}$)/ ($\mathbf{Q}_{10}^{\mathrm{Vmax}} - 1$)] * K_m

Theoretically it is possible **that a temperature increase even results in slower reaction rates** for enzyme kinetics at low substrate concentrations:

$$\mathbf{v}^{200C} / \mathbf{v}^{100C} = \mathbf{Q_{10}}^{Vmax} (K_m + S) / (\mathbf{Q_{10}}^{Km} K + S) < 1$$
$$S < [(\mathbf{Q_{10}}^{Km} - \mathbf{Q_{10}}^{Vmax}) / (\mathbf{Q_{10}}^{Vmax} - 1)] * K_m$$

This relationship is valid only for greater temperature sensitivity of K_m versus V_{max} . ($Q_{10}^{Km} > Q_{10}^{Vmax}$).

At $S > [(Q_{10}^{Km} - Q_{10}^{Vmax}) / (Q_{10}^{Vmax} - 1)] * K_m$ the positive temperature response, i.e. increase in mineralization rates with the temperature can be predicted based on Michaelis–Menten kinetics.

Supplementary table S3. Substrate amounts below which a canceling effect occurs calculated by Eq.2 for the activity of hydrolytic enzymes in soils from 2010 and 3020 m a.s.l. on Mt. Kilimanjaro

	Scrit					
Altitude	Substrate, µmol g ⁻¹					
	Glucosidase	Chitinase	Phosphatase			
2010 m	1.68	2.15	0.46			
3020 m	2.39	2.90	5.71			

Supplementary table S4. Temperature-induced changes in substrate-to-enzyme affinity (K_m), in maximal rate (V_{max}) and activation energy (E_a) of glucose oxidation in soils from an altitudinal transect on Mt. Kilimanjaro. The data marked by same letters (case-specific) are not significantly different.

Altitude,	K _m , μg C g ⁻¹		V _{max} , µg Co	E _a , kJ mol ⁻¹	
ma.s.l.	10°C	20°C	10°C	20°C	
950	$6.38^{d} \pm 0.53$	$20.80^{\circ} \pm 1.36$	$2.13^{\rm J} \pm 0.01$	$9.30^{\rm D} \pm 0.21$	100.4
2010	$17.67^{c} \pm 2.18$	$29.39^b\pm1.48$	$2.37^{\rm H}\pm0.09$	$12.24^{\text{C}} \pm 0.21$	111.9
2435	$17.49^{\circ} \pm 3.1$	$34.05^a\pm2.84$	$2.18^{\rm HJ}\pm0.11$	$5.49^{\rm F}\pm0.13$	62.9
2780	$7.34^{d} \pm 1.64$	$7.31^{d}\pm0.49$	$14.84^{\mathrm{B}} \pm 1.39$	$32.29^{A} \pm 2.24$	53.0
3020	$3.12^{e} \pm 0.43$	$3.13^{e} \pm 0.25$	$3.02^G\pm0.07$	$7.98^{\rm E}\pm0.12$	66.1

Supplementary Figure S5. Rate of CO₂-C production during glucose oxidation as dependent on substrate concentration at 10 and 20 °C for different altitudes. Symbols – experimental data, lines – approximation by Michaelis–Menten kinetics. Bars show standard deviations of the means (n=3).