Supplementary material

Type of contribution: Article

Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro

Authors:

Evgenia Blagodatskaya^{1,2,6*}, Sergey Blagodatsky^{2,3}, Nikita Khomyakov⁴, Olga Myachina⁵, Yakov Kuzyakov^{1,6}

- ¹ Dept. of Soil Science of Temperate Ecosystems, University of Göttingen, 37077 Göttingen, Germany
- ² Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, 142290 Pushchino, Russia
- ³ Institute of Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, 70593 Stuttgart, Germany
- ⁴ Forensic Science Centre of the Ministry of Internal Affairs of the Russian Federation, 125130 Moscow Russia
- ⁵ Institute of General and Inorganic Chemistry, 100170 Tashkent, Uzbekistan
- ⁶ Department of Agricultural Soil Science, University of Göttingen, 37077 Göttingen, Germany

Corresponding author: Evgenia Blagodatskaya

phone: +495513920509

Email: janeblag@mail.ru

Correspondence address:

Dept. of Soil Science of Temperate Ecosystems, University of Göttingen, 37077 Göttingen,

Germany

Altitude, m a.s.l.	Altitudinal zone	Vegetation type	C_{org}	N	C/N	pH	MAT $\rm ^{o}C$
			$\frac{0}{0}$	$\frac{0}{0}$			
950	colline zone	low mountain tropical forest	12.8	0.9	14.2	4.5	22
2010	middle mountane zone	Ocotea- <i>Podocarpus</i> forest	15.2	0.87	17.5	4.0	17.5
2435	upper mountane zone	<i>Podocarpus</i> forest	10.7	0.62	17.3	4.5	12.5
2780	lower subalpine zone	Erica excelsa / <i>Podocarpus</i> forest	20.9	1.2	17.4	3.7	8.5
3020	middle subalpine zone	Erica excelsa / Erica shrubland	11.6	0.7	16.6	43	72

Supplementary table S1. Characteristics of sampling sites and soils from altitudinal transect on Mt. Kilimanjaro, MAT – mean annual temperature.

Supplement 2. Derivation of Q_{10total} and S_{crit}.

Both V_{max} and K_{m} are responsible for the reaction rate (v) in Michaelis–Menten kinetics. As V_{max} increases with increasing temperature, the reaction rate can potentially increase, but as K_m also increases with increasing temperature, the affinity for the substrate decreases, so the reaction is slowed.

If a canceling effect occurs, the temperature increase does not cause the reaction rate to increase. Let the 10 °C shift in temperature cause Q_{10}^{Vmax} -fold increase in V_{max} and Q_{10}^{Km} -fold increase in K_m. Then the reaction rates at 10 °C: $\mathbf{v}^{100C} = \mathbf{V}_{\text{max}}$ *S/(K_m+S) and at 20 °C: $v^{200C} = Q_{10} V^{\text{max}} * V_{\text{max}} * S/(Q_{10} K^{\text{max}} * K_{\text{m}} + S)$

Accordingly, the Q_{10} of reaction rate (Q_{10}^{total}) is derived as:

$$
Q_{10}^{\text{total}} = v^{200C}/v^{100C} = Q_{10}^{\text{Vmax}} * V_{\text{max}} * S * (K_m + S) / (Q_{10}^{Km} * K_m + S) * V_{\text{max}} * S,
$$

Finally, $Q_{10}^{\text{total}} = (Q_{10}^{\text{Vmax}} * (K_m + S)) / (Q_{10}^{Km} * K_m + S)$ (1S)

Canceling means: $v^{100C} = v^{200C}$, i.e.

$$
V_{\text{max}} * S/(K_m + S) = Q_{10} V^{\text{max}} * V_{\text{max}} * S/(Q_{10} K^{\text{max}} * K_m + S)
$$
 (2S)

We transformed Eq.1S to analyze how high the Q_{10}^{Km} (i.e. the K_m increase) should be to counterbalance a V_{max} increase by the factor of Q_{10} ^{Vmax}:

$$
Q_{10}^{Km} = (Q_{10}^{Vmax} K_m) / K_m + (Q_{10}^{Vmax} - 1) * S / K_m, \text{ or}
$$

$$
Q_{10}^{Km} = Q_{10}^{Vmax} + (Q_{10}^{Vmax} - 1) * S / K_m.
$$
 (3S)

The substrate concentration in Equation 2S equals the critical substrate concentration (S_{crit}) below which the canceling effect occurs. Theoretically, three situations can occur as a response of Michaelis-Menten parameters to temperature increase:

- 1) both K_m and V_{max} increase equally: $S_{crit} = (Q_{10}^{Km} Q_{10}^{Vmax}) * K_m/(Q_{10}^{Vmax} 1)$. If $Q_{10}^{Km} =$ Q_{10} ^{Vmax}, canceling effect can occur only at zero substrate concentrations;
- 2) K_m increase is weaker than V_{max} : Q_{10} ^{Km} < Q_{10} ^{Vmax}. Canceling effect can occur only if Q_{10} ^{Vmax} < 1, i.e. both V_{max} and K_m decrease with temperature increase;
- 3) K_m increase is greater than V_{max} : Q_{10} ^{Km} > Q_{10} ^{Vmax}. Canceling effect can occur at $S_{\text{crit}} = [(\mathbf{Q}_{10}^{\text{Km}} - \mathbf{Q}_{10}^{\text{Vmax}})/(\mathbf{Q}_{10}^{\text{Vmax}} - 1)]$ * K_m

Theoretically it is possible **that a temperature increase even results in slower reaction rates** for enzyme kinetics at low substrate concentrations:

$$
\mathbf{v}^{200C} / \mathbf{v}^{100C} = \mathbf{Q}_{10} \mathbf{v}^{\text{max}} (\mathbf{K}_{m} + \mathbf{S}) / (\mathbf{Q}_{10} \mathbf{K}^{\text{max}} \mathbf{K} + \mathbf{S}) < 1,
$$
\n
$$
\mathbf{S} < [(\mathbf{Q}_{10} \mathbf{K}^{\text{max}} - \mathbf{Q}_{10} \mathbf{V}^{\text{max}}) / (\mathbf{Q}_{10} \mathbf{V}^{\text{max}} - 1)] * \mathbf{K}_{m}
$$

This relationship is valid only for greater temperature sensitivity of K_m versus V_{max} . (Q_{10}^{Km} > Q_{10} ^{Vmax}).

At $S > [(Q_{10}^{Km} - Q_{10}^{Vmax}) / (Q_{10}^{Vmax} - 1)] * K_m$ the positive temperature response, i.e. increase in mineralization rates with the temperature can be predicted based on Michaelis–Menten kinetics.

Supplementary table S3. Substrate amounts below which a canceling effect occurs calculated by Eq.2 for the activity of hydrolytic enzymes in soils from 2010 and 3020 m a.s.l. on Mt. Kilimanjaro

	$S_{\rm crit}$						
Altitude	Substrate, μ mol g ⁻¹						
			Glucosidase Chitinase Phosphatase				
2010 m	1.68	2.15	0.46				
3020 m	2.39	2.90	5.71				

Supplementary table S4. Temperature-induced changes in substrate-to-enzyme affinity (K_m) , in maximal rate (V_{max}) and activation energy (E_a) of glucose oxidation in soils from an altitudinal transect on Mt. Kilimanjaro. The data marked by same letters (case-specific) are not significantly different.

Supplementary Figure S5. Rate of CO₂-C production during glucose oxidation as dependent on substrate concentration at 10 and 20 $^{\circ}$ C for different altitudes. Symbols – experimental data, lines – approximation by Michaelis–Menten kinetics. Bars show standard deviations of the means $(n=3)$.