Supplementary Information

The Transcriptional Landscape of the Photosynthetic Model Cyanobacterium *Synechocystis* sp. PCC6803

Miguel A. Hernández Prieto, Trudi Ann Semeniuk, Joaquín Giner-Lamia, Matthias E. Futschik

Contents:

1. Description of microarray platforms	2
2. Quality control of individual datasets	3
Figure S1	4
Figure S2	5
Figure S3	5
Figure S4	6
3. Detection of outlier experiments	7
Figure S5	7
Figure S6	8
4. Other supplemental figures	
Figure S7	9
Figure S8	10
Figure S9	11
Figure S10	12
5. Supplemental tables	
Table S1	13
Table S2	14
Table S3	17
Table S4	18
Table S5	21
Table S6	22
Table S7	23
6. Supplemental references	26

1. Description of microarray platforms

Publicly available microarray expression data for *Synechocystis* that have been integrated in our study, were generated using seven different platforms, of which three platforms (CyanoCHIP, Postier, and Tu) contain complementary sequences to open reading frames (ORFs) produced by polymerase chain reaction (PCR), while the rest of the platforms use synthetically generated oligomers as probes. Here, we provide short descriptions of these platforms based on their original descriptions by the authors.

CyanoCHIP: The CyanoCHIP platform is the most commonly used platform because of its early development and commercial availability¹. The probes spotted on this type of microarray contained products generated by PCR, using up to 1-kb of the C-terminal coding regions of long ORFs and the full-length of shorter ORFs. In total, it contains duplicated probes for 3079 ORFs, covering 93% of the ORFs located in the chromosome of *Synechocystis*. In addition to these probes, another 48 spots are included as internal controls (3 spots), a negative control (1 spot), and as positional markers (44 spots).

Postier: The platform by Postier et al.² was generated by adding an extra PCR step, using primers complementary to a universal sequence introduced into the primers used for the first PCR. In total, this microarray slide contains 3163 triplicated probes of different lengths, covering 95% of the individual *Synechocystis* chromosomal ORFs.

<u>**Tu</u>**: This platform was generated using the same protocol as in Postier et al. However, it included 70mer oligonucleotides specific for 67 genes, for which amplification failed by PCR. It contains probes for 3165 genes (2641 in quadruplicates, and the remainder with even higher numbers of replicates)³.</u>

Zhang: The microarray designed by Zhang et al.⁴ contains 70-nt-long oligomers probes per gene, covering 3064 ORFs from the *Synechocystis* chromosome, spotted onto poly-L-lysine coated microscopic glass slides.

<u>Singh</u>: The *Synechocystis* 11K oligo DNA microarray designed by Singh et al.⁵ comprises 60-nt-long oligomers, spotted on an Agilent support. It covers 3459 genes, including genes coded in the megaplasmids.

Georg: The platform designed by Georg et al.⁶ contains 42303 probes, with lengths between 45- to 60–nt, spotted on an 44K Agilent custom microarray format having 15951 duplicates, 321 triplicates, and the remaining probes with a greater number of replicates. Of these probes, 21022 were directed against all 3317 chromosome-located *Synechocystis* genes, as well as 82 of the 408 plasmid-located genes annotated in Cyanobase⁷. The microarray platform also comprises 5028 probes for 1875 intragenic elements, 1939 probes against antisense-RNAs, and probes for 608 small-RNAs originating from intergenic regions.

<u>Von Wobeser</u>: The design of this platform was assisted by the software Array Designer 2.0 (Premier Biosoft International). The platform contains 15208 probes against *Synechocystis* genes consisting of one to four probes per gene. The probes were custom printed on an Agilent 8x15K custom designed support using SurePrint technology⁸.

Dickson: The most recent microarray platform developed for *Synechocystis* is the 60-oligomer array described by Dickson et al.⁹ and synthesised by NimbleGen containing 13 probes per target (385,000 probes) directed against 3567 protein-coding genes.

2. Quality control of individual datasets

To calculate differential expression for the various datasets in a standardized manner, all datasets were loaded individually as marrayRaw objects in R/Bioconductor. Data upload and conversion were carried out using R scripts customized for each platform and repository format. Subsequently, datasets were inspected for artefacts using various tools.

Firstly, we assessed the intensity distribution of microarrays within each dataset. An example of this process is shown in Figure S2, which was produced using the data generated by Rowland *et al.*¹⁰ studying thermal acclimation (the raw microarray data can be accessed through GEO accession: GSE21133.) In this study, the researchers used the two-color CyanoCHIP platform containing probes against 3079 Synechocystis 6803 genes. Their time series included four replicates for each of the five time points, with the control sample (t = 0) labelled with Cy3 and the test samples (t = 30 / 60 / 120 / 240 / 480 mins) with Cy5.

To compare the distribution of the log₂ – transformed signal ratios (M) for each microarray, box-plots were generated for raw and normalized data. Box-plots facilitate the visualization of data heterogeneity and serve to corroborate that the applied normalization method (i.e., OIN) corrected the observed intensity biases. As seen in Figure S2A, the distribution of probe intensities differs noticeably between replicates before normalization. Such differences are indicative of inter-sample variation, which can be caused by various experimental factors. In this case, normalization using the OIN algorithm corrected these observed scaling discrepancies (Figure S2B).

Figure S1. Boxplots comparing the distribution of the pre-normalized (top; A) and post-normalized (bottom; B) \log_2 signal ratios (M) between microarrays in the Rowland et al. (2010) dataset. R/G = red/green

Alternatively, the spread of the signal intensities was visualized using density plots. For two-color arrays, intensities for each channel were plotted independently. In this case, the x-axis represents the intensities of the probes, and the y-axis shows density level (Figure S3). These plots can be indicative of artefacts and interferences linked to high background signals. As observed previously with the boxplots, the normalization efficiently reduced the observed differences in such distributions (Figure S3B).

Figure S2. Raw (A) and normalized (B) probe intensity values plotted against their density on the arrays. Green curves represent the control probes (Cy3-labeled), while red curves represent the test samples labelled with Cy5. RG = red green.

For datasets generated by two-color arrays, we also used M-A plots to investigate dye bias and to determine whether normalization corrected it (Figure S4).

Figure S3: Plots of logged fold changes (LFC) with respect to average logged spot intensity of both channels (Cy3, Cy5) for raw data (left panel) and normalized data (right panel). Raw data show a clear bias towards Cy5 intensities (indicated by M values larger than zero) at higher intensities, whereas this dye-bias is corrected in the normalized data.

Finally, scatter-plots of the logged intensities for each channel extracted from the different replicates served to visualize the experimental reproducibility (Figure S5; top panel). To examine the result of

normalization on replicate bases, a plot was generated using the normalized M values (Figure S5; lower panel).

Figure S4: Scatter plots of logged intensities for both Cy3(green)- and Cy5(red)-channels (top panel) and normalized logged fold changes (bottom panel).

3. Detection of outlier experiments

In microarray analyses, we generally assume that only a small fraction of genes is differentially expressed. Thus, we expect a similar overall distribution of different expression in the collected datasets, despite being generated by various laboratories using different platforms and protocols. To check whether this is indeed the case, and whether some experiments or samples are distinct from other experiments or samples, we applied hierarchical clustering and principal component analysis (PCA) to the expression changes of the integrated data set. Hierarchical clustering of microarray data indicated that the samples from an unpublished data set (GSE5391) had quite distinct expression, forming a clearly separated cluster (Figure S6). This was also reflected in the PCA results, where these samples showed considerable separation from the remaining samples (Figure S7). Although such analyses do not per se demonstrate that samples from GSE5391 are less reliable, they nevertheless show that these samples are outliers. To avoid effects of a small number of outliers, we decided to remove this dataset from our analyses. In addition, it has not been described in any publication. Two other non-published datasets GSE4604, and GSE4613, for which sample descriptions did not match with the clustering of their replicates also were removed.

Figure S5: Dendrogram showing the hierarchical clustering of 177 contrasts from 33 independent experiments based on their normalized M values. Clustering was carried out on average linkage and complete correlation. Samples from data set GSE5391 are highlighted, showing their outlier status.

Figure S6: Principal component analysis of all datasets. The two first principal components are shown for 177 contrasts, arising from 33 independent studies. Samples from GSE5391 are highlighted, emphasising their outlier status.

4. Other supplemental figures

Figure S7: Heat map showing clustering of the contrast obtained using wild type or mutated strains analyzed in this study. Experiments performed using mutants lacking genes encoding Ser/Thr protein kinases¹¹, or genes encoding histidine kinases, or its cognate response regulator^{12,13} are labeled by boxes numbered from 1 to 3, respectively.

Figure S8: Graphical representation of adaption of molecular processes to different environmental stimuli. The heat map shows activation (as shades of red) and repression (as shades of blue) of *Synechocystis* genes grouped within cellular functional sub-categories (y-axis) under different types of environmental perturbations (x-axis). The color intensities (see color bar) are defined by the calculated significance expressed as False Discovery Rates, outlined in Materials and Methods. Darker shades indicate higher significance of transcriptional changes.

Figure S9: Clustering of genes with expression profiles resembling the expression of genes encoding the two subunits of the RuBisCo enzymatic complex. The cluster is enriched in a large number of genes encoding proteins related to CO_2 , including subunits of the NDH-I complex. The cluster arose from the comparison of all environmental samples. The heat map obtained from such a comparison (discussed in Figure 2) is shown as a thumbnail image on the left, with a red bar indicating the location of the cluster shown on the right. Note, that some contrasts were trimmed to highlight distinct expression patterns; the complete expression patterns for the genes are available on the CyanoEXpress website (http://cyanoexpress.sysbiolab.eu/).

Figure S10: The set of clusters containing genes encoding proteins involved in the assembly of the photosystems. Cluster H groups the stress-induced genes encoding high-light intensity proteins (HLIPs), and the FtsH proteases. Cluster J encompasses the genes encoding Ycf37 and Psb27 that have been related in the literature to the assembly of both photosystems. The clusters arose from the comparison of all the samples obtained using wild-type strains grown under different environmental perturbations. The heat map obtained from this comparison (discussed in Figure 2) is shown as a thumbnail image on the left. The approximate location and size of the clusters discussed are indicated by colored bars. Some conditions were trimmed for publication; the full image is available on the CyanoEXpress website (http://cyanoexpress.sysbiolab.eu/).

5. Supplemental tables

Table S1: Summary of relevant information on microarray data used in this study. Excel file listing the transcriptome datasets and measurements integrated and examined in the meta-analysis.

[Supplementary Table S1 online]

Table S2: Functional categories and subcategories represented in Cyanobase. The functional enrichment analysis of gene clusters, as well as the prediction of gene functions is based on this classification system. The list of genes in each category can be obtained from Cyanobase (http://genome.kazusa.or.jp/cyanobase/).

Category ID	Functional Category	Subcategory ID	Functional Subcategory
		A1	Aromatic amino acid family
		A2	Aspartate family
	Aming gold biggynthesis	A3	Branched chain family
A	Amino actu biosynthesis	A4	Glutamate family / Nitrogen assimilation
		A6	Serine family / Sulfur assimilation
		B1	Biotin
		B2	Folic acid
В		B3	Cobalamin, heme, phycobilin and porphyrin
		B4	Lipoate
		B5	Menaquinone and ubiquinone
		B6	Molybdopterin
	Biosynthesis of cofactors,	B7	Pantothenate
	prosthetic groups, and	B8	Pyridoxine
	carriers	B9	Riboflavin
		B10	Thioredoxin, glutaredoxin, and glutathione
		B12	Thiamin
		B13	Carotenoid
		B15	Quinolinate
		B17	Others
		B18	Nicotinate and nicotinamide
		C1	Membranes, lipoproteins, and porins
		C2	Murein sacculus and peptidoglycan
С	Cell envelope	C3	Surface polysaccharides, lipopolysaccharides and antigens
		C4	Surface structures
		D1	Cell division
		D2	Cell killing
		D3	Chaperones
D	Cellular processes	D4	Detoxification
		D5	Protein and peptide secretion
		D6	Transformation
		D7	Chemotaxis
F	Central intermediary	E1	Amino sugars
E	metabolism	E3	Other

		E4	Phosphorus compounds
		E6	Polysaccharides and glycoproteins
		F2	Amino acids and amines
		F9	Glycolysis
		F10	Pentose phosphate pathway
Б		F11	Pyruvate dehydrogenase
Г	Energy metabolism	F12	Sugars
		F13	TCA cycle
		F14	Pyruvate and acetyl-CoA metabolism
		F15	Glycolate pathway
G	Fatty acid, phospholipid and sterol metabolism	G	Fatty acid, phospholipid and sterol metabolism
		H1	ATP synthase
		H2	CO2 fixation
		H3	Cytochrome b6/f complex
		Н5	NADH dehydrogenase
Н	Photosynthesis and	H6	Photosystem I
	respiration	H7	Photosystem II
		H8	Phycobilisome
		H9	Soluble electron carriers
		H10	Respiratory terminal oxidases
т	Purines, pyrimidines,	12	Interconversions and salvage of nucleosides and nucleotides
1	nucleosides, and nucleotides	I3	Purine ribonucleotide biosynthesis
		I4	Pyrimidine ribonucleotide biosynthesis
J	Regulatory functions	J	Regulatory functions
K2	DNA replication, restriction, modification, recombination, and repair	K2	DNA replication, restriction, modification, recombination, and repair
		L1	Degradation of RNA
L	Transcription	L2	RNA synthesis, modification, and DNA transcription
		M1	Aminoacyl tRNA synthetases and tRNA modification
		M2	Degradation of proteins, peptides, and glycopeptides
М	Translation	M3	Nucleoproteins
		M4	Protein modification and translation factors
		M5	Ribosomal proteins: synthesis and modification
Ν	Transport and binding proteins	Ν	Transport and binding proteins
0	Other categories	01	Adaptations and atypical conditions

		O3	Drug and analog sensitivity
		O7	Other
		O7a	WD repeat proteins
		O7b	Hydrogenase
		08	Transposon-related functions
Р	Hypothetical	Р	Hypothetical
Z	Unknown	Z	Unknown

Table S3: Excel file including the results of the functional enrichment analysis for the clusters identified in Figure2. The colors of the column headings correspond with the different clusters shown in Figure 2.

[Supplementary Table S3 online]

Table S4: Variability of gene expression in functional subcategories. This table lists the average standard deviation (*Mean SD*) of expression for genes associated with a particular functional sub-category, the *z*-score and the corresponding statistical significance (unadjusted *p*-value and *FDR*) based on the comparison with the average standard deviation (*Mean SDr*) for random gene samples of the same size.

ID	Functional subcategories	Mean SD	Mean SDr	Z	р	FDR
A1	Aromatic amino acid family	0.469184	0.580801	-2.48	0.013138	0.074787
A2	Aspartate family	0.566043	0.580136	-0.21107	0.832829	0.948144
A3	Branched chain family	0.552798	0.582693	-0.46567	0.641454	0.908513
A4	Glutamate family / Nitrogen assimilation	0.574076	0.580405	-0.16573	0.868369	0.959094
A6	Serine family / Sulfur assimilation	0.542308	0.585563	-0.5419	0.587889	0.853015
B1	Biotin	0.540336	0.577758	-0.28541	0.775329	0.935822
B10	Thioredoxin, glutaredoxin, and glutathione	0.577389	0.58168	-0.07802	0.937809	0.977435
B12	Thiamin	0.385688	0.581352	-1.66443	0.096027	0.355301
B13	Carotenoid	0.582487	0.580585	0.025741	0.979464	0.992881
B15	Quinolinate	0.621406	0.581845	0.253818	0.799637	0.935822
B17	Others	0.403379	0.587237	-1.10139	0.270727	0.667793
B18	Nicotinate and nicotinamide	0.486542	0.577297	-0.82634	0.40861	0.703189
B2	Folic acid	0.503174	0.584428	-0.77027	0.441142	0.707012
B3	Cobalamin, heme, phycobilin and porphyrin	0.609909	0.581111	0.83363	0.404489	0.703189
B4	Lipoate	0.443248	0.582026	-1.00044	0.317095	0.682519
B5	Menaquinone and ubiquinone	0.513576	0.578441	-0.88131	0.378152	0.682519
B6	Molybdopterin	0.668971	0.580893	0.928833	0.352976	0.682519
B7	Pantothenate	0.509765	0.582586	-0.61394	0.539256	0.831353
B8	Pyridoxine	0.423676	0.579274	-1.19809	0.230883	0.596773
B9	Riboflavin	0.584974	0.575014	0.098825	0.921277	0.973922
C1	Membranes, lipoproteins, and porins	0.698236	0.578108	1.79414	0.072791	0.299251
C2	Murein sacculus and peptidoglycan	0.509012	0.582141	-1.52956	0.126126	0.424242
C3	Surface polysaccharides, lipopolysaccharides and antigens	0.523381	0.580754	-1.35939	0.174022	0.559896
C4	Surface structures	0.448171	0.583066	-1.02352	0.306064	0.682519
D1	Cell division	0.527286	0.581508	-0.89211	0.372333	0.682519
D2	Cell killing	0.628554	0.585404	0.364163	0.715736	0.929202
D3	Chaperones	0.81904	0.581555	4.272249	1.94E-05	0.000239
D4	Detoxification	0.623816	0.58215	0.42016	0.674369	0.908513

D5	Protein and peptide secretion	0.558664	0.584341	-0.42628	0.669906	0.908513
D6	Transformation	0.483898	0.581466	-1.07158	0.283908	0.667894
D7	Chemotaxis	0.643052	0.581831	1.060716	0.288819	0.667894
E1	Amino sugars	0.629677	0.587946	0.175843	0.860417	0.959094
E3	Other	0.439575	0.583032	-1.59018	0.111793	0.393939
E4	Phosphorus compounds	0.598013	0.582757	0.116966	0.906887	0.973922
E6	Polysaccharides and glycoproteins	0.641153	0.579273	1.190448	0.23387	0.596773
F10	Pentose phosphate pathway	0.581149	0.581388	-0.00294	0.997657	0.997657
F11	Pyruvate dehydrogenase	0.61337	0.581701	0.267048	0.789432	0.935822
F12	Sugars	0.517767	0.582218	-1.26137	0.207175	0.589652
F13	TCA cycle	0.480609	0.580395	-1.27776	0.201335	0.589652
F14	Pyruvate and acetyl-CoA metabolism	0.556642	0.578297	-0.26581	0.790388	0.935822
F15	Glycolate pathway	0.488534	0.582381	-0.80958	0.418184	0.70331
F2	Amino acids and amines	0.493672	0.580769	-1.90772	0.056428	0.260979
F9	Glycolysis	0.595455	0.580976	0.241252	0.80936	0.935822
H1	ATP synthase	1.002484	0.576136	5.852134	4.85E-09	1.20E-07
H10	Respiratory terminal oxidases	0.504273	0.581019	-0.97858	0.327785	0.682519
H2	CO2 fixation	0.685573	0.584551	1.695937	0.089898	0.350128
H3	Cytochrome b6/f complex	0.651777	0.580748	0.944019	0.34516	0.682519
H5	NADH dehydrogenase	0.750307	0.581345	3.360372	0.000778	0.006466
H6	Photosystem I	0.874666	0.579814	5.167501	2.37E-07	4.39E-06
H7	Photosystem II	0.707899	0.579937	2.90835	0.003633	0.024443
H8	Phycobilisome	1.024777	0.583569	7.99909	1.25E-15	9.28E-14
H9	Soluble electron carriers	0.777154	0.577776	3.371571	0.000747	0.006466
I2	Interconversions and salvage of nucleosides and nucleotides	0.498022	0.580596	-0.78549	0.432164	0.707012
I3	Purine ribonucleotide biosynthesis	0.494251	0.581311	-1.81117	0.070115	0.299251
I4	Pyrimidine ribonucleotide biosynthesis	0.490322	0.582479	-1.30752	0.191035	0.589026
K2	DNA replication, restriction, modification, recombination, and repair	0.484635	0.581373	-3.22594	0.001256	0.009291
L1	Degradation of RNA	0.51726	0.584169	-0.757	0.449048	0.707012
L2	RNA synthesis, modification, and DNA transcription	0.73915	0.580333	3.357552	0.000786	0.006466
M1	Aminoacyl tRNA synthetases and tRNA modification	0.562489	0.581538	-0.54608	0.585009	0.853015
M2	Degradation of proteins, peptides, and glycopeptides	0.578716	0.5801	-0.03042	0.97573	0.992881

M3	Nucleoproteins	0.65469	0.578234	0.913926	0.360756	0.682519
M4	Protein modification and translation factors	0.576037	0.580521	-0.10495	0.916413	0.973922
M5	Ribosomal proteins: synthesis and modification	0.758861	0.58195	5.898047	3.68E-09	1.20E-07
01	Adaptations and atypical conditions	0.73945	0.577776	2.446498	0.014425	0.076247
03	Drug and analog sensitivity	0.566843	0.580679	-0.28695	0.77415	0.935822
07	Other	0.557736	0.581795	-1.22737	0.219683	0.596773
O7a	WD repeat proteins	0.555685	0.581018	-0.24578	0.805852	0.935822
O7b	Hydrogenase	0.602939	0.579348	0.402218	0.687524	0.908513
08	Transposon-related functions	0.609425	0.578318	0.585472	0.55823	0.843041

Table S5: Excel table with genes that show strong median correlation with genes belonging to the different functional sub-categories of photosynthesis and respiration in Cyanobase, namely ATP synthase (H1), CO_2 fixation (H2), Cytochrome b₆f complex (H3), NADH dehydrogenase (H5), PSI (H6), PSII (H7), PBS (H8) and Respiratory terminal oxidases (H10), but are not of the same functional sub-category. The thresholds for inclusion were set based on the median correlation of genes within these categories. For H2 and H3, whose members showed relatively low internal correlation, the threshold was set equal the 0.9 quantile, while a more relaxed threshold of 0.8 quantile was set for the other categories that showed higher internal correlation.

[Supplementary Table S5 online]

Table S6: Excel file including an overview of control and corresponding treatment conditions as described in the original publication of microarray experiments analyzed in the meta-analysis. Additionally, authors, title and PubMed reference of the studies are given in the table along with type of perturbation evoked in the corresponding experiments.

[Supplementary Table S6 online]

Table S7: Correlation between genes of the same functional main category and subcategory. N: Number of genes associated with the corresponding category in Cyanobase. Mean: Mean Spearman correlation between pairs of genes associated with each main category or subcategory. Mean (rand): Mean Spearman correlation between random pairs of genes across the whole dataset. Std (rand): Standard deviation of Mean (rand). N Pairs: Number of pairs within a main category. P-value: Significance derived using the one sample Wilcox rank test for deviation from 0. FDR: False discovery rates derived from the p-values using the Benjamini-Hochberg procedure.

Cat.	Main-Function	N	Mean	Mean (rand)	Std (rand)	N Pairs	P-value	FDR
А	Amino acid biosynthesis	97	0.037833	0.002863	0.002899	4656	1.77E-31	4.04E-31
В	Biosynthesis of cofactors, prosthetic groups, and carriers	125	0.01392	0.002779	0.002444	7626	1.87E-06	2.49E-06
С	Cell envelope	67	0.058169	0.002572	0.004449	2211	3.25E-30	6.51E-30
D	Cellular processes	80	0.018363	0.003271	0.003654	2775	0.00146	0.001797
Е	Central intermediary metabolism	31	0.028493	0.001716	0.010003	465	0.090749	0.096799
F	Energy metabolism	93	0.023569	0.002379	0.003092	4278	1.28E-09	2.05E-09
G	Fatty acid, phospholipid and sterol metabolism	39	0.049742	0.002015	0.007801	741	2.14E-07	3.11E-07
Н	Photosynthesis and respiration	143	0.135931	0.002653	0.002108	9870	0	0
Ι	Purines, pyrimidines, nucleosides, and nucleotides	43	0.097337	0.001283	0.007903	780	2.30E-33	6.15E-33
J	Regulatory functions	156	0.026341	0.002925	0.001877	10585	8.45E-50	3.38E-49
K2	DNA replication, restriction, modification, recombination, and repair	75	0.046028	0.002721	0.004959	1770	1.92E-26	3.41E-26
L	Transcription	30	0.01903	0.002596	0.010603	435	0.294989	0.294989
М	Translation	168	0.129792	0.002829	0.001662	13861	0	0
N	Transport and binding proteins	200	0.017506	0.002839	0.001465	19110	1.19E-33	3.82E-33
0	Other categories	369	0.005903	0.002547	0.001516	23005	0.004505	0.005149
				Mean		N		
SCat.	Sub-Function	N	Mean	(rand)	Std (rand)	Pairs	P-value	FDR
A1	Aromatic amino acid family	28	0.033699	0.004734	0.011443	378	0.000405	0.001081
A2	Aspartate family	12	0.032788	0.003106	0.025527	66	0.303724	0.422572
A3	Branched chain family	13	0.058673	0.006421	0.023034	78	0.015923	0.031845
A4	Glutamate family / Nitrogen assimilation	35	0.032142	0.00177	0.007815	595	0.001351	0.003203
A6	Serine family / Sulfur assimilation	9	0.143821	0.003673	0.032428	36	0.000585	0.001496
B1	Biotin	3	-0.03797	0.019608	0.11408	3	NA	NA
B2	Folic acid	5	0.03557	0.009659	0.0635	10	0.492188	0.605769
B3	Cobalamin, heme, phycobilin and porphyrin	48	0.027662	0.002915	0.005649	1081	0.012075	0.024929
B4	Lipoate	3	0.01421	0.0047	0.10858	3	NA	NA
B5	Menaquinone and ubiquinone	9	0.060613	0.002132	0.033635	36	0.126644	0.207825

B6	Molybdopterin	6	0.289474	-0.00158	0.056503	15	0.000854	0.002103
B7	Pantothenate	4	0.18146	0.008999	0.077225	6	0.15625	0.243902
B8	Pyridoxine	3	0.166208	0.013771	0.117264	3	NA	NA
B9	Riboflavin	5	0.04939	-0.00133	0.064619	10	0.375	0.5
B10	Thioredoxin, glutaredoxin, and glutathione	18	0.000192	0.001842	0.018133	153	0.894217	0.923063
B12	Thiamin	4	0.036144	0.002481	0.090335	6	0.4375	0.571429
B13	Carotenoid	9	0.055042	0.007289	0.03711	36	0.271629	0.39375
B15	Quinolinate	2	-0.14428	0.016982	0.164196	1	NA	NA
B17	Others	2	-0.22286	0.053807	0.21342	1	NA	NA
B18	Nicotinate and nicotinamide	4	0.02012	-0.00267	0.095846	6	0.6875	0.758621
C1	Membranes, lipoproteins, and porins	12	0.123374	-0.00352	0.024039	66	0.000271	0.000755
C2	Murein sacculus and peptidoglycan	24	0.114196	0.001225	0.010738	276	1.14E-14	6.60E-14
C3	Surface polysaccharides, lipopolysaccharides and antigens	28	0.037842	0.002555	0.009675	378	0.002833	0.006252
C4	Surface structures	3	-0.0643	-0.00747	0.107911	3	NA	NA
D1	Cell division	14	0.040457	0.004366	0.021474	91	0.239005	0.360168
D2	Cell killing	4	-0.11403	0.005627	0.1015	3	NA	NA
D3	Chaperones	16	0.149513	-0.001	0.019445	120	3.16E-08	1.06E-07
D4	Detoxification	8	-0.03366	0.006014	0.059447	10	0.492188	0.605769
D5	Protein and peptide secretion	15	0.027398	0.002238	0.019674	105	0.241988	0.360168
D6	Transformation	7	0.035229	-0.00206	0.056788	15	0.276855	0.39375
D7	Chemotaxis	16	0.16441	0.004529	0.017599	120	7.82E-11	3.58E-10
E1	Amino sugars	1	NA	NA	NA	0	NA	NA
E3	Other	7	0.034647	0.000154	0.046592	21	0.320457	0.436368
E4	Phosphorus compounds	3	0.272135	0.002134	0.125029	3	NA	NA
E6	Polysaccharides and glycoproteins	20	0.017977	0.007266	0.014449	190	0.550623	0.6438
F2	Amino acids and amines	25	0.01777	0.00445	0.010899	300	0.098358	0.165655
F9	Glycolysis	15	0.093482	0.001457	0.019304	105	0.002103	0.004806
F10	Pentose phosphate pathway	8	0.187069	0.001124	0.0433	28	0.004778	0.010193
F11	Pyruvate dehydrogenase	4	0.533959	0.000472	0.079645	6	0.03125	0.057143
F12	Sugars	20	-0.00935	0.003613	0.015568	190	0.553266	0.6438
F13	TCA cycle	9	0.001339	0.002922	0.035624	36	0.969058	0.969058
F14	Pyruvate and acetyl-CoA metabolism	8	-0.01069	-0.00136	0.041631	28	0.955322	0.969058
F15	Glycolate pathway	4	-0.02768	-0.01196	0.085137	6	0.84375	0.9
G	Fatty acid, phospholipid and sterol metabolism	39	0.049742	0.001724	0.006826	741	2.14E-07	6.84E-07
H1	ATP synthase	10	0.728877	0.006634	0.033746	36	2.91E-11	1.43E-10
H10	Respiratory terminal oxidases	9	0.311802	-0.00165	0.029341	36	2.04E-10	8.69E-10

H2	CO2 fixation	15	0.189946	0.000152	0.020611	105	6.93E-09	2.46E-08
H3	Cytochrome b6/f complex	9	0.154524	0.008033	0.035434	36	0.023891	0.044971
H5	NADH dehydrogenase	23	0.209064	0.00261	0.012502	231	1.24E-22	9.53E-22
H6	Photosystem I	16	0.380604	-0.00151	0.019433	120	1.60E-18	1.02E-17
H7	Photosystem II	28	0.263499	0.001603	0.011833	378	2.83E-45	4.52E-44
H8	Phycobilisome	18	0.292606	0.002204	0.017503	153	4.12E-10	1.65E-09
H9	Soluble electron carriers	15	-0.00336	-0.00032	0.021993	105	0.867973	0.91066
I2	Interconversions and salvage of nucleosides and nucleotides	7	0.069975	-0.00317	0.084341	6	0.15625	0.243902
I3	Purine ribonucleotide biosynthesis	24	0.087778	0.002273	0.012958	276	6.34E-12	3.38E-11
I4	Pyrimidine ribonucleotide biosynthesis	12	0.119045	0.002531	0.027699	66	0.00014	0.000409
J	Regulatory functions	156	0.026341	0.002609	0.00202	10585	8.45E-50	1.80E-48
K2	DNA replication, restriction, modification, recombination, and repair	75	0.046028	0.002943	0.004521	1770	1.92E-26	1.76E-25
L1	Degradation of RNA	7	0.136861	-0.00131	0.04701	21	0.021571	0.041835
L2	RNA synthesis, modification, and DNA transcription	23	-0.00481	0.00268	0.015728	253	0.52535	0.634385
M1	Aminoacyl tRNA synthetases and tRNA modification	43	0.110762	0.003204	0.006225	903	5.93E-43	7.58E-42
M2	Degradation of proteins, peptides, and glycopeptides	26	0.061574	0.001555	0.012349	325	2.76E-06	8.42E-06
M3	Nucleoproteins	7	-0.02735	0.00164	0.043121	21	0.657827	0.751803
M4	Protein modification and translation factors	29	0.073099	0.003193	0.011408	406	2.66E-09	1.00E-08
M5	Ribosomal proteins: synthesis and modification	63	0.415678	0.002573	0.005338	1891	6.40E- 277	4.10E-275
Ν	Transport and binding proteins	200	0.017506	0.00258	0.001504	19110	1.19E-33	1.27E-32
01	Adaptations and atypical conditions	12	-0.01237	0.003394	0.02515	66	0.682659	0.758621
O3	Drug and analog sensitivity	23	0.006561	0.004437	0.011642	253	0.720419	0.781471
O7	Other	178	0.005186	0.002661	0.001819	10153	0.049072	0.084882
O7a	WD repeat proteins	6	0.181198	-0.00109	0.063964	10	0.037109	0.065972
O7b	Hydrogenase	15	0.039815	0.002259	0.019748	105	0.489873	0.605769
08	Transposon-related functions	135	0.428559	0.005893	0.016465	136	1.34E-22	9.53E-22

6. Supplemental references

- 1 Hihara, Y., Kamei, A., Kanehisa, M., Kaplan, A. & Ikeuchi, M. DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. *Plant Cell* **13**, 793-806 (2001).
- 2 Postier, B. L. *et al.* The construction and use of bacterial DNA microarrays based on an optimized two-stage PCR strategy. *BMC Genomics* **4**, 23 (2003).
- 3 Tu, C. J., Shrager, J., Burnap, R. L., Postier, B. L. & Grossman, A. R. Consequences of a deletion in dspA on transcript accumulation in Synechocystis sp. strain PCC6803. *J. Bacteriol.* **186**, 3889-3902 (2004).
- 4 Zhang, Z., Pendse, N. D., Phillips, K. N., Cotner, J. B. & Khodursky, A. Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803. *BMC Genomics* **9**, 344 (2008).
- 5 Singh, A. K. *et al.* Integration of carbon and nitrogen metabolism with energy production is crucial to light acclimation in the cyanobacterium Synechocystis. *Plant Physiol.* **148**, 467-478 (2008).
- 6 Georg, J. *et al.* Evidence for a major role of antisense RNAs in cyanobacterial gene regulation. *Mol. Syst. Biol.* **5**, 305 (2009).
- 7 Nakamura, Y., Kaneko, T., Hirosawa, M., Miyajima, N. & Tabata, S. CyanoBase, a www database containing the complete nucleotide sequence of the genome of Synechocystis sp. strain PCC6803. *Nucleic Acids Res.* 26, 63-67 (1998).
- 8 Aguirre von Wobeser, E. *et al.* Concerted Changes in Gene Expression and Cell Physiology of the Cyanobacterium Synechocystis sp. Strain PCC 6803 during Transitions between Nitrogen and Light-Limited Growth. *Plant Physiol.* **155**, 1445-1457 (2011).
- 9 Dickson, D. J., Luterra, M. D. & Ely, R. L. Transcriptomic responses of Synechocystis sp. PCC 6803 encapsulated in silica gel. *Appl. Microbiol. Biotechnol.* **96**, 183-196 (2012).
- 10 Rowland, J. G. *et al.* Identification of components associated with thermal acclimation of photosystem II in Synechocystis sp. PCC6803. *PLoS One* **5**, e10511 (2010).
- 11 Panichkin, V. B. *et al.* Serine/Threonine Protein Kinase SpkA in Synechocystis sp. Strain PCC 6803 Is a Regulator of Expression of Three Putative pilA Operons, Formation of Thick Pili, and Cell Motility. *J. Bacteriol.* **188**, 7696-7699 (2006).
- 12 Shoumskaya, M. A. *et al.* Identical Hik-Rre Systems Are Involved in Perception and Transduction of Salt Signals and Hyperosmotic Signals but Regulate the Expression of Individual Genes to Different Extents in Synechocystis. *J. Biol. Chem.* **280**, 21531-21538 (2005).
- 13 Prakash, J. S. S. *et al.* DNA supercoiling regulates the stress-inducible expression of genes in the cyanobacterium Synechocystis. *Molecular BioSystems* **5**, 1904-1912 (2009).