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Supplementary material 

This supplementary material complements the main manuscript by providing further 

technical details of the methodology. 

Calibration of transmission model to Zambian HIV epidemic and cost-outcome 

relationships 

Using all available demographic, epidemiological, behavioral, and clinical data [1] we 

calibrated Optima to the HIV epidemic in Zambia over 2000-2014. This was achieved by 

varying the input parameters within their uncertainty bounds such that the model projections 

were within the uncertainty bounds of empirical data on population group prevalence (Figure 

S1), number of new diagnoses per year, and the number of people on treatment (Figure S2). 

On inspection, the Optima outputs of HIV prevalence, overall incidence, number of mother-

to-child infections, and number of AIDS deaths were found to be similar in magnitude and 

trend to estimates produced by the Spectrum model. Generally, Optima closely matches the 

available HIV prevalence and treatment data (we were unable to reconcile the lower 

prevalence in 10-19 year old males reported in 2001 with the prevalence trends in 10-19 

year old females). Based on our calibration we estimated the overall and population level 

incidence over 2000-2020. See Figures S1 and S2. 

Cost-outcome relationships 

The relationships between program costs and outcomes, developed in order to conduct 

resource optimization analysis, are presented in Figure S3 for different program and target 

populations. 

Considering uncertainty in optimal allocations 

An uncertainty analysis was undertaken to determine how uncertainties in both the model 

calibration and the cost-outcome relationships impacted on allocation recommendations. 

Forty baseline model simulations were sampled from an ensemble of projections within the 

uncertainty bounds of the model calibration (see Figure S1), as were 40 samples of each of 

the cost-outcome relations within their respective uncertainty bounds (see Figure S2). The 

optimization algorithm was re-run (using multiple random initializations) for each of the 40 

samples under each of the key scenarios discussed in the manuscript (see Figures 1 and 2). 

The results of this uncertainty analysis are presented in Figures S4A-D with the subfigures 

representing optimal allocation determined under each of the key scenarios. 

Rapidly diminishing returns from increasingly complex functions 

The function used to define program allocations over time in this analysis was selected 

because it was deemed to be the simplest function able to capture desired funding dynamics 

(constant, front-loaded, rear-loaded or initial scale-up/down followed by a later scale-

down/up). We also considered a simpler function that was capable of capturing front-loaded, 

rear-loaded and constant allocations over time, but not initial scale-up/down followed by a 

later scale-down/up. This more simplistic function uses 2 parameters to describe funding 

dynamics compared with the 4 parameters used by the described function. Of these two 

approaches, the more complex 4-parameter approach was able to consistently locate an 

allocation that lead to the least number of estimated new infections. This approach, however, 
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does require substantially more simulation time to execute. Figure S8 shows the number of 

function evaluations – that is a single run of the mathematical model - required for the 

optimization algorithm to attain the optimal allocation in each case. Considering that a single 

function evaluation takes in the order of 1 second to run, a single processor could attain the 

optimal constant allocation in around 3 hours, the optimal 2-parameter allocation in around 

18 hours, and the optimal 4-paramter allocation in around 55 hours. However, by splitting 

this load across several processors [2] and/or machines, this process can be significantly 

shortened. A major factor in this increased simulation time is that the likelihood of locating 

the global minima (that is, the true optimal solution) is decreased when implementing this 

more complex approach. As such, multiple optimizations are run – each with different initial 

conditions - to boost the likelihood that the global minimum is located. An evident limitation 

of this methodology as a whole is that there is no guarantee of actually locating this global 

minimum, regardless of how many times the optimization process is repeated. The problem 

of locating the global minima in a high-dimensional space is not a new problem, however, 

and has been the subject of intense scientific investigation for some time [3-5]. More 

generally, it is due to this decreasing likelihood of locating the global minima with 

increasingly complex methodologies, coupled with rapidly diminishing returns on 

epidemiological outcomes from these more complex approaches, that overly-complicated 

functions with many parameters are not considered here, although it would indeed be 

possible to use any arbitrary function to represent the dynamics of time-varying allocations. 

We note that our testing has revealed that despite many different initial conditions across the 

potential solution space, the objective function is not decreased more than when we run this 

our standard number of times, providing us with confidence that the global minimum is most 

likely found. 

To put this level of computational effort into context, let us consider a non-algorithm 

approach to determining superior investment allocations. By simply defining 5% increments 

in coverage from 0% to 100% for each of the eight modeled programs and simulating all 

possible combinations of program coverage, 218 ≈ 38 billion function evaluations would 

need to be simulated. To simplistically incorporate time-varying allocations, the number of 

required function evaluations would be at least 10-100 -fold greater. The most complex of 

solutions described in this paper required a maximum of 200,000 function evaluations (figure 

S8). As such, the computational effort to execute the methodology discussed in this paper is 

at least 2 million times faster than what would be required to attempt optimal allocation 

analyses without the use of a suitable optimization algorithm such as that employed within 

the Optima model. 
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Figure S1: Calibration of Optima to the HIV epidemic in Zambia. Dark grey discs represent available 

data for HIV prevalence. Lines attached to these discs represent uncertainty bounds. The solid curve 

is the best fitting simulation, and the shaded region shows the range of the uncertainty simulations. 
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Figure S2: Calibration of model to ART scale-up data in Zambia. Black discs represent available 

data for the number of people on first and subsequent lines of anti-retroviral treatment. The solid 

curve is the best fitting simulation and the shaded region represents the range of uncertainty 

simulations. 
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Figure S3: Cost-outcome relationships. Black discs represent available program spending verses 

program-related outcome data. The solid curve is the best estimate cost-outcome curve, and the 

shaded region represents the range of uncertainty considered in the each of the cost-outcome 

relationships.  
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Figure S4: Impact of uncertainty on optimal allocations under the key scenarios. The bold curves 

represent the optimal allocation obtained from the analysis of the ‘best-estimate’ model calibration 

and cost-outcome curves. The shaded regions represent the range of optimal allocations obtained 

when the 40 samples of model calibration and cost-outcome relations were considered in the 

optimization process. 

Figure S4A: Impact of uncertainty on optimal allocations when using a time-constant optimization 

approach without constraints on program scale-up/down. In this scenario, total program annual 

spending is fixed at 2014 levels. 

 

Figure S4B: Impact of uncertainty on optimal allocations when using a time-varying optimization 

approach without constraints on program scale-up/down. In this scenario, total program annual 

spending is fixed at 2014 levels. 
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Figure S4C: Impact of uncertainty on optimal allocations when using a time-varying optimization 

approach with implementation constraints (where funding to a program cannot increase or decrease 

beyond a 30% per year) and ethical constraints (where anyone who commences either ART or 

PMTCT cannot cease receiving treatment except by natural attrition). In this scenario, total program 

annual spending is fixed at 2014 levels. 

 

Figure S4D: Impact of uncertainty on optimal allocations when using a time-varying optimization 

approach with implementation constraints (where funding to a program cannot increase or decrease 

beyond a 30% per year) and ethical constraints (where anyone who commences either ART or 

PMTCT cannot cease receiving treatment except by natural attrition). In this scenario, total program is 

optimally determined such that total program spending over the 2015-2025 period is equal to constant 

funding at 2014 levels. 

 



9 
 

Figure S5: Schematic figure illustrating the effects of each of the function parameters: the initial 

allocation, 𝑏, the growth rate, 𝑔, the growth threshold, ℎ, and the decay rate 𝑑. In each curve, the 

initial allocation parameter is set to 30, and the growth threshold parameter is set to 100. In the grey 

curve, the value of the growth threshold parameter is irrelevant as both the growth and decay rates 

are set to 0.  
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Figure S6: Methodology figure illustrating: A) constant allocations; B) “front-loaded” and “rear-

loaded” allocations, and C) allocations that are scaled-up/down followed by a later scale-down/up. 
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Figure S7: The impact of optimal spending on infections averted between 2015 and 2025 compared 

to a baseline of maintaining 2014 spending, under varying implementation constraints (that is, the 

scale-up/down of each program is constrained to be within a percentage of annual spending each 

year). Each scenario is replicated using a constant allocation methodology, a time-varying 

methodology using 2-parameter vectors, and the time-varying methodology described in the 

manuscript (that uses 4-parameter vectors). 
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Figure S8: The number of function evaluations required to determine the optimal allocation by 

implementing the constant spending methodology, the 2-parameter time-varying methodology, and 

the 4-parameter methodology described in the manuscript. 
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Table S1: Summary of the key scenarios represented in Figures 1 and 2. 

Type of 
optimization 

Implementation 
constraints 

Ethical constraints 
Total budget 
assumptions 

Optimization 
time frame 

Cumulative new 
infections over the 
optimization time 

frame 

Maintain 2014 
spending 

None None Constant total budget 10 years 
559,100 

[534,800 - 595,000] 

Constant 
allocation 

optimization 
None None Constant total budget 10 years 

530,600 
[506,000 - 566,500] 

Time-varying 
optimization 

None None Constant total budget 10 years 
524,300 

[501,200 - 560,600] 

Time-varying 
optimization 

30% 
ART and PMTCT 

funding constrained 
Constant total budget 10 years 

540,500 
[517,000 - 575,800] 

Time-varying 
optimization 

30% 
ART and PMTCT 

funding constrained 
Total budget optimally 

determined 
10 years 

516,700 
[494,400 – 550,800] 
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