

Figure S1. Illustration of symptoms observed in coffee plants, bacterial cells and colonies isolated from these symptoms. Coffee leaf scorch on (A) a *Coffea arabica* plant originating from Ecuador, from which Strain CFBP 8072 was isolated and (B) on a *C. canephora* plants originating from Mexico, from which Strain CFBP 8073 was isolated. Cells of CFBP 8072 (C) and CFBP 8073 (D) visualized by immunofluorescence using a *Xylella fastidiosa*-specific antibody. Colony of CFBP 8072 (E) and CFBP 8073 (F) growing on PWG and B-CYE media, respectively.

Figure S2. Gel photographs showing the signals obtained for the three *Xylella* strains (CFBP 8072, CFBP 8073, and CFBP 8074) isolated from coffee cuttings in comparison to strains representing the subspecies *fastidiosa, sandyi, multiplex,* and *morus* of *X. fastidiosa* with the identification tests described by Hernandez-Martinez et al. (1) (a) and Pooler and Hartung (2)(b). The CFBP code of each strain is indicated above each lane. (-) indicates negative control, i.e. tests with water.

1. Hernandez-Martinez, R, Costa HS, Dumenyo CK, Cooksey DA. 2006. Differentiation of strains of *Xylella fastidiosa* infecting grape, almonds and oleander using a multiprimer PCR assay. Plant Dis. **90**:1382-1388.

2. Pooler MR, Hartung JS. 1995. Specific PCR detection and identification of *Xylella fastidiosa* strains causing citrus variegated chlorosis. Curr Microbiol **31**:377-381.

Figure S3. Maximum likelihood trees based on the partial sequences of *cysG, glT, holC, leuA, malF, nuoL, petC.* Bootstrap scores (1,000 replicates) are displayed at each node.

Figure S4. Split graphs of multilocus sequence analysis of the *X. fastidiosa* strains of each sequence type (ST) for the 7 loci (*cysG, glT, holC, leuA, malF, nuoL* and *petC*). The designation at each of the leaves indicates the ST number. See Tables 1 and 4 for strain designations and ST correspondences, respectively.

Figure S5. Conservation of Xfp1-10 phages from *X. fastidiosa* Strain 9a5c in genome sequences of CFBP 8072, CFBP 8073 and Temecula-1.

Figure S6. Conservation of Xfp1-8 phages from *X. fastidiosa* Strain Temecila-1 in genome sequences of CFBP 8072, CFBP 8073 and 9a5c.

Methionyl-t-RNA-synthetase (metG)

ATCC35871 (F820_RS0104705)	A
Griffin-1 (M233_00365)	A
M12 (Xfasm12_1753)	A
Mul0034 (P303_07735)	A
Mul-MD (P910_001364)	A
Sy-VA (DF22_001966)	A
Dixon (XFASADRAFT_RS00950)	A
Ann-1 (D934_RS11260)	A
EB92.1 (XFEB_00975)	A
GB514 (XFLM_02185)	A
M23 (XfasM23_1678)	A
Temecula1 (PD1590)	A
9a5c (XF0549)	A
CoDiRO (RA12_02050)	A
CFBP 8072 (XYFPCFBP8072_i00120)	A
CFBP 8073 (XYFPCFBP8073_aa00390)	A
6c (B375_RS16320)	A
32 (B398 RS16135)	A

ACCCATCCATGTCAAACACACCACCACA N A S M S N T A P P ACGCMTCCATGTCAAACACAGCACCACCA N М S N S Τ A ACGCMTCCATGTCAAACACAGCACCACCA М S Ν ACCATCCATGTCAAACACAGCACCACCA N A S M S N T A P P NACGCATCCATGTCAAACACAGCACCACCA N A S M S N T A P P ACGCATCCATGTCAAACACAGCACCACCA N A S M S N T A P P ACGCATCCATGTCAAACACAGCACCACCA М S Ν A ACGCMTCCATGTCAAACACAGCACCACCA М S N ACGCMTCCATGTCAAACACAGCACCACCA N Μ S Ν Т A ACGCMICCAIGICAAACACAGCACCACCA Μ N ACGCATCCATGTCAAACACAGCACCACCA М Ν ACGCATCCATGTCAAACACAGCACCACCA ACGCATCCATGTCAAACACAGCACCACCA N A S M S N T A P P ACGCATCCATGTCAAACACAGCACCACCA N A S M S N T A P P ACGCCTCCATGTCAAACACAGCACCACCA (2x) Μ S Ν ACGCCTCCATGTCAAACACAGCACCACCA (1x) М S Ν Α ACGCCTCCATGTCAAACACAGCACCACCA (5x) N A S M S N T A P P ACGCCTCCATGTCAAACACAGCACCACCA (1x) М S N

Hypothetical protein

Mul0034 (P303_05870)	AGG	AA	CAG	A T G C	SAGA	ΑTGI	LIC.	AGAAA
		Е	Q	М	Е	м	F	R
Mul-MD (P910_RS09730)	AGG	AA	CAG	A TGC	GAG.	ATGI	TC.	AGAAA
		E	Q	INI .	E	м	E.	к
Ann-1 (D934_RS00755)	AGG	AA	CAGO	G I G C	AGA	AIGI	T T	AGAAA
	100		vy anants na	v Normalized at	<u>с</u>	PI	с 100 ст	
EB92.1 (XFEB_00416)	AGG	F		V	F R	M	F	B
CRE14 (VELNA OE12E)	A C' C	- A A B	¥ 1 m 7* 7				-	AC'AAA
GB314 (XFLM_03123)	AGG	E	L	V	E	M	F	R
M23 (XfasM23, 1318)	AGG	AAD	AGO	En a r	AGA	A TH CH T	- ПП ТТ	AGAAA
W25 (XI85W25_1516)	1100	Е	Q	V	Е	M	F	R
Temecula1 (PD1239)	AGG	AAC	CAGO	TA	AGA	ATGT	т т	AGAAA
		Е	Q	V	Е	М	F	R
9a5c (XF2190-2191)	AGG	AA	CAGO	GIGO	GAGA	ATGI	ΤT	AGAAA
		Е	Q	V	Е	М	F	R
CoDiRO (RA12_11140)	AGG	ΑA	TGO	GTGC	GAGA	ATGI	TT_{2}	AGAAA
		Е	L	V	Е	М	F	R
CFBP 8072 (XYFPCFBP8072_cc00010)	AGG	AA	CAGO	JIGO	GAGA	ATGI	TC.	AGAAA
		Е	Q	V	Е	ы	F.	R
CFBP 8073 (XYFPCFBP8073_dx00010)	AGO	AA	CAGO	T GC	GAGA	ATGI	I I C	AGAAA
		E	<u>v</u>	v	E	PI	F	к
6c (B375_RS18005)	AGG	F	AGO	SUG0	GAGA	M		B
22 (2200 2017775)	100		¥ 1 A C' C	v Hintesia		та м п. С* п	-	1. A C' A A A
32 (B398_R51775)	AGG	E	0 AGU	v u Gu V	E	M	F	R

Von Willebrand factor type A

ATCC558/1 (F820_R50101115)	CCC	AŢC	стс	ACC	GAC	GATG	CD	LATC	CTG
0.1551 4 (1.4000)	P	1 8 0 18	L	T			A	⊥ 8181 m 268	L
Griffin-1 (M233_11120)	P	I	L	T	D	D	A	I	L
M12 (Xfasm12 0914)	CCG	ATC	CTC	ACC	GAC	GATG	C	ATC	CTG
(,	P	I	L	т	D	D	А	I	L
(Xfasm12_0653)	cçe	ATC		ACC	GAC	GATG	CD A	CATC	СТС
Mul0024 (D202 0280E)	CCC	⊥ A Trin	ப பாற	ACC	CAC	CATC	A CCTR	⊥ • ∧ m r•	L IC'INC
Wul0034 (F305_03803)	P	I	L	T	D	D	A	I	L
(P303_07930)	CCG	ATC	CTC	ACC	GAC	GATG	C	ATC	CTG
	P	I	L	т	D	D	А	I	L
Mul-MD (P910_002361)	CČC	ATC	CTC	ACC	GAC	GATG		IATC	CIC
SV-VA (DE22 PS10795)	CCC	⊥ ∧ π ≊	 IC' Т C'	A C C	CAC	CATC	n chi	ב יא די איי	
SV-VA (DI 22_1(510795)	P	I	L	T	D	D	A	I	L
Dixon (XFASADRAFT_RS01420)	CCG	ATC	CTC	ACC	GAC	GATG	C	ATC	СТС
	P	I	\mathbf{L}	т	D	D	А	I	L
(XFASADRAFT_RS02665)	CCG	AŢC		ACC	GAC	GATG	CD	ATC	CTC
	P	⊥ 8 m ≊	ы ыста	T	CAC		A	⊥ 8 8 m 23	L ICUM C
(XFASADRAFI_RS11395)	P	AIU	L	T	D	D	A	I	L
Ann-1 (D934 RS07330)	CCG	ATC	IC T C	ACC	GAC	GATG	C	ATC	СТО
(,	P	I	L	т	D	D	А	I	L
(D934_RS08480)	CČC	ATC	CTC	ACC	GAC	GATG	CI	ATC	CTO
(5024 5020505)	P	1	L	т	D	D	A		L
(D934_RS09595)	P	AIU T	T.	ACC T	GAC	GAIG	A	T	T.
EB92.1 (XEEB 00076)	CCG	ATC	IC T C	ACC	GAC	GATC	AD	АТТ	СТС
	P	I	L	Т	D	D	D	I	L
GB514 (XFLM_09455)	CCG	ATC	CTC	ACC	GAC	GATG	A	ATT	CTO
	P	I	L	Т	D	D	D	I	L
M23 (XfasM23_0811)	CCG	AIC	IC I C	ACC	GAC	GAIG	AD		CILC T.
Temecula1 (PD0767)	CCG	 А П Г	<u>.</u> ПС Т С	ACC	GAC	GATC	i A lit	ב יין די בי	
	P	I	L	T	D	D	D	I	L
9a5c (XF0526)	CCG	ΑTΤ	СТС	ACC	GAC	GATG	C	ATC	СТС
	P	I	L	Т	D	D	A		L
(XF2115)	CCG	AT T	CTC L	ACC	GAC	GATG		ATC	C T C
	CCC	⊥ ∧ π 12	 IС Т С	ACC	CAC	С А П С	icn	ב יא די איי	
	P	I	L	T	D	D	A	I	L
CFBP 8072 (XYFPCFBP8072_bs00010	0) CCG	ATC	CTC	ACC	GAC	GATG	A	ATC	СТС
	P	I	\mathbf{L}	т	D	D	D	I	L
CFBP 8073 XYFPCFBP8073_fd00010) ccc	AŢC		ACC	GAC	GATG	A	IATC	CTO
6c (B275 BS1827E)	P	⊥ ∧ mi≃	L	T		ש ר'א דיר	ם. הוא	L N m Pa	Li Ngunya
UC (D3/3_K3162/3)	P	A IU I	L	T	D	D	D	I	L
(B375_RS15870)	CCG	ATC	CTC	ACC	GAC	GATG	A	ATC	СТС
	P	I	L	Т	D	D	D	I	L

Figure S7. Candidate genes with k-mer fragments specific to four coffee-infecting strains of *X. fastidiosa*. For each candidate gene, the region containing the k-mer specific to coffee strains (*X. fastidiosa* subsp. *pauca* Strains 6c, 32 and CFBP 8072 and *X. fastidiosa* subsp. *fastidiosa/sandyi* Strain CFBP 8073) was aligned with corresponding regions in orthologs from other *X. fastidiosa* strains. The strain code is indicated for each strain followed by the locus tag of the candidate gene in that genome sequence.

<u>Cellobiosidase</u>

ATCC35871 (F820_RS12200)	İC S	СА	GC S	rcic) S	G G	ICT. S	AGTTĊ
Griffin-1 (M233_RS19950)	TC	СА	CC S	rcic. s	ACC S	TCC S	GTTC
M12 (Xfasm12_0598)	TC S	СА	CC S	rcic. S	A C C S	TCC(S	GTTC
Mul0034 (P303_02185-P303_02190)	TC S	СА	CC S	rCC S	G	TCT. S	ACTTC
Mul-MD (P910_RS04945)	TC S	СА	GC S	rcic) S	G	TCT. S	ACTTC
Sy-VA (DF22_RS00940)	TC S	СА	GC S	rcic. S	ACC S	ICC S	GTTC
Dixon (XFASADRAFT_RS02915)	TC S	СА	GC S	rcic. S	A CC S	TCC S	GTTC
Ann-1 (D934_RS03550)	TC S	AA	GC S	rcici S	G G	ICT. S	AGTTC S
EB92.1 (XFEB_01892)	TC S	ТΑ	G T S	FC TA	A CT S	ICT. S	AGTTC S
GB514 (XFLM_08105-XFLM_08110)	TC S	ТΑ	CT S	ICITA S	A GT S	ICIT. S	AGTTC S
M23 (XfasM23_0553)	TC S	ТΑ	CT S	ΓC ΤΔ S	A GT S	TCT/ S	AGTTC S
Temecula1 (PD0529)	TC S	ТΑ	СТ S	ГС Тл S	A GT S	ICII. S	AGTTC S
9a5c (XF1267)	TC S	СА	GC S	rcic S	G GI G	TCT. S	AGTTC S
CoDiRO (RA12_05855-RA12_05860)	TC S	СА	GC S	rcic) S	G G C G	AAI *	AAACC K
CFBP 8072 (XYFPCFBP8072_p00410-XYFPCFBP8072_p00420)	TC S	CG	GC G	rcic) S	G G	TCT. S	AGTTC S
CFBP 8073 (XYFPCFBP8073_cm00010)	TC S	CG	GC G	rcic) S	G GT G	ICI. S	AGTTC S
6c (B375_RS0113680)	TC S	CG	CC G	rcic S	G G	ICII. S	AGTTC S
32 (B398_RS0113725)	TC S	CG	CC G	rcic) S	G G	ICT. S	AGTTC S

Phage antirepressor

ATCC35871 (F820_RS0109215)	BUNGCTGCGGTACCGTCGCCBGTAA
(F820_RS0109470) (intergenic; 245bp-upstream)	GENEGCTGCGGTACCGTCGCCGGTAA
Griffin-1 (M233_RS22595) (integenic; 244bp-upstream)	ATMGCTGCGGTACCGTCGCCBGTAA
M12 (Xfasm12_1162)	ATHECTECEGTACCETCECCEGTAA
Mul0034 (P303_02835)	ATHECT CC THE TAA
(P303_09510) (intergenic; 241bp-upstream)	ATEGCTGCGGTACCGTCGCTGGTAA
Mul-MD (P910_RS10720) (intergenic; 246bp-upstream)	BEEGCTGCGGTACCGTCGCTAGTAA
(P910_RS10770)	GUNGCIGCEGTACCEICECIAETAA
Sy-VA (DF22_RS10700)	HUNGCTGCGGTAGCGTCGCCGGTAA
Dixon (XFASADRAFT_RS05730) (intergenic; 241bp-upstream)	AMAGCTGCGGTACCGTCGCCGGTAA
Ann-1 (D934_RS05835) (intergenic; 248bp-upstream)	BREGGIGGGGIACCGICGCCBGIAA
(D934_RS06120) (intergenic; 244bp-upstream)	BREGCIGCGGIACCGICGCCBGIAA
EB92.1 (XFEB_02046)	BUNGCIGCEGIACCEICECIAGIAA
(XFEB_02052)	R C G T V A S EUROCIGCOGICOCIACIAA
GB514 (XFLM_11365) (intergenic; 244bp-upstream)	K C G T V A S EmmgCTGCGGTACCGTCGCTAGTAA
M23 (XfasM23_1182)	BUNGCIGCEGIACCEICECIAGIAA
(XfasM23_1184)	K C G T V A S
Temecula1 (PD1117)	R C G T V A S EMM <u>GCTGCGGTACCGTCG</u> TAGTAA
(PD1119)	R C G T V A S Exected concorted tagtaa
9a5c (XF2507) (intergenic; 145bp-upstream)	R C G T V A S Ammgctgcggtaccgtcgctggtaa
CoDiRO (RA12_07555) (intergenic; 37bp-downtream)	BRMGCTGCGGTACCGTCGCCBGTAA
CFBP 8072 (XYFPCFBP8072_ap00120)	ARRECTECEGTACCETCECCEGTAA
CFBP 8073 (XYFPCFBP8073_aq00060)	R C G T V A G ARRECTGCGGTACCGTCGCCGGTAA
6c (B375_RS20650) (integenic; 243bp-upstream)	R C G T V A G ANNGCIGCGGTACCGICGCCGGIAA
32 (B398_RS0114070) (intergenic; 244bp-upstream)	ARRECTECEGTACCETCECCEGTAA

Figure S7 (continued)

	cysG	gltT	holC	leuA	malF	nuoL	petC	Conc ¹
cysG	-	0.005	0.000	0.000	0.000	0.018	0.027	0.000
gltT	0.000	-	0.000	0.000	0.000	0.000	0.000	0.000
holC	0.000	0.000	-	0.000	0.000	0.000	0.000	0.000
leuA	0.000	0.000	0.000	-	0.008	0.000	0.007	0.000
malF	0.000	0.000	0.000	0.066	-	0.000	0.005	0.000
nuoL	0.000	0.000	0.000	0.007	0.000	-	0.000	0.000
petC	0.000	0.000	0.000	0.000	0.000	0.000	-	0.000
Conc	0.415	0.019	0.100	0.215	0.624	0.077	0.105	-

Table S1. *P* values determined using the Shimodaira-Hasegawa test of tree topologies run on each of the maximum likelihood trees based on the 7 loci and the data set of concatenated sequences.

¹Concatenated data set

Lagua	GC	Sitora	Cp	b 11 2 mol de 11		o f	Tajima's	Fu & Li's	En la E	
Locus	%	Siles	3-	нар	Hū	θπ	0w ²	\mathbf{D}^{g}	D^{g}	ru s r°
cysG	61.8	600	54	18	0.915	0.01825	0.20690	-0.52740	0.17484	0.290
gltT	53.3	654	25	12	0.800	0.01212	0.00880	0.92589	0.37741	2.359
holC	61.6	379	37	17	0.906	0.02466	0.02250	0.13773	0.44541	0.074
leuA	52.9	708	30	12	0.833	0.00953	0.00974	-0.18139	-0.42531	1.527
malF	50.6	730	46	12	0.905	0.01441	0.01463	-0.19598	0.39165	4.108
nuoL	51.0	557	42	13	0.876	0.01932	0.01836	-0.06145	1.19143	3.076
petC	51.5	533	24	9	0.735	0.01095	0.01035	0.19324	-0.41645	3.094
Concat. ^h	54.2	4161	259	32	0.970	0.01493	0.01441	-0.03785	0.36260	1.172

Table S2. Sequence variation at the seven loci among the 44 X. fastidiosa strains used in the MLSA.

^anumber of analyzed sites

^bnumber of polymorphic sites

^cnumber of haplotypes

^dhaplotype diversity (Nei M. 1987. Molecular evolutionary genetics. Columbia Univ. Press,

New York.)

^enucleotide diversity (**Nei M.** 1987. Molecular evolutionary genetics. Columbia Univ. Press, New York.)

^fnucleotide diversity from S (**Watterson GA.** 1975. On the number of segregating sites in genetical models without recombination. Theoret. Pop. Biol. **7**:256-276.)

^gneutrality tests of Tajima (**Tajima F.** 1989. Statistical method for testing the neutral mutation

hypothesis by DNA polymorphism. Genetics 123:585–595.) and Fu & Li (Fu YX, Li WH.

1993. Statistical tests of neutrality of mutations. Genetics **133**:693–709.) and associated P-

value: (* *p*<0.05)

^hdata set of concatenated sequences

Strain code	PLS 229	ATCC 35871	Sy- VA	M12	Griffin	Dixon	Mul- MD	Mul 0034	Ann-1	CFBP 8073	Teme- cula1	M23	GB 514	EB 92.1	9a5c	6с	32	CoDi- RO	CFBP 8072
PLS229		83.64	83.56	83.64	83.65	83.59	83.47	83.41	83.44	83.49	83.41	83.40	83.46	83.51	83.77	83.77	83.80	83.77	83.77
ATCC 35871	83.89		99.45	99.39	99.40	99.43	98.26	98.25	97.60	97.72	97.74	97.73	97.76	97.72	96.30	96.23	96.31	96.30	96.55
Sy-VA	83.70	99.38		99.31	99.31	99.36	98.17	98.17	97.50	97.57	97.70	97.69	97.72	97.65	96.18	96.17	96.23	96.15	96.45
M12	83.74	99.31	99.35		99.95	99.68	97.85	97.79	97.51	97.47	97.55	97.53	97.52	97.50	96.15	96.22	96.23	96.21	96.48
Griffin	83.77	99.39	99.37	99.98		99.69	97.92	97.90	97.49	97.51	97.56	97.56	97.54	97.52	96.21	96.22	96.21	96.26	96.56
Dixon	83.59	99.33	99.27	99.58	99.57		97.86	97.82	97.44	97.40	97.46	97.55	97.44	97.40	96.03	96.05	96.10	96.13	96.39
Mul-MD	83.51	98.19	98.10	97.73	97.78	97.76		99.77	97.99	98.29	98.40	98.37	98.40	98.49	95.81	95.78	95.83	95.97	96.20
Mul0034	83.30	98.06	97.95	97.61	97.65	97.64	99.79		97.89	98.22	98.33	98.29	98.39	98.42	95.67	95.65	95.74	95.80	96.08
Ann-1	83.38	97.41	97.31	97.12	97.16	97.16	97.89	97.82		98.12	97.97	97.97	97.99	98.02	95.65	95.77	95.74	95.93	96.16
CFBP 8073	83.47	97.39	97.32	97.13	97.17	97.16	98.11	98.01	97.97		98.75	98.72	98.74	98.84	95.65	95.76	95.77	95.84	96.14
Temecula1	83.40	97.68	97.58	97.35	97.4	97.36	98.41	98.39	98.04	98.89		99.90	99.91	99.71	95.82	95.80	95.90	95.92	96.23
M23	83.33	97.69	97.56	97.35	97.36	97.42	98.32	98.30	98.00	98.83	99.87		99.83	99.64	95.79	95.78	95.87	95.93	96.19
GB514	83.44	97.65	97.58	97.40	97.43	97.42	98.43	98.39	98.09	98.82	99.93	99.89		99.72	95.83	95.83	95.90	95.91	96.25
EB92.1	83.48	97.63	97.59	97.33	97.33	97.26	98.45	98.44	98.09	98.78	99.64	99.62	99.67		95.74	95.73	95.78	95.97	96.15
9a5c	83.73	96.17	96.12	96.07	96.13	96.04	95.85	95.76	95.83	95.95	95.84	95.86	95.84	95.85		98.85	99.16	98.10	97.96
6c	83.91	96.24	96.16	96.17	96.18	96.13	95.83	95.82	95.90	95.95	95.85	95.82	95.84	95.86	98.86		98.88	98.19	97.96
32	83.92	96.09	96.00	95.89	95.93	95.89	95.68	95.64	95.68	95.82	95.8	95.77	95.75	95.80	99.06	98.77		97.98	97.86
CoDiRO	83.92	96.27	96.21	96.16	96.18	96.16	96.07	96.01	96.06	96.19	96.08	96.06	96.05	96.11	98.21	98.25	98.28		98.66
CFBP 8072	83.72	96.19	96.06	96.09	96.08	96.06	95.96	95.92	96.01	96.02	96.02	95.99	96.09	96.07	97.74	97.67	97.86	98.29	

Table S3. Average nucleic identity (ANIb) values derived from 19 X. fastidiosa genome sequence pairwise comparisons.