SUPPLEMENTAL DATA

	Primers name	Gene (name)	Primer sequence $5' \rightarrow 3'$	References
	<i>ehaA</i> ^α -F	z0402 (ehaA)	ATATCGGCTAAAGTGGAACAGGTCC	(1)
	<i>ehaA</i> ^α -R		CCTAACGCTAACTCAGAGTTGGTGC	This study
	<i>ehaA</i> ^α -F		GACGGGTGAGCAGAAACAAACC	(1)
	<i>ehaA</i> ^α -R		ATCCAGGTAACCTGTGCTTGCG	(1)
	<i>ehaB</i> ^α -F	z0469 (<i>ehaB</i>)	AGTGCATGACTACTGATTGTGCTG	(1)
	<i>ehaB</i> ^α -R		CACATTAAACAAACCGCTCTGG	(1)
	$ehaB^{\beta}$ -F		CCGTTGTTCTGCAACAGATGG	(1)
	<i>ehaB</i> ^β -R		TCACCGTTCACATCGTTATCG	(1)
	$ehaC^{\alpha}$ -F	yfaL (<i>ehaC</i>)	ATGAATGTCGGCGA(T/C)ACGC	(1)
	$ehaC^{\alpha}$ -R		AGCGTACCGGA(G/A)GCGATTTG	(1)
Autotransporter	$ehaC^{\beta}$ -F		ATGGTCAGACGCTGAATTTACG	(1)
	$ehaC^{\beta}$ -R		TCCCTTTCTGCCACGCCACG	(1)
	<i>ehaD</i> ^α -F	ypjA (ehaD)	CACAACCATAAATGGTGGTCG	(1)
	ehaD ^α -R		TCTTTCTCAACAACCTGCCG	(1)
	$ehaD^{\beta}$ -F		ATTCTCTGGGCGGCTATGCC	(1)
•	<i>ehaD</i> ^β -R		TTCCACGGGGATTCCACACC	(1)
	$ehaG^{\alpha}$ -F	z5029 (ehaG)	GTGGAATGTTGTCGTCGTTTGGG	This study
	$ehaG^{\alpha}$ -R		CTCTCGACTGGCTACCATTA	This study
	$ehaG^{\beta}$ -F		AATACCCAGAGCATTACTAACCTG	(2)
	<i>ehaG</i> ^β -R		TTGGGTCTACAAATTACAAGGT	(2)
	saa-F	LH0174 (saa)	CGTGATGAACAGGCTATTGC	(3)
	saa-R		ATGGACATGCCTGTGGCAAC	(3)
	espP-F	L7020 (espP)	AAACAGCAGGCACTTGAACG	(4)
	espP-R		GGAGTCGTCAGTCAGTAGAT	(4)
	yejO-F	z3449 (<i>yejO</i>)	CTAACACTCCACAATCCGTC	This study
	yejO-R		CGCAAATTACCCCTTCAACC	This study

Table S1. Primers used in this study

	Primer	rs Gene	Primar sequence 5' 3'	References		
	name	(name)	111111111111111111111111111111111111			
	loc1-F	z0024	CTGGTCTCATTCTGGTCA	This study		
	loc1-R		GGATGTCGATCAAGGAAC	This study		
	loc2-F	z0152 (yadN 0157)	AAAAGCACTTCTCGCAGC	This study		
	loc2-R		GGCTGTTCGGTGCTTTAA	This study		
	loc2b-F	ECO26_0144 (yadN nonO157)	TTGCTGTTTGGTCTGCGA	This study		
	loc2b-R		CAGTGGTCTGGTTGTTGA	This study		
	loc3-F	z0686 (sfmA)	GCGGTACAATTCACTTTGAAGG	(5)		
	loc3-R		CATTTGCTTGCCCTGCTGATGC	(5)		
Fimbriae	loc4-F	z0872 (ybgD)	TGTTCCATCCAGGCAAAG	This study		
	loc4-R		GTGAAGTTATTGAAGCACC	This study		
	loc5-F	z1286 (ycbQ)	CTGTGGTATGTGCAACGTCC	(5)		
	loc5-R		CCCCGTAGCGATATAATCAAC	(5)		
	loc6-F	z1538	CCTACAGTCACTTTTCAGGG	(5)		
	Loc6-R		GATTAATTAGAGGTAGCTCAGG	(5)		
	loc7-F	z2206	CCAGTATTTTTCCATTACGC	This study		
	loc7-R		CCGGTGGAGTTGTCATAA	This study		
	loc8-F	z1676 to z1677 (csgA-CsgC)	CAGGTGTTGTTCCTCAGT	This study		
	loc8-R		AAAGTGCCGCAAGGAGTAA	This study		
	loc9-F	z3277 (yehB)	TACCGAAGGTGATTGTGC	This study		
	loc9-R		GATGCTTATGTCAATGGGC	This study		
	Loc10-F	z3601	CTGCTTCGCTTTGCCTTT	This study		
	Loc10-R		CTGGAAGTTGATATGGGTG	This study		
	Loc11-F	z4498 (yraH)	CTTTTCGCAGGTAATGCCG	(5)		
	Loc11-R		TTAACGACAGCGTCTGCTTC	This study		
	loc12-F	z4968	GTAACCRACGCGGGTATCAA	This study		
	loc12-R		GCAGCAGGATTACTGGAA	This study		
	loc13-F	z5222 to z5224	GAGGATAAAAGCAAASCGCC	This study		
	loc13-R		TCATCGGTMTGCCAGTAT	This study		
	loc14-F	z5913 (fimI)	GTCGTTGCTGCCAATGTTTGC	(5)		
	loc14-R	-	GAAATGTAGCGAAGTAGAGCC	(5)		

 Table S2. Number of STEC colonies positive for Congo red or calcofluor staining classified by seropathotypes.

		\mathbf{N}	19-Coi	ngo Re	ed ^a	M9-Calcofluor ^a						
Seropathotype^b	30°C		37°C		All	30°C		37°C		All		
	24h	48h	24h	48h	conditions	24h	48h	24h	48h	conditions		
A (15)	0	9	7	15	15	0	2	0	1	3		
B (21)	5	12	10	19	19	2	9	7	8	11		
C (3)	0	3	1	2	3	0	1	0	0	1		
Total (39)	5	24	18	36	37	2	12	7	9	15		

^a Results are average for 3 independent biological replicates.

^b Number in parentheses indicates number of isolates.

C	No of	of No. of strains positive by PCR for autotranpsorters genes:											_		
Serotype	strains	ehaA ^a	ehaA ^β	ehaB ^a	ehaB ^β	ehaC ^a	$ehaC^{\beta}$	ehaD ^a	ehaD ^β	ehaG ^a	ehaG ^β	saa	espP	yej0	
O157:H7 (A)	14	14	14	14	14	14	14	14	14	14	14	0	14	14	_
O157:NM (A)	1	1	1	1	1	1	1	0	1	0	1	0	1	1	
O157:H26 (C)	1	0	0	0	1	1	1	1	1	1	0	0	0	1	
O26:H11 (B)	4	4	4	0	4	4	4	0	0	4	4	0	4	4	
O45:H2 (B)	4	4	4	0	4	4	4	0	0	4	4	0	0	4	
O103:H2 (B)	1	1	1	0	1	1	1	1	1	1	1	0	1	1	
O111:H8 (B)	1	1	1	0	0	1	1	0	0	1	1	0	0	1	
O111:NM (B)	4	4	4	0	4	4	4	0	0	4	4	0	0	4	
O121:H19 (B)	4	4	4	4	4	4	4	0	0	4	4	0	3	3	
O145:H25 (C)	1	1	1	0	1	1	1	1	0	1	1	0	1	1	
O145:NM (B)	3	3	3	0	3	3	3	1	0	3	3	0	2	2	
O113:H21 (C)	1	1	1	0	1	1	1	0	0	1	1	1	1	0	_
Total	39	38	38	19	38	39	39	15	17	38	38	1	27	36	
	No. of strains positive by PCR for fimbrial genes								nes:						
		z0024	yadN	sfmA	ybgD	ycbQ	z1538	z2206	sgA-csg(yehB	z3601	yraH	z4968	222-z5	2 fim
O157:H7 (A)	14	14	14	14	14	14	14	13	14	14	14	14	14	13	14
O157:NM (A)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
O157:H26 (C)	1	0	1	1	1	1	0	1	1	1	1	1	1	0	1
O26:H11 (B)	4	0	4	4	4	4	0	3	4	4	4	4	4	4	4
O45:H2 (B)	4	0	4	4	4	4	0	4	4	2	4	4	4	0	4
O103:H2 (B)	1	0	1	1	1	1	0	1	1	1	1	1	1	0	1
O111:H8 (B)	1	0	1	1	1	1	0	1	1	0	1	1	1	1	1
O111:NM (B)	4	0	4	4	4	4	0	4	4	4	4	4	4	4	4
O121:H19 (B)	4	0	4	4	4	4	0	4	4	0	4	4	4	4	4
O145:H25 (C)	1	1	1	1	1	1	0	1	1	1	1	1	1	0	1
O145:NM (B)	3	2	3	3	3	2	0	3	3	3	3	2	2	1	3
O113:H21 (C)	1	0	1	1	1	1	0	1	1	0	1	1	0	1	1
Total	39	18	39	39	39	38	15	37	39	31	39	38	37	29	39

Table S3. Serotype distribution of autotransporter and fimbrial genes among STEC strains.

Figure S1. Biofilm formation and Congo red (A) or calcofluor white staining (B). The ability to bind CR on M9-CR agar (A) or CF on M9-CF agar (B) after 24 h or 48 h of incubation at 30°C or 37°C was not correlated neither with the 24 h biofilm formed in M9 plus glucose (0.4% wt/vol) in microtiter plates at 30°C, nor with seropathotypes. Open triangles represents seropathotype A isolates and filled dots represents seropathotypes B–C isolates. Results are the average for 3 independent biological replicates. The horizontal bars represent the median. Statistical analysis was performed by using a Mann Whitney test with two-tailed distribution.

REFERENCES

- Wells TJ, Sherlock O, Rivas L, Mahajan A, Beatson SA, Torpdahl M, Webb RI, Allsopp LP, Gobius KS, Gally DL, Schembri MA. 2008. EhaA is a novel autotransporter protein of enterohemorrhagic *Escherichia coli* O157:H7 that contributes to adhesion and biofilm formation. Environ Microbiol 10:589–604. <u>http://dx.doi.org/10.1111/j.1462-</u> 2920.2007.01479.x.
- Totsika M, Wells TJ, Beloin C, Valle J, Allsopp LP, King NP, Ghigo JM, Schembri MA.
 2012. Molecular characterization of the EhaG and UpaG trimeric autotransporter proteins from pathogenic *Escherichia coli*. Appl Environ Microbiol 78:2179–2189. http://dx.doi.org/10.1128/AEM.06680-11.
- 3. Paton AW, Srimanote P, Woodrow MC, Paton JC. 2001. Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic *Escherichia coli* strains that are virulent for humans. Infect Immun 69:6999–7009. http://dx.doi.org/10.1128/IAI.69.11.6999-7009.2001.
- Brunder W, Schmidt H, Frosch M, Karch H. 1999. The large plasmids of Shiga toxinproducing *Escherichia coli* (STEC) are highly variable genetic elements. Microbiology 145 (Pt 5):1005–1014. <u>http://dx.doi.org/10.1099/13500872-145-5-1005</u>.
- Low AS, Holden N, Rosser T, Roe AJ, Constantinidou C, Hobman JL, Smith DG, Low JC, Gally DL. 2006. Analysis of fimbrial gene clusters and their expression in enterohaemorrhagic *Escherichia coli* O157:H7. Environ Microbiol 8:1033–1047. http://dx.doi.org/10.1111/j.1462-2920.2006.00995.x.