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Calculating thermoelectric flux 

 

As was mentioned in the main text the application of a temperature gradient to a superconductor 

creates a phase difference   2 /q sm e n T     across the superconductor (4) that is analogous 

to the difference in electrochemical potential across the ends of a normal metal placed in a 

temperature gradient. In previous theories (3, 4, 16) the thermoflux was directly connected to 

the phase difference,  . Calculation of the circulating current, which generates the 

thermoelectric magnetic field, BTh, and the corresponding magnetic flux, Th , was not 

attempted. In this paper we report on such calculations.  

The Eq. 1 connects the thermoelectric flux and the circulating current  

 

2Th csL I                                                            (1) 

  

We consider a superconducting thermocouple consisting of a superconductor, S, and a 

superconductor, S’, with much larger gap and hence negligible quasiparticle current. This 

situation corresponds with our experiments; however it is simple to generalise it to an arbitrary 

superconductor S’.  

 

When the thermocouple is open-circuited the total current in each superconductor must be zero. 

This is automatically achieved, since the thermoelectric quasiparticle current Iq=jqs is 

completely compensated by the counter-flowing supercurrent Is=jss, so the total current

0q sI I  ; s is the cross-sectional area of the superconductor. The supercurrent, Is, is carried 

by Cooper pairs that can penetrate from S into S’ without any impediments while the current Iq 

cannot, since there are no allowed states for quasiparticles on the S’ side.  The quasiparticle 

current is transformed into a supercurrent on the S’ side (Fig. S1 A) via an unusual process 

called “Andreev reflection” (34). During Andreev reflection a Cooper pair is created on the S’ 

side when an electron incident at the interface is paired with another electron creating a hole 

on the S side (Fig. S1). In real space the hole retraces the electron path (Fig. S1 A). A Cooper 

pair is annihilated on the S’ side when a hole incident at the interface is annihilated by one of 

the electrons of a Cooper pair while the second electron is excited to a quasiparticle state (Fig. 

S1 B). In real space the electron retraces the hole path (Fig. S1 A). In equilibrium the numbers 

of Cooper pairs created and annihilated are equal and the total current through the interface is 

zero. When quasiparticle thermoelectric current is generated, the Andreev reflection converts 

it to an equal supercurrent, Is’, on the S’ side making the total current 0s sI I     (Fig. S1 A). 

 

When the two ends of the superconducting thermocouple are connected together, a circulating 

current, Ics, is induced. It flows in the inner -layer of the loop (Fig. 1 A) and obeys the current 

conservation requirement 

( ) ( )q s csI x I x I const                                                   (SE1) 

 where x is the coordinate along the bimetallic loop. The circulating current reduces the energy 

of the bimetallic loop therefore its existence is energetically favourable (13).  

  



According to (13) the total energy, W, of the loop consists of the energy of the magnetic field 
2

2 2m csW L I created by the circulating current and the kinetic energy 2( ) ( ) 2k k sW L x I x  of 

superconducting electrons in S, with 

 

   m

l

k WdxdxxdWW  
0

0

)(                                                       (SE2) 

 

Lk is the kinetic inductance, x=0 at the hot end, l0 is the length of the superconductor, S. Taking 

into account the requirement that each current be continuous across the cold interface at x=l0: 

0( ) 0qI l  , 0( )s csI l I  we arrive at 

 
2

2 2

0 2(0) (0) 2 ( ) 2 2k cs q k cs csW L I I L l I L I                                     (SE3)  

 

where (0)qI  and (0)kL  correspond to the hot contact. Minimizing W with respect to Ics by 

solving equation 0csW I   , we obtain 

 

 2(0) (0)cs q k kI I L L L                                                          (SE4) 

 

where 0(0) ( )k k kL L L l   ,  q q qI s dT dx  ,  q is the thermoelectric coefficient, 

Tq is the temperature of quasiparticles.  

The quasiparticle temperature gradient, qdT dx , can be calculated using the heat equation:  

 q n n

q q p

dTd
s dx s T T dx

dx dx

 

    
 

                                             (SE5) 

The left hand side of the equation is the rate at which the quasiparticles accumulate energy in 

the volume sdx of the wire from the heat flow  q q qQ s dT dx , and the right hand side is 

the rate of quasiparticle energy transfer to the phonons in the wire,  n n

qp q pQ s T T dx   ; q is 

the quasiparticle thermal conductivity, Tp is the phonon temperature;    is a material electron-

phonon interaction parameter (18), n=5 or 6 depending on the relationship between the electron 

mean free path, l, and the phonon wavelength, p (19). 

Integrating (SE5) over the length l0 we obtain 

 
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0

0

q q n n

q q q p
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 

 

                                     (SE6) 



Since the quasiparticle concentration in the superconductor S’ is negligibly small and the heat 

flow through the cold contact at x=l0 is insignificant, the value of the temperature gradient at 

the hot contact is 

    01 (0) n n

q q q pdT dx T T l                                                 (SE7) 

 where ...  means average over the length l0: 

   
0

0 0

1
l

n n n n

q p q pT T T T dx
l

                                               (SE8) 

 In superconductors, due to existence of the energy gap, the coefficients (0), (0)q q  and   

drop exponentially with temperature together with the quasiparticle concentration.  They are 

connected to their normal values by a function, G(Tq), describing the quasiparticle 

concentration drop with  (0) (0) ( (0))q N qG T   (3), (0) (0) ( (0))q N qG T  (20),  

 2 2 2( ) 3 2 ( / 2)
z

G z y dy ch y


  where  ( ) / 3 1q B q c q q cz T k T T T T T    , Tc is the critical 

temperature of the smaller gap superconductor, S, (34). The temperature dependence of 

electron-phonon interaction was investigated in (21) and it was found that ( )N qG T   where 

( )qG T , similar to G(Tq), is equal to unity at temperatures close to critical and exponentially 

decreases at lower temperatures. Here we interpolate ( )qG T with G(Tq), so    

   ( )n n n n

q p N q q pT T G T T T     . Using the equality (0) (0)N N N qT   , where N and 

N are the thermopower and conductivity in the normal state and assuming that the normal state 

quasiparticle thermal conductivity obeys the Wiedemann-Franz law (0) (0)N N qT  L , 

82.4 10 L  V2K-2 is the Lorenz number, we arrive at the Equation 2 for the thermoelectric 

flux:  

 ( ) n n

Th N N q q p effG T T T L     V / L                                   (2) 

Where  2 2(0)eff k kL L L L L   is the effective inductance, V is the volume of the small 

gap superconductor. The kinetic inductance at the cold end, Lk(l0) is estimated to be much 

smaller than Lk(0) so we discount it, hence  2 2(0) (0)eff k kL L L L L  . 

Note that the thermoflux depends on the quasiparticle concentration in the bulk of aluminium; 

it is not directly dependent of the conductivity, however depends on sample properties via n 

and Leff. The phonon term, 
n

pT , in the difference, 
n n

q pT T , entering the formula can be neglected 

(see the main text). When the temperature of the hot end approaches Tc the effective inductance 

approaches the value of geometrical inductance of the bimetallic loop:  



 2 2 0 2( ) (0) (0) ( )eff c k k kL T L L L L L l L    since 0(0) / 2 (0)k cL I   at (0) 0cI  . The 

absolute value of thermoelectric flux (2) at temperatures close to critical is therefore 

   2

n

Th c N N cT T L   V / L                                    (SE9)  

At temperatures below critical, the value of thermoflux can be written as 

    2( ) ( ) ( / ) /
n

Th q Th c q c q c effT T G T T T T L L                      (SE10) 

 It goes to zero due to a decrease in the three scaling factors: the G(Tq/Tc)-function that 

describes the drop in the quasiparticle concentration, the electron-phonon scattering rate 

((Tq/Tc)
n factor) and the kinetic inductance ((Leff/ L2) factor) that decreases as a result of increase 

of the critical current  

Fig. S2 shows the temperature dependence for all three scaling factors. To fit experimental data 

in Fig. 3 B of the main text we have taken n=6 (see main text) with N = 2·10-8 V/K2, N≈5∙1010 

Wm-3K-6 and the dependence of critical current at the hot contact in the form 

 0 1 (0)c q cI I T T   (26) with a fitting parameter I0=30 A. The sensitivity of thermoflux to 

the choice of parameters n and I0 can be seen from Fig. S3 showing theoretical temperature 

dependence of the thermoflux normalized to its value at critical temperature, ( ) / ( )Th q Th cT T 

, at different n and I0. The dependence changes essentially with the change of critical current, 

I0, while the changes are relatively small when n=6 is substituted with n=5 (see Fig. S3 and the 

main text).  

  

Thermometry 

 

To measure the temperature at the hot end, Tq(0), we used the superconducting/normal/ 

superconducting (SNS) junction (32). The thermometer was placed away from the hot contact 

at the point g to avoid coupling of the thermometer wires to bimetallic and interferometer loops. 

To make the temperatures at g and e (see Fig. 2 c of the main text) close to each other the 

thermal coupling of the heater to the thermometer and the bimetallic loop were made similar.  

The point g and the point e were connected to the heater at point f by the normal silver wires 

of the same length and width with similar thermal boundary conditions at the superconductors. 

The temperature distribution in both wires obeyed heat equations similar to Equation S6:  

 

q qn n

q q p c

f g

dT dT
T T T l

dx dx
    L                                    (SE11) 

 

where  , , Tq, Tp and are the thermal conductivity, electron-phonon coupling constant , 

electron and phonon temperatures, and the conductivity of silver; L is the Lorenz number, lc 



is the length of the connecting wire. The term 
q q f

T dT dxL on the left is the thermal flux 

generated by the heater current at f. Within the heater wire the Joule heat contribution, 2j  , 

should be added to the heat equation, j is the heater current density. When both connecting 

wires and their boundary conditions are identical then the thermometer temperature close to g 

and the temperature at the hot contact, e, are equal, 
q qg e

T T , at any heater current. 

The actual boundary conditions do not completely coincide. In our case the boundary 

conditions at the superconductors may depend on the quality and geometry of the N/S contacts. 

As a result the same values of temperatures 
q g

T and 
q e

T  may be reached at different heater 

currents, hI  and hI . As in general when the sensor and the sample cannot be placed in the same 

point tooling factors should be taken into account. 

The SNS thermometer operated in a highly temperature-sensitive resistive state with negligible 

proximity induced critical current. To ensure this we have investigated the dependence of the 

critical current on the length of the normal segment shown in Fig. S4. 

Examples of the plots of the thermometer differential resistance vs bias current at different 

temperatures and heater currents are shown in Figs. S5 and S6.  

The values of the differential resistance at zero bias were used to plot the temperature increment 

T=Tq-T0 vs heater current, Ih; T0 is the bath temperature. The dependence T vs heater current 

normalized to its value,
c

hI , at the onset of superconductivity in aluminium, is shown in  Fig. 

S7 for different thermometers. The dependence follows a universal function that can be used 

as a calibration curve. To find the value of T in a particular device, the normalized value 

should be multiplied by the directly measured value of
c

hI . The connection of the hot contact of 

the bimetallic loop to the heater was similar to that of the thermometer so the T vs normalised 

heater current dependence of Fig. S7 can be used to find T at the hot contact of bimetallic 

loop at a given heater current if the value 
c

hI  is known.  

We found the value 
c

hI  for the loop during thermocycling that is described in the main text. 

Fig. S8 shows the dependence of the interferometer resistance as a function of the heater current 

at a fixed magnetic field. The steep change in the resistance corresponds to the change in the 

phase of oscillations when the trapped flux escapes the loop and the resistance jumps from one 

oscillating curve, shown in Fig. 2 A, to another.   At this value of the heater current the 

penetration depth, , reaches the width of the aluminium wire, w. Using the directly measured 

 vs T curves, which were found to follow the equation
4( ) 65 / (1 ( / ) ) 5cnm T T    , in 

agreement with Pearl’s theory (see e.g. (33) and references therein) we found that the 

penetration depth reaches  wm at the temperature T≈0.98Tc that is very close to the 

critical value giving 
c

hI ≈42 A for the loop.   
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Figure S1. Conversion of currents at the interface between two superconductors, S and 

S’, with different energy gaps,  and ’.  

 

(A) Andreev reflection processes at the SS’ interface in real space;  an incident electron 

evolves into a hole, which retraces the electron trajectory on the S side, and a Cooper 

pair is created on the S’ side; an incident hole evolves into an electron, which retraces 

the hole trajectory on the S side, and a Cooper pair is annihilated on the S’ side; the 

Cooper pairs commute between the superconductors unrestrained; a quasiparticle 

current, Iq on the S side (red arrow) is converted to an equal supercurrent Is’ on the S’ 

side, counter-flowing supercurrent Is on the S side (blue arrow) penetrates to S’ 

unrestricted. (B) Sketch of the energy-band diagram at the interface, F is the Fermi 

level; process 1–1’ corresponds to creation of a Cooper pair with simultaneous 

creation of a hole at 1’’;  2–2’ is annihilation of a Cooper pair with simultaneous 

annihilation of a hole at 2’’;  is the crossover region.  
 

 

 

 

 

 

 



 

Fig. S2. Calculated dependence of the thermoelectric flux scaling factors on the 

quasiparticle temperature normalized to critical temperature, Tc. A -  G-function 

describing quasiparticle concentration; B - effective iductance, Leff, normalized to the geometric 

inductance of bimetallic loop, L2; C – the value of (Tq/Tc)
6.  

 

 

 

 

 

 

Fig. S3. Calculated temperature dependence of thermoelectric flux, th, normalized to its 

value, th(Tc), at critical temperature with different values of critical current, I0, and 

electron-phonon parameter, n. 

 

 



 

 

 

 

Fig. S4. Dependence of critical current in SNS thermometer on the length of normal 

element at base temperature T=245 mK. Solid line is for eye guide. 

 

 

 

 

 

Fig. S5. Differential resistance vs bias current curves for an SNS thermometer at 

different bath temperatures.  

 

 



 

 

 

Fig. S6. Differential resistance vs bias current curves for an SNS thermometer at different 

heater currents. 

 

 

 

 

 

 

Fig. S7. Temperature calibration curve. 

Temperature increment, T= T-T0, measured by different thermometers vs normalized heater 

current, Ih/
c

hI ; 
c

hI is the value of the heater current at the onset of superconductivity in 

aluminium; T0 is the temperature at zero heater current; ○ - T for a thermometer with 48c

hI   

A, ● T for a thermometer with 63c

hI   A. 



 

 

 

 

 

Fig. S8. Determination of the heater current corresponding to the onset of 

superconductivity in the bi-metallic loop. Interferometer resistance at a fixed magnetic 

field vs heater current. The steep change in the resistance (shown with arrow) takes place at 

the onset of superconductivity in the aluminium wire of bimetallic loop at the heater current 

42c

hI  A.   

 

 

 


