
S1 Text: General equations for a recurrent neural network.

The networks presented in the main text were described by Eqs 1-3, which constitute a special case
of the more general equations

τ � ẋ = −x+W recr+ brec +W inu+
√
2τσ2rec � ξ, (1)

r = f(x), (2)

z = g(W outr+ bout), (3)

where � denotes element-wise multiplication of vectors; thus each unit is allowed to have a different
time constant. The additional terms brec and bout denote biases to the recurrent units and out-
puts, respectively. The nonlinear function f(x) converts input currents into firing rates, while the
nonlinear function g(x) may be considered a more general mapping from the recurrent units to the
output model (decision variable, probability distribution, eye position, etc.). Examples of point-wise
nonlinearities for either f or g are the hyperbolic tangent tanh(x), sigmoid 1/(1 + e−x), rectified
linearity [x]+ = max(0, x), rectified supralinearity ([x]+)

n for n > 1 [74], and rectified hyperbolic
tangent tanh [x]+. When the outputs are interpreted as a normalized probability distribution it is
also natural to use the softmax function,

[g(y)]` =
exp(y`)∑Nout

m=1 exp(ym)
. (4)

Since the notion of excitatory and inhibitory neurons is most meaningful if firing rates are non-
negative, and firing rates in cortex rarely saturate to their bounds, we used rectified linear units in the
main text. Finally, the noise term ξ is not restricted to N independent Gaussian processes; instead,
the entire distribution can be drawn from a multivariate normal distribution with an arbitrary
covariance structure, thereby allowing us to study the effect of correlated noise in RNNs [73].

It is also desirable to choose appropriate measures for the difference between the actual network
outputs z and target outputs ztarget at each time point depending on the output nonlinearity. In
the main text, we used the simplest pairing of a linear readout with sum-of-squares loss function.
In the case where each output represents an independent probability we can use sigmoid outputs
with the binary cross entropy (CE) loss

Lbinary-CE = −
Nout∑
`=1

[
ztarget
` log z` + (1− ztarget

` ) log(1− z`)
]
. (5)

If all the outputs together represent one probability (“1-of-N ” encoding) and therefore the softmax
function of Eq 4 is used, then it is more appropriate to use the categorical CE loss

Lcategorical-CE = −
Nout∑
`=1

ztarget
` log z`. (6)

1


