Supporting Information

Polyyne Rotaxanes: Stabilization by Encapsulation

Levon D. Movsisyan,[†] Michael Franz,[‡] Frank Hampel,[‡] Amber L. Thompson,[†] Rik R. Tykwinski[‡] and Harry L. Anderson[†]

 [†]Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
[‡]Department of Chemistry and Pharmacy& Interdisciplinary Center of Molecular Materials (ICMM) University of Erlangen-Nuremberg (FAU), Henkestrasse 42, 91054 Erlangen (Germany

Table of Contents

A. General Experimental Procedures	S2
B. Synthetic Procedures	S2
C. Attempted FBW Rearrangement in Rotaxanes	S14
D. Selected NMR Spectra	S17
E. X-ray Crystallography	S26
F. Differential Scanning Calorimetry	S 32
G. References	S34

A. General Experimental Procedures

Unless stated otherwise, all reagents and solvents were used as commercially supplied, without further purification. Dry THF was obtained by passing through alumina under nitrogen pressure or was distilled from sodium/benzophenone. Dry CH₃CN and CH₂Cl₂ were distilled from CaH₂ or were obtained by passing through alumina under nitrogen pressure. Column chromatography was carried out using Silica 60A (particle size 35-70 μ m, Fisher, UK) as the stationary phase. Size-exclusion chromatography was carried out using polystyrene beads (Bio-Beads-S-X3, operating range 2000 Da and Bio-Beads-S-X1, operating range 10 kDa). Where mixtures of solvents were used, ratios reported are by volume. TLC was performed on precoated silica gel plates (0.25 mm thick, 60 F254, Merck, Germany) and visualized under UV light (254 nm). NMR spectra were recorded at 500 MHz using Bruker AVII 500 or at 400 MHz using Bruker DPX 400 and Bruker Avance 400 MHz instruments at 298 K. Chemical shifts are reported in parts per million (ppm) from low to high frequency and referenced to the residual solvents resonances (CD₂Cl₂: ¹H NMR - 5.32 and ¹³C NMR- 53.8, CDCl₃: ¹H NMR - 7.26 and ¹³C NMR - 77.2). For simplicity, the coupling constants of the aryl protons for para-substituted aryl groups have been reported as pseudo first-order (i.e., doublets), even though they are second-order (AA'XX') spin systems. Coupling constants (J) are reported in hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: s = singlet, d = doublet, dd = double doublets, t = triplet, q = quartet, m = rate = 1multiplet. Proton peaks are assigned by COSY, NOESY and ROESY spectra. MALDI-TOF mass spectrometry was carried out in positive reflectron mode using a Micromass MALDI micro MX and Bruker 9.4T Apex-Qe FTICR spectrometers with dithranol (1,8-dihydroxyanthrone) as a matrix. ESI/APPI spectrometry was carried out using Agilent 6220 and Agilent 6120 Series, or a Bruker micrOTOF II focus LC/MS Trap instruments. UVvis spectra were recorded at ambient temperature on Perkin-Elmer Lambda 20, Lambda 25, or a Varian Cary 5000 UV-vis-NIR spectrometers with 1 nm resolution; λ in nm (ϵ in M⁻¹·cm⁻¹). IR spectra of solids were recorded on a Varian 660-IR spectrometer with ATR-module. Melting points (Mp) were determined by pair of microscope cover glasses on Leica Galen III melting point microscope or measured with an Electrothermal 9100 instrument.

B. Synthetic Procedures

Terminal polyynes 1a-f,^[S1] porphyrin 3,^[S2] macrocycles M1,^[S3] M4,^[S3] M7,^[S3b] and M8^[S4] were synthesized according to published procedures. The synthesis of rotaxanes $2b \cdot M1$, $2c \cdot M1$ and $2e \cdot M1$ have been reported before.^[S5]

m-Bis[(3-bromopropyl)oxy]benzene:^[S6] Resorcinol (6.00 g, 54.5 mmol), 1,3dibromopropane (16.7 mL, 163 mmol) and K_2CO_3 (19.1 g, 138 mmol) were

dissolved in acetone (250 mL). The mixture was refluxed for 7 h at 65 °C, then water was added (50 mL) and the mixture was stirred for 1 h at the same temperature. The reaction mixture was cooled, water (100 mL) was added and the organic phase was extracted with EtOAc (3 × 150 mL). Organic fractions were combined and solvent was removed. The crude product was purified by flash column chromatography (silica, hexane/EtOAc 15:1) followed by recrystallization from EtOAc affording the product (4.8 g, 25%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.18 (t, *J* = 8.2 Hz, 1H), 6.54–6.47 (m, 3H), 4.09 (t, *J* = 5.8 Hz, 4H), 3.60 (t, *J* = 6.5 Hz, 4H), 2.31 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 160.1, 130.1, 107.1, 101.7, 65.4, 32.5, 30.2.

Macrocycle M2: A solution of 2,9-bis(4-hydroxyphenyl)-1,10-phenanthroline (0.25 g, 0.69 mmol)^[S3] and *m*-bis[(3-bromopropyl)oxy]benzene (0.24 g, 0.69 mmol) in DMF (200 mL) was dropped over 2 h into a suspension of Cs₂CO₃ (1.35 g, 4.12 mmol) in DMF (200 mL) heated at 75 °C, and stirred for 4 h. The reaction mixture was cooled and solvent was removed *in vacuo*. The crude product was purified by flash column chromatography (silica, CH₂Cl₂ + 1% CH₃OH) followed by recrystallization from CH₃OH/CH₂Cl₂ to yield macrocycle **M2** (210 mg, 55%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 8.44 (d, *J* = 8.9 Hz, 4H H_d), 8.23 (d, *J* = 8.4 Hz, 2H, H_c), 8.07 (d, *J* = 8.4 Hz, 2H, H_b), 7.71 (s, 2H,

Br

Br∖

H_a), 7.21 (m, 5H, H_e,H_h), 6.70 (t, *J* = 2.3 Hz, 1H, H_f), 6.53 (dd, *J* = 8.2, 2.4 Hz, 2H, H_g), 4.48 (t, *J* = 6.9 Hz, 4H), 4.11 (t, *J* = 5.4 Hz, 4H), 2.50–2.03 (m, 4H, H_k). ¹³C NMR (100 MHz, CDCl₃): δ 160.6, 160.2, 146.0, 136.8, 132.4, 130.3, 129.2, 127.5, 125.6, 119.0, 115.8, 105.2, 104.4, 65.6, 63.9, 53.6, 29.4. LRMS (ESI) calcd for $[C_{36}H_{30}N_2O_4 + H]^+$ 555.6, found 555.2.

m-Bis[(4-bromobutyl)oxy]benzene:^[S7] Resorcinol (300 mg, 2.72 mmol), 1,4dibromobutane (2.60 mL, 4.68 g, 21.6 mmol) were dissolved in acetone (100

mL) and K₂CO₃ (19.0 g, 13.8 mmol) was added. The reaction mixture was refluxed for 3 d and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, PE_{40/60}/CH₂Cl₂ 2:3) to give the product (710 mg, 68%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.16 (t, J = 8.2 Hz, 1H), 6.49 (dd, $J_1 = 2.4$ Hz, $J_2 = 5.8$ Hz, 2H), 6.44 (t, J = 2.4 Hz), 3.97 (t, J = 6.1 Hz, 4H), 3.49 (t, J = 6.6 Hz, 4H), 2.10–2.02 (m, 4H), 1.97–1.90 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, 298 K): δ 160.2, 130.0, 106.9, 101.6, 66.9, 33.6, 29.6, 28.0.

Macrocycle M3: To a solution of 2,9-bis(hydroxyphenyl)-1,10-phenanthroline (400 mg, 1.10 mmol) and 1,3-bis(4-bromobutyloxy)benzene (416 mg, 1.10 mmol) in anhydrous DMF (500 mL), K_2CO_3 (902 mg, 6.54 mmol) was added and the reaction mixture was stirred for 24 h at 75 °C under a slight positive pressure of nitrogen. The reaction mixture was cooled and solvent was removed *in vacuo*. The crude mixture was washed with a large excess of water and filtered, then the crude product was purified by flash column chromatography (silica, THF/CH₂Cl₂ 10:1), then by using size-exclusion column (on Biobeads-S-X3) in THF to remove larger macrocyclic molecules. The final recrystallization from CH₂Cl₂/hexane gave the product **M3** (300 mg, 47%) as a white solid. ¹H NMR (400

MHz, CD₂Cl₂, 298 K): δ 8.34 (d, J = 8.9 Hz, 4H, H_d), 8.29 (d, J = 8.4 Hz, 2H, H_b), 8.07 (d, J = 8.4 Hz, 2H, H_c), 7.77 (s, 2H, H_a), 7.18–7.13 (m, 5H, H_{h,e}), 6.58 (t, J = 2.4 Hz, 1H, H_f), 6.52 (dd, J_1 = 8.2 Hz, J_2 = 2.4 Hz, 2H, H_g) 4.28 (t, J = 7.2 Hz, 4H, H_i), 4.06 (t, J = 5.9 Hz, 4H, H_j), 2.08 (m, 4H, H_l), 1.98 (m, 4H, H_k): ¹³C NMR (100 MHz, CD₂Cl₂, 298 K): δ 160.8, 160.5, 156.5, 146.4, 137.0, 132.7, 130.2, 129.3, 127.8, 125.9, 119.6, 115.6, 106.8, 102.3, 68.6, 68.4, 27.0, 26.3. (MALDI TOF MS+) requires 583.26, calcd for C₃₈H₃₄N₂O₄, (M)⁺, found 583.33.

Macrocycle M6: To a solution of 2,9-bis(hydroxyphenyl)-1,10-phenanthroline (300 mg, 0.823 mmol) and 1,10-dibromodecane (245 mg, 0.816 mmol) in anhydrous DMF (300 mL), K₂CO₃ (3.0 g, 22 mmol) was added and the reaction mixture was stirred for 2 d at 75 °C, under nitrogen. The solvent was removed *in vacuo* and the crude mixture was washed with a large excess of water, filtered, then the crude mixture was purified by flash column chromatography (silica, CH₂Cl₂, gradually adding EtOAc 0–15%). The pure product **M6** (119 mg, 29%) was obtained after recrystallization from CH₂Cl₂/CH₃OH as a white solid.¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ 8.36 (d, *J* = 8.8, Hz, 4H, H_d), 8.29 (d, *J* = 8.2

H_f), 1.81 (m, 4H, H_g), 1.42–1.40 (m, 12H, H_{h,j,k}). ¹³C NMR (125 MHz, CD₂Cl₂, 298 K): δ 159.9, 156.5, 146.4, 137.0, 132.5, 129.4, 127.8, 125.9, 119.5, 115.9, 68.3, 29.7, 29.4, 28.1, 25.6. (MALDI TOF MS+) requires 503.7, calcd for C₃₄H₃₅N₂O₂ ([M + H]⁺), found 504.8.

Tr* = Br **1-Bromo-triyne 3**:^[S8] *N*-bromosuccinimide (98 mg, 0.55 mmol) and AgNO₃ (16 mg, 0.092 mmol) were added to a solution of **1c** (300 mg, 0.46 mmol) in acetone (30 mL). After stirring at 20 °C for 6 h the reaction mixture was quenched by adding water (10 mL) and then extracted with a CH₂Cl₂ (3 × 50 mL). The organic layers were combined, washed with brine (20 mL), and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product purified by passing through a silica plug (CH₂Cl₂/hexanes 1:5) to yield **3** (330 mg, 95%) as a slightly yellow solid. $R_f = 0.4$ (hexanes). ¹H NMR (400 MHz, CDCl₃): δ 7.26 (t, J = 2 Hz, 3H), 6.91 (d, J = 2 Hz, 6H), 1.19 (s, 54H). ¹³C NMR (100 MHz, CDCl₃): δ 150.1, 143.6, 123.7, 120.3, 84.5, 68.5, 66.4, 62.4, 60.0, 57.1, 40.0, 34.8, 31.4.

Rotaxane 2d·M1: A solution of CuI (5.7 mg, 30 μ mol) in CH₃CN (dry, 2 mL) was added to a solution of the macrocycle **M1** (18.8 mg, 29.5 μ mol) in CH₂Cl₂ (dry, 5 mL) and the mixture was stirred at 20 °C for 1 h. The solvent was removed *in vacuo* and the Cu·**M1** complex dissolved in dry THF (3 mL). Tetrayne **1d** (50 mg, 74 μ mol) was dissolved in THF (2 mL) in a Schlenk tube, iodine (8.0 mg, 31 μ mol), K₂CO₃ (16.6 mg, 120 μ mol), and the solution of the Cu·**M1** complex in THF were added. The mixture was stirred at 60 °C in the dark for 40

h. The reaction mixture was cooled to 20 °C, CH₃CN (3 mL), CH₂Cl₂ (4 mL), and an aqueous KCN solution (30.0 mg, 450 µmol, in 3 mL H₂O) were added and the mixture was stirred at 20 °C for 1 h. CH₂Cl₂ (25 mL) was added, the organic layer was separated and washed with water (3 × 10 mL). The organic phase was dried (MgSO₄) and the solvent was removed. The crude product was purified by flash column chromatography (silica, hexane/EtOAc 30:1 \rightarrow 20:1) to yield **2d·M1** (14 mg, 23%) as a beige solid. Mp 285–290 °C (decomp). *R*_f = 0.29 (hexanes/EtOAc 6:1). ¹H NMR (400 MHz, CD₂Cl₂) δ 8.44 (d, *J* = 8.8 Hz, 4H, H_d), 8.27 (d, *J* = 8.5 Hz, 2H, H_b), 8.09 (d, *J* = 8.5 Hz, 2H, H_c), 7.75 (s, 2H, H_a), 7.29 (t, *J* = 1.7 Hz, 6H, H₁), 7.14–7.07 (m, 5H, H_{e,h}), 6.53 (t, *J* = 2.2 Hz, 1H, H_f), 6.46 (dd, *J*₁ = 8.2 Hz, *J*₂ = 2.3 Hz, 2H, H_g), 4.13 (t, *J* = 7.0 Hz, 4H, H_j), 4.00 (t, *J* = 6.4 Hz, 4H, H_i), 1.94–1.83 (m, 8H, H_{k,l}), 1.63–1.61 (m, 8H, H_{m,n}), 1.18 (s, 108H, H₃). ¹³C NMR (100 MHz, CD₂Cl₂) δ 160.98, 160.96, 156.3, 150.8, 146.5, 143.5, 136.9, 132.2, 130.0, 129.2, 127.8, 125.8, 123.9, 121.1, 119.2, 115.2, 107.5, 100.8, 87.0, 69.3, 68.5, 68.2, 64.0, 63.7, 63.6, 63.0, 62.9, 62.5, 57.8, 35.1, 31.5, 30.0, 29.5, 26.32, 26.28. ESI HRMS (MeCN/CHCl₃) requires 1990.3077 calcd for C₁₄₄H₁₆₉N₂O₄ ([M + H]⁺), found 1990.3056. UV-vis (CH₂Cl₂) λ_{max} / nm (ϵ / M⁻¹ cm⁻¹) 354 (322000), 331 (264000), 311(150000) 293 (103000). IR (ATR) 2957 (m), 2865 (w), 2201 (w), 2120 (m), 1589 (m), 1473 (m), 1362 (m), 1249 (s), 1173 (s) cm⁻¹.

Rotaxane 2f·M1: To a solution of CuI (5.1 mg, 27 μ mol) in CH₃CN (1 mL) was added a solution of the macrocycle **M1** (17.0 mg, 27.0 μ mol) in CH₂Cl₂ (1 mL). The mixture was stirred for 1.5 h at 20 °C and the solvent was removed *in vacuo* to give the Cu·**M1** complex. The complex was redissolved in THF (2 mL) and added to a mixture of the hexayne **1f** (49.0 mg, 67.0 μ mol), K₂CO₃ (14 mg, 0.10 mmol)

and I₂ (6.8 mg, 27 µmol) in THF (2 mL). The reaction mixture was then flushed with N₂ and stirred at 60 °C in the dark for 16 h. CH₂Cl₂ (2 mL), CH₃CN (2 mL), and KCN (20.0 mg, 30.0 mmol in 1 mL H₂O) were added, and the mixture was stirred at 20 °C for 3 h. CH₂Cl₂ (10 mL) was added, the organic phase separated, washed with H₂O (3 x 10 mL), and the solvent removed under reduced pressure. Column chromatography (silica, hexanes/EtOAc 20:1) followed by size exclusion chromatography (Bio Beads SX-3, CHCl₃) afforded 2f·M1 (6.2 mg, 11%) as a yellow-orange solid. Mp (decomp) 190 °C. $R_f = 0.34$ (hexanes/EtOAc 6:1). ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ 8.44 (d, J = 8.8, Hz, 4H, H_d), 8.28 (d, J = 8.4 Hz, 2H, H_b), 8.10 (d, J = 8.4 Hz, 2H, H_c), 7.76 (s, 2H, H_a), 7.30 (t, J = 1.6 Hz, 6H, H₁), 7.12-7.09 (m, 5H, H_{e,h}), 6.92 (d, J = 1.6 Hz, 12H, H₂), 6.51 (t, J = 2.2Hz, 1H, H_f), 6.46 (dd, $J_1 = 8.1$ Hz, $J_2 = 2.3$ Hz, 2H, H_g), 4.12 (t, J = 6.9 Hz, 4H, H_j), 3.99 (t, J = 6.3 Hz, 4H, H_i), 1.93-1.83 (m, 8H, $H_{k,l}$), 1.61 (m, 8H, $H_{m,n}$), 1.19 (s, 108H, H_3): ¹³C NMR (125 MHz, CD₂Cl₂, 298 K): δ 160.9, 156.2, 150.9, 146.5, 143.5, 136.9, 132.2, 130.0, 129.2, 127.9, 125.9, 123.9, 121.1, 119.2, 115.1, 107.4, 100.9, 87.4, 69.2, 68.5, 68.1, 64.3, 64.0 (two signals are overlapped), 63.8, 63.5, 63.2, 62.9, 62.7, 62.5, 62.2, 57.8, 35.1, 31.5, 29.9, 29.5, 26.3, 26.3; *m/z* (MALDI TOF MS+) requires 2087.03, calcd for C₁₅₂H₁₆₈N₂O₄ (M)⁺ requires 2087.0; UV-vis (CH₂Cl₂) λ_{max} / nm (ϵ / M⁻¹ cm⁻¹) 407 (296500), 380 (285000), 359 (212000), 337 (127000) 320 (84300) 289 (96600) 279 (75700) 267 (59800) 254 (47600); UV-vis (THF) λ_{max} / nm (ϵ / M⁻¹ cm⁻¹) 407 (291700), 380 (273000), 356 (205000), 336 (119000) 319 (80100) 288 (94800) 279 (79400) 267 (61200) 255 (48000). IR (ATR) 3064 (w), 2954 (m), 2863 (m), 2195 (m), 2152 (m), 2037 (m), 1590 (s), 1474 (m), 1361 (m), 1247 (s), 1173 (m) cm⁻¹.

Rotaxane 2c·M2

Via homo-coupling: To a solution of CuI (3.82 mg, $20.0 \text{ }\mu\text{mol}$) in CH₃CN (1 mL) was added a solution of the macrocycle **M2** (11.1 mg, $20.0 \text{ }\mu\text{mol}$) in CH₂Cl₂ (1 mL). The mixture was stirred for 1.5 h at 20 °C and the solvent was removed *in vacuo* to give the Cu·**M2** complex. The complex was redissolved in THF (2 mL) and added to a mixture of the triyne **1c** (33 mg, $50 \text{ }\mu\text{mol}$), K₂CO₃ (11.4 mg, $82.4 \text{ }\mu\text{mol}$) and I₂ (6.14 mg, $24.0 \text{ }\mu\text{mol}$) in THF (3 mL). The

reaction mixture was then flushed with N₂ and stirred at 60 °C for 50 h. CH_2Cl_2 (2 mL), CH_3CN (2 mL), and ETDA (23.4 mg, 80.0 µmol in 2 mL H₂O) were added, and the mixture was stirred at 20 °C for 1 h. CH_2Cl_2 (5 mL) was added, the organic phase separated, washed with H₂O (3 x 10 mL), and the solvent removed. Column chromatography (silica gel, hexanes/EtOAc 20:1) afforded **2c·M2** (2 mg, 5%) as a yellow solid.

Via cross-coupling: To a solution of macrocycle M2 (11 mg, 20 µmol) in CH₂Cl₂ (3.0 mL) a solution of CuI (3.8 mg, 20 µmol) in CH₃CN (2.0 mL) was added and the mixture stirred at 20 °C for 1.5 h. The mixture was dried in vacuo and re-dissolved in dry THF (2.0 mL) (macrocycle-Cu complex solution). Triyne 1c (16 mg, 24 μ mol), bromotriyne **3** (22 mg, 30 μ mol) were added to the solution of CuI·M2 complex and Cs₂CO₃ (26 mg, 80 µmol) was added. The reaction mixture was degassed through three cycles of freeze-pump-thaw, flushed with nitrogen gas and stirred in dark at 60 °C for 11 h. After cooling to 20 °C, the reaction was quenched by adding KCN (10 mg, 0.15 mmol in 1.0 mL water), then CH₃CN (1.0 mL) and CH₂Cl₂ (4.0 mL) were added. The organic phase was extracted by CH₂Cl₂ (3 x 5 mL), fractions were combined, washed with H₂O (10.0 mL), brine (10 mL) and solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, hexane/EtOAc 20:1) followed by recrystallization from CH₂Cl₂/CH₃OH affording **2c·M2** (8 mg, 21%) as a yellow solid. ¹H NMR (400 MHz, CD₂Cl₂, 298 K): δ 8.26 (d, J = 8.3 Hz, 2H, H_c), 8.19 $(d, J = 8.5 Hz, 4H, H_d), 7.99 (d, J = 8.4 Hz, 2H, H_b), 7.77 (s, 2H, H_a), 7.26 (t, J = 1.8 Hz, 6H, H_1), 7.13 (d, J = 1.8 Hz, H_1), 7.13 (d,$ 8.8 Hz, 4H, H_e), 7.09 (t, J = 8.2 Hz, 1H, H_h), 6.88 (d, J = 1.8 Hz, 12H, H₂), 6.74 (t, J = 2.4 Hz, 1H, H_f), 6.48 $(dd, J_1 = 8.2, J_2 = 2.4 Hz, 2H, H_g), 4.36 (t, J = 6.8 Hz, 4H, H_i), 4.14 (t, J = 6.0 Hz, 4H, H_i), 2.45-2.00 (m, 4H, H_i), 2.45-2.00 (m, 4H, H_i), 4.14 (t, J = 6.0 Hz, 4H, H_i), 2.45-2.00 (m, 4H, H_i), 4.14 (t, J = 6.0 Hz, 4H, H_i), 4.14 (t, J$ H_k), 1.15 (s, 108 H, H₃). ¹³C NMR (125 MHz, CD₂Cl₂): δ 160.6, 160.6, 157.4, 150.7, 146.7, 143.7, 136.5, 133.9, 130.0, 129.7, 128.5, 127.6, 125.8, 123.9, 121.0, 119.8, 116.0, 106.3, 104.5, 86.2, 69.5, 66.8, 65.3, 64.0, 63.7, 63.5, 63.3, 57.7, 35.1, 31.5, 30.0. (MALDI TOF MS+) requires 1859.22 calcd for $C_{134}H_{157}N_2O_4$ [M + H]⁺

found 1860.18. UV-vis (CH₂Cl₂) λ_{max} / nm (ϵ / M⁻¹ cm⁻¹) 317 (210000), 297 (171000), 281 (126000); UV-vis (THF) λ_{max} / nm (ϵ / M⁻¹ cm⁻¹) 316 (244000), 296 (187000), 281 (141000).

Rotaxane 2c·M3

Via homo-coupling: To a solution of CuI (6.7 mg, 35 μ mol) in CH₃CN (1 mL) was added a solution of the macrocycle **M3** (201 mg, 35.0 μ mol) in CH₂Cl₂ (1 mL). The mixture was stirred for 1.5 h at 20 °C and the solvent was removed *in vacuo* to give the CuI·**M3** complex. The complex was redissolved in THF (2 mL) and added to a mixture of the triyne **1c** (57 mg, 88 μ mol), K₂CO₃ (19.3 mg, 140 μ mol) and I₂ (9.0 mg, 35 μ mol) in THF (3 mL). The reaction mixture

was then flushed with nitrogen gas and stirred at 60 °C for 2 d. CH_2Cl_2 (2 mL), CH_3CN (2 mL), and KCN (20 mg, 30 mmol in 1 mL H₂O) were added, and the mixture was diluted with CH_2Cl_2 (10 mL), the organic phase separated, washed with H₂O (10 mL), and the solvent removed. Flash column chromatography (silica, $PE_{40/60}/EtOAc \ 30:1 \rightarrow 20:1$) followed by recrystallization from CH_2Cl_2/CH_3OH afforded **2c·M3** (19.6 mg, 28%) as a yellow solid.

Via cross-coupling: CuI (4.53 mg, 23.7 µmol) in CH₃CN (2 mL) was added to a solution of macrocycle M3 (13.8 mg, 23.7 µmol) in CH₂Cl₂ (3 mL) and the mixture was stirred at 20 °C for 2 h. The solvent was removed *in* vacuo and the residue dissolved in THF (2 mL). This solution was then added to triyne 1c (17 mg, 26 µmol), bromotriyne 3 (26 mg, 36 µmol), and K₂CO₃ (13 mg, 95 µmol) in THF (2 mL), the mixture was degassed and stirred at 60 °C for 8 h. After cooling to 20 °C, the reaction was quenched by the addition of KCN (6.5 mg, 0.10 mmol, in 1 mL H₂O), CH₂Cl₂ (2 mL), CH₃CN (2 mL), and stirred at 20 °C for 1 h. CH₂Cl₂ (10 mL) was added, the organic phase separated, washed with H_2O (5 mL), brine (5 mL), and the solvent was removed under reduced pressure. Flash column chromatography (silica, hexanes/EtOAc $20:1 \rightarrow 10:1$) followed by recrystallization from CH₂Cl₂/CH₃OH afforded **2c·M3** (19 mg, 43%) as a yellow solid. ¹H NMR (400 MHz, CD₂Cl₂): δ 8.44 (d, J = 8.8, Hz, 4H, H_d), 8.28 (d, J = 8.4 Hz, 2H, H_b), 8.10 (d, J = 8.4 Hz, 2H, H_c), 7.76 (s, 2H, H_a), 7.30 (t, J = 1.6 Hz, 6H, H₁), 7.12–7.09 (m, 5H, H_{e,h}), 6.92 (d, J = 1.6 Hz, 12H, H₂), 6.51 (t, J = 2.2 Hz, 1H, H_f), 6.46 (dd, $J_1 = 8.1$ Hz, $J_2 = 2.3$ Hz, 2H, Hg), 4.12 (t, J = 6.9 Hz, 4H, Hj), 3.99 (t, J = 6.3 Hz, 4H, Hj), 1.93–1.83 (m, 8H, HkJ), 1.61 (m, 8H, $H_{m,n}$), 1.19 (s, 108H, H_3): ¹³C NMR (125 MHz, CD₂Cl₂): δ 160.5, 160.3, 156.1, 150.4, 146.2, 143.2, 136.5, 132.3, 129.7, 128.9, 127.4, 125.5, 123.5, 120.7, 119.0, 115.2, 107.4, 102.0, 86.3, 69.0, 68.3, 67.8, 63.6, 63.4, 62.9, 62.7, 57.4, 34.7, 31.1, 26.4, 26.0; *m/z* (MALDI TOF MS+) requires 1887.24 calcd for C₁₅₂H₁₆₉N₂O₄; $[M + H]^+$, found 1887.07. UV-vis (CH₂Cl₂) λ_{max} / nm (ϵ / M^{-1} cm⁻¹) 318 (234000), 298 (195000), 282 (144000); UV-vis (THF) λ_{max} / nm (ϵ / M⁻¹ cm⁻¹) 317 (267900), 297 (220000), 281 (163000).

Rotaxane 2c·M4

Via homo-coupling: CuI (12 mg, 61 µmol) in MeCN (3 mL) was added to a solution of macrocycle **M4** (43 mg, 61 µmol) in CH₂Cl₂ (6 mL) and stirred at 20 °C for 1.5 h. The solvent was removed *in vacuo* and the residue redissolved in THF (5 mL). This solution was then added to triyne **2c** (0.10 g, 0.15 mmol), K₂CO₃ (34 mg, 0.24 mmol), and iodine (20 mg, 77 µmol) in THF (10 mL) and the mixture was stirred at 60 °C for 45 h. After cooling to 20 °C, the reaction was quenched by the addition of CH₂Cl₂ (3 mL), MeCN (3

mL), and aq. KCN (50 mg, 1 mL H₂O) and stirred at 20 °C for 2 h. CH₂Cl₂ (20 mL) was added, the organic phase separated, washed with H₂O (10 mL), brine (10 mL), and the solvent was removed under reduced pressure. Column chromatography (silica, hexanes/EtOAc 20:1 \rightarrow 10:1) followed by recrystallization from CH₂Cl₂/MeOH afforded **2c·M4** (11 mg, 9%) as a yellow solid.

Via cross-coupling: CuI (16 mg, 82 µmol) in CH₃CN (3 mL) was added to a solution of macrocycle M4 (57 mg, 82 µmol) in CH₂Cl₂ (9 mL) and the mixture was stirred at 20 °C for 2 h. The solvent was removed in vacuo and the residue redissolved in THF (4 mL). This solution was then added to trivne 1c (64 mg, 98 µmol), bromotriyne 3 (72 mg, 98 μ mol), and K₂CO₃ (45 mg, 0.33 mmol) in THF (4 mL) and the mixture was stirred at 50 °C for 17 h. After cooling to 20 °C, the reaction was quenched by the addition of KCN (50 mg, 0.77 mmol, 1 mL H₂O), CH₂Cl₂ (2 mL), CH₃CN (2 mL), and stirred at 20 °C for 3 h. CH₂Cl₂ (20 mL) was added, the organic phase separated, washed with H_2O (10 mL), brine (10 mL), and the solvent was removed. Flash column chromatography (silica, hexanes/EtOAc 20:1 \rightarrow 10:1) followed by recrystallization from CH₂Cl₂/CH₃OH afforded 2c·M4 (68 mg, 41%) as a yellow solid. Mp 228–230 °C (decomp). $R_{\rm f} = 0.56$ (hexanes/EtOAc 6:1). IR (ATR) 2951 (m), 2863 (w), 2181 (w), 2163 (w), 1589 (m), 1472 (m), 1361 (m), 1246 (s), 1173 (s) cm⁻¹. ¹H NMR (400 MHz, CD_2Cl_2): δ 8.43 (d, J = 8.8 Hz, 4H), 8.28 (d, J = 8.5 Hz, 2H), 8.10 (d, J = 8.5 Hz, 2H), 7.77 (s, 2H), 7.28 (t, J = 1.7 Hz, 6H), 7.15 (d, J = 8.9 Hz, 4H), 7.07 (t, J = 8.2 Hz, 1H), 6.92 (d, J = 1.7 Hz, 12H), 6.55 (t, J = 1.2 Hz, 12H), 7.5 2.2 Hz, 1H), 6.45 (dd, J = 8.2, 2.3 Hz, 2H), 4.11 (t, J = 6.9 Hz, 4H), 3.99 (t, J = 6.6 Hz, 4H), 1.91–1.78 (m, 8H), 1.58–1.47 (m, 16H), 1.16 (s, 108H). ¹³C NMR (100 MHz, CD₂Cl₂): δ 161.1, 161.0, 156.4, 150.8, 146.5, 143.7, 136.9, 132.2, 129.9, 129.1, 127.9, 125.9, 123.9, 121.0, 119.4, 115.2, 107.6, 100.7, 86.5, 69.4, 68.6, 68.3, 63.4, 63.3, 63.1, 62.9, 57.7, 35.1, 31.5, 29.8, 26.3 (four signals coincident or not observed). APPI HRMS (THF/Toluene) requires 1998.370289 calcd for $C_{144}H_{177}N_2O_4$ ([M + H]⁺), found 1998.371121. UV-vis (CH₂Cl₂) λ_{max} / nm (ϵ / M⁻¹ cm⁻¹), 316 (240000), 297 (203000), 281 (139000).

Rotaxane 2c·M6

Via homo-coupling: To a solution of macrocycle **M6** (19 mg, 37 μ mol) in CH₂Cl₂ (1.5 mL) a solution of CuI (7.0 mg, 37 μ mol) in CH₃CN (1.0 mL) was added and the mixture stirred at 20 °C for 1.5 h. The mixture was then dried *in vacuo* and redissolved in dry THF (5.0 mL) (CuI·**M6** complex solution). Triyne **1c** (60 mg, 0.092 mmol) was dissolved in THF (2.0 mL) in a dry Schlenk tube and

iodine (11.8 mg, 115 μ mol), K₂CO₃ (21 mg, 0.15 mmol) and the THF solution of CuI·**M6** complex were added. The reaction mixture was flushed with nitrogen gas and stirred at 60 °C for 24 h. The progress of the reaction was monitored by TLC (PE_{40/60}/CH₂Cl₂ 1:1). After stirring for 24 h, iodine (2.5 mg, 10 μ mol) and K₂CO₃ (6.0 mg, 43 μ mol) were added and the mixture stirred additionally for 24 h. Then the reaction mixture was cooled to 20 °C; CH₃CN (1.5 mL), CH₂Cl₂ (1.5 mL) and KCN (13 mg, 0.20 mmol in 1.0 mL H₂O) were added and the mixture was diluted with CH₂Cl₂ (5.0 mL), the organic fraction was separated, washed with H₂O (10 mL) and solvents were removed. Flash column chromatography of the crude mixture (silica, PE_{40/60}/CH₂Cl₂ 1:1, gradually adding EtOAc 0 – 15%) afforded **2c·M6** (11.7 mg, 17%) as a yellow solid.

Via cross-coupling: CuI (3.82 mg, 20.0 μ mol) in CH₃CN (2 mL) was added to a solution of macrocycle **M6** (10.4 mg, 20.0 μ mol) in CH₂Cl₂ (2 mL) and the mixture was stirred at 20 °C for 2 h. The solvent was removed *in vacuo* and the residue redissolved in THF (2 mL). This solution was then added to triyne **1c** (15.3 mg, 23.4 μ mol), bromotriyne **3** (24.8 mg, 34.0 μ mol), and K₂CO₃ (11.4 mg, 82.5 μ mol) in THF (3 mL), the mixture was

degassed and stirred at 60 °C for 6 h. After cooling to 20 °C, the reaction was quenched by the addition of ETDA (23.3 mg, 80.0 µmol, in 1 mL H₂O), CH₂Cl₂ (2 mL), CH₃CN (2 mL), and stirred at 20 °C for 1 h. CH₂Cl₂ (5 mL) was added, the organic phase separated, washed with H₂O (5 mL), brine (5 mL), and the solvent was removed. Flash column chromatography (silica, hexanes/EtOAc 20:1 \rightarrow 5:1) followed by recrystallization from CH₂Cl₂/CH₃OH afforded **2c**·**M6** (9.4 mg, 26%) as a yellow solid. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.36 (d, *J* = 8.9, 4H, H_d), 8.26 (d, *J* = 8.4, 2H, H_c), 8.03 (d, *J* = 8.36, 2H, H_b), 7.76 (s, 2H, H_a), 7.25 (t, *J* = 1.7, 6H, H₁), 7.13 (d, *J* = 8.9, 4H, H_c), 6.87 (d, *J* = 1.7, 12H, H₂), 4.20 (t, *J* = 1.0, 4H, H_f), 1.85 (m, 8H, H_{k,l}), 1.81 (m, 4H, H_g) 1.44–1.1.3(m, 12H, H_{i/h}), 1.14 (s, 108H, H₃). ¹³C NMR (125 MHz, CD₂Cl₂): δ 159.7, 156.9, 146.8, 143.6, 136.7, 132.9, 129.6, 127.8, 125.8, 123.9, 121.0, 119.5, 86.7, 69.3, 68.7, 64.3, 63.8, 63.4, 57.7, 35.1, 31.4, 30.1, 29.6, 29.4, 28.8, 26.1: (MALDI TOF MS+) requires 1808.28 calcd for C₁₃₂H₁₆₁N₂O₂, [M + H]⁺, found 1808.60. UV-vis (CH₂Cl₂) λ / nm (ϵ / M⁻¹ cm⁻¹), 317 (234500), 298(164000), 282 (118000), 267 (66500), UV-vis (THF) λ / nm (ϵ / M⁻¹ cm⁻¹) 316 (180000), 297 (139000), 280 (81000), 248 (30000).

Rotaxane 2c·M7

Via homo-coupling: To a solution of CuI (5.9 mg, 30 μ mol) in CH₃CN (1 mL) was added a solution of the macrocycle **M7** (17.1 mg, 30 μ mol) in CH₂Cl₂. The mixture was stirred for 2.5 h at 20 °C and the solvent was removed *in vacuo* and redissolved in THF (2 mL) (CuI·**M7** complex solution) and added to a mixture of the triyne **1c** (50 mg, 76 μ mol), K₂CO₃ (17 mg, 0.12 mmol) and I₂ (8.6 mg, 33

 μ mol) in THF (2 mL). The reaction mixture was then flushed with N₂ and stirred at 60 °C in the dark for 62 h, Then, the mixture was cooled to 20 °C, CH₂Cl₂ (2 mL), MeCN (2 mL), and KCN (20 mg in 1 mL H₂O) were added and the solution was stirred for 6 h at 20 °C. CH₂Cl₂ (5 mL) was added, the organic phase was separated and washed with H₂O (5 mL). The solvent was removed, and the crude product was purified by flash column chromatography (silica, hexane/EtOAC 20:1) followed by recrystallization from CH₂Cl₂/MeOH affording **2c·M7** (16.2 mg, 23%) as a yellow solid.

Via cross-coupling: CuI (10.3 mg, 53.7 µmol) in CH₃CN (2 mL) was added to a solution of macrocycle M7 (30.0 mg, 53.7 µmol) in CH₂Cl₂ (3 mL) and the mixture was stirred at 20 °C for 1 h. The solvent was removed in vacuo and the residue redissolved in THF (4 mL). This solution was then added to triyne 1c (42.0 mg, 64.5 μ mol), bromotriyne **3** (67.1 mg, 91.9 μ mol), and K₂CO₃ (29.2 mg, 214 μ mol) in THF (4 mL), the mixture was degassed and stirred at 60 °C for 12 h. After cooling to 20 °C, the reaction was quenched by the addition of KCN (13 mg, 0.20 mmol, in 2 mL H₂O), CH₂Cl₂ (5 mL), CH₃CN (5 mL), and stirred at 20 °C for 1 h. CH₂Cl₂ (15 mL) was added, the organic phase separated, washed with H₂O (10 mL), brine (10 mL), and the solvent was removed. Flash column chromatography (silica, hexanes/EtOAc 20:1) followed by recrystallization from CH₂Cl₂/CH₃OH afforded 2c·M7 (54 mg, 54%) as a yellow solid. Mp 259–262 °C (decomp). $R_{\rm f} = 0.46$ (hexanes/EtOAc 6:1). ¹H NMR (400 MHz, CD₂Cl₂): δ 8.23 (d, J = 8.3 Hz, 2H, H_c), 7.89–7.85 (m, 6H, H_{b,d}), 7.75 (s, 2H, H_a), 7.29-7.27 $(m, 10H, H1, e), 7.19 (d, J = 8.6 Hz, 4H, H_h), 6.92 (d, J = 1.8 Hz, 12H, H_2), 6.89 (d, J = 8.8 Hz, 4H, H_e), 5.27 (s, 10.10 Hz), 5.27 (s, 10.1$ 4H, H_f), 1.17 (s, 108H, H₃): ¹³C NMR (100 MHz, CD₂Cl₂): δ 159.5, 158.4, 158.2, 150.7, 146.9, 143.8, 136.4, 134.4, 134.3, 130.0, 127.7, 127.6, 125.9, 123.9, 122.2, 121.0, 120.8, 116.3, 85.8, 70.4, 69.7, 63.9, 63.63, 63.59, 62.6, 57.7, 35.1, 31.5. (MALDI TOF MS+) requires 1862.7 calcd for C₁₃₆H₁₅₂N₂O₃, (M)⁺; found 1863.50. UVvis (CH₂Cl₂) λ_{max} /nm (ϵ / M⁻¹ cm⁻¹), 317 (211000), 297(161000), 281 (115000), 267 (61000), 241 (43000); UV-vis (THF) λ_{max}/nm ($\epsilon / M^{-1}cm^{-1}$) 316 (233800), 297 (179000); 281 (120000), 267 (70000).

Rotaxane 2c·M8

Via homo-coupling: To a solution of macrocycle **M**8 (10 mg, 21 μ mol) in CH₂Cl₂ (1.0 mL) a solution of CuI (4.1 mg, 21 μ mol) in CH₃CN (1.0 mL) was added and the mixture was stirred at 20 °C for 1.5 h. The mixture was then dried *in vacuo* and re-dissolved in dry THF (2.0 mL) (CuI·**M8** complex solution). The triyne **1c** (35 mg, 54 μ mol) was dissolved in THF

(2.0 mL) in a dry Schlenk tube and iodine (5.5 mg, 21 μ mol), K₂CO₃ (12 mg, 86 μ mol) and the THF solution of CuI·**M8** complex were added. The reaction mixture was flushed with nitrogen gas and stirred at 60 °C for 24 h. The progress of reaction was monitored by TLC (PE_{40/60}/EtOAc 6:1). After stirring for 24 h, iodine (5.0 mg, 19 μ mol) and K₂CO₃ (12 mg, 86 μ mol) were added and the mixture stirred additionally for 24 h. Then the reaction mixture was cooled to 20 °C, CH₃CN (1.5 mL), CH₂Cl₂ (2.0 mL) and KCN (20.0 mg, 310 μ mol in 1.0 mL H₂O) were added and the mixture was diluted with CH₂Cl₂ (5 mL). The organic fraction was separated, washed with water (3 × 5.0 mL) and solvent was removed under reduced pressure. Flash column chromatography of the crude mixture (silica, PE_{40/60}/CH₂Cl₂ 1:1, gradually adding EtOAc 0–10%) afforded **2c·M8** (9.0 mg, 23%) as a yellow solid.

Via cross-coupling: CuI (5.73 mg, 30.0 µmol) in CH₃CN (2 mL) was added to a solution of macrocycle M8 (14.5 mg, 30.0 µmol) in CH₂Cl₂ (2 mL) and the mixture was stirred at 20 °C for 1 h. The solvent was removed in vacuo and the residue redissolved in THF (2 mL). This solution was then added to trivine 1c (19.6 mg, 30.0 μ mol), bromotriyne **3** (26.3 mg, 36.0 μ mol), and K₂CO₃ (16.6 mg, 120 μ mol) in THF (2 mL), the mixture was degassed and stirred at 60 °C for 4 h. After cooling to 20 °C, the reaction was quenched by the addition of KCN (7.8 mg, 0.12 mmol, in 1 mL H₂O), CH₂Cl₂ (2 mL), CH₃CN (2 mL), and stirred at 20 °C for 1 h. CH₂Cl₂ (5 mL) was added, the organic phase separated, washed with H_2O (5 mL), brine (5 mL), and the solvent was removed under reduced pressure. Flash column chromatography (silica, hexanes/EtOAc 20:1 \rightarrow 5:1) followed by recrystallization from CH₂Cl₂/CH₃OH afforded 2c·M8 (14 mg, 26%) as a yellow solid. Mp 103 °C. ¹H NMR (500 MHz, CD_2Cl_2): δ 7.87 (d, J = 7.57, 2H, H_a), 7,56 (t, J = 7.88, 2H, H_b), 7.37–7.35 (m, 8H, H_{c.1}), 7.07 (d, J = 8.51, 2H, H_f), 7.03 (d, J = 1.89, 12H, H₂), 6.67 (d, J = 8.51, 2H, H_o), 4.62 (s, 4H, H_e), 4.53 (s, 4H, H_d), 3.87 (t, J) = 6.62, 4H, H_b), 1.83 (m, 4H, H_i), 1.26 (s, 108H, H₃): ¹³C NMR (125 MHz, CD₂Cl₂): δ 159.2, 158.9, 155.7, 150.8, 143.9, 136.9, 130.4, 129.9, 124.0, 121.1, 120.9, 119.8, 115.1, 85.6, 77.9, 72.6, 71.6, 69.9, 67.1, 63.6, 62.7, 62.3, 62.3, 57.8, 35.2, 31.5, 25.2: (MALDI TOF MS+) requires 1785.2 calcd for $C_{128}H_{156}N_2O_4$, (M)⁺; found 1784.78. UV-vis (CHCl₃) λ_{max} /nm (ϵ / M⁻¹ cm⁻¹), 317 (211000), 297(161000), 281 (115000), 267 (61000), 241 (43000); UV-vis (THF) λ_{max} /nm (ϵ / M⁻¹cm⁻¹) 316 (180000), 297 (139000); 280 (81000), 248 (30000).

Rotaxane 5a·M1: To a solution of macrocycle **M1** (14.7 mg, 23.0 μ mol) in CH₂Cl₂ (1.5 mL) a solution of CuI (4.4 mg, 23 μ mol) in CH₃CN (1.5 mL) was added and the mixture was stirred for 1 h at 20 °C. The solvent was removed *in vacuo* and the residue redissolved in a 1:1 mixture of THF and toluene (2 mL). This solution was then added to a mixture of porphyrin **4** (22 mg, 23 μ mol), bromotriyne **3** (25 mg, 35 μ mol), and K₂CO₃ (13 mg, 92 μ mol) in toluene (2 mL), degassed through freeze-pump-thaw cycles, flushed with nitrogen, and stirred at

60 °C for 3 d. After cooling to 20 °C, the reaction was quenched by the addition of KCN (20 mg, 0.30 mmol, in 1 mL H₂O), diluted with CH₂Cl₂ (1 mL), CH₃CN (1 mL), and stirred at 20 °C for 2 h. CH₂Cl₂ (10 mL) was added, the organic phase separated, washed with H₂O (10 mL), brine (10 mL), and the solvents were removed. Flash column chromatography (silica, hexane/EtOAc/pyridine 100:1:1 \rightarrow 10:1:1) followed by recrystallization from CH₂Cl₂/CH₃OH afforded **5a**·**M1** (10.0 mg, 19%) as a green solid. Mp 130–131 °C. ¹H NMR (500 MHz, CD_2Cl_2 : δ 9.63 (d, J = 4.5 Hz, 2H, H₆), 9.35 (d, J = 4.6 Hz, 2H, H₈), 8.79 (d, J = 4.5 Hz, 2H, H₅), 8.60 (d, J = 4.5 Hz, 2H, H₆), 9.35 (d, J = 4.6 Hz, 2H, H₈), 8.79 (d, J = 4.5 Hz, 2H, H₅), 8.60 (d, J = 4.5 Hz, 2H, H₆), 9.35 (d, J = 4.6 Hz, 2H, H₈), 8.79 (d, J = 4.5 Hz, 2H, H₆), 8.60 (d, J = 4.5 Hz, 2H 4.6 Hz, 2H, H₇), 8.53 (d, J = 8.8 Hz, 4H, H_d), 8.09 (d, J = 8.4 Hz, 2H, H_b), 7.98 (d, J = 8.4 Hz, 2H, H_c), 7.91 (d, J = 8.4 H = 1.8 Hz, 4H, H₄), 7.80 (t, J = 1.8 Hz, 2H, H₃), 7.53 (s, 2H, H₄), 7.29 (t, J = 1.7 Hz, 3H, H₁), 7.25 (d, J = 8.7 Hz, 4H, H_c), 6.99 (d, J = 1.7 Hz, 6H, H₂), 6.95 (t, J = 8.2 Hz, 1H, H_b), 6.91 (t, J = 2.3 Hz, 1H, H_f), 6.38 (dd, J = 8.2Hz, 2.3 Hz, 2H, Hg), 4.14–4.02 (m, 8H, H_i,i), 1.87–1.52 (m, 16H, H_k,1,m,n), 1.49 (s, 36H, H₁₁), 1.43–1.39 (m, 21H, H_{9.10}), 1.17 (s, 54H, H₁₂). ¹³C NMR (125 MHz, CD₂Cl₂): δ 161.03, 160.96, 156.0, 153.9, 152.1, 151.2, 150.6, 150.4, 149.0, 146.2, 143.9, 141.6, 136.6, 133.8, 133.0, 132.1, 131.2, 130.6, 129.9, 129.8, 129.2, 127.5, 125.5, 124.9, 123.9, 121.4, 120.9, 119.0, 115.3, 110.2, 107.6, 102.8, 100.6, 98.7, 96.2, 87.8, 82.5, 81.7, 71.1, 70.0, 68.3, 68.2, 66.9, 64.0, 63.7, 57.8, 35.2, 35.1, 31.8, 31.4, 29.9, 29.4, 26.20, 26.19, 19.2, 12.2. m/z (MALDI TOF MS+) requires 2244.3 calcd for C₁₅₂H₁₇₆N₆O₄SiZn, [M + H]; found 2244.3. UV-vis (THF) λ_{max} / nm (ϵ / M⁻¹ cm⁻¹) 285 (94000), 320 (57000), 456 (542000), 607 (14000), 661 (129000). UV-vis (CH₂Cl₂) λ_{max} / nm (ϵ / M⁻¹ cm⁻¹ ¹) 285 (95500), 319 (64500), 456 (435000), 661 (84100),

5c·(**M1**)₂. TIPS-protected porphyrin rotaxane **5a**·**M1** (41 mg, 18.3 µmol) was dissolved in the mixture of CH₂Cl₂ (20 mL) and CHCl₃ (5 mL) and TBAF (1.0 M solution in THF, 36.6 µL, 36.6 µmol) was added at 40 °C and the reaction mixture stirred for 3 h. After complete consumption of starting materials monitored by TLC (Py/EtOAc/PE_{40/60} 1:1:10) the reaction mixture was passed through a short silica plug (CH₂Cl₂

+ 5% Py) and solvent was removed *in vacuo* resulting in **5b**·M1 deprotected rotaxane (37 mg, 18 μ mol). To a solution of macrocycle M1 (11.3 mg, 17.8 µmol) in CH₂Cl₂ (1.5 mL) a solution of CuI (3.4 mg, 18 µmol) in CH₃CN (1.5 mL) was added and the mixture was stirred for 1 h at 20 °C. The solvent was removed in vacuo and the residue re-dissolved in a 1:1 mixture of THF and toluene (9 mL). This solution was then added to a mixture of 5b·M1 rotaxane, bromotriyne 3 (18 mg, 25 µmol), and K₂CO₃ (9.8 mg, 71 µmol). The reaction mixture was degassed through freeze-pump-thaw cycles, flushed with nitrogen, and stirred at 70 °C for 2 d. After cooling to 20 °C, the reaction was quenched by the addition of ETDA (21 mg, 0.71 mmol, in 1 mL H_2O), diluted with CH₂Cl₂ (2 mL), CH₃CN (1 mL) and stirred at 20 °C for 2 h. Additional CH₂Cl₂ (10 mL) was added, the organic phase separated, washed with H₂O (10 mL), brine (10 mL) and solvents were removed under reduced pressure. Column chromatography (silica, hexane/EtOAc/pyridine $100:1:1 \rightarrow 5:1:1$) followed by SEC column (Bio-Beads-S-X, CHCl₃ + 1% Py, to remove traces of unreacted rotaxane) and recrystallization from CH₂Cl₂/CH₃OH afforded **5**c·(**M1**)₂ (11 mg, 23%) as a green solid. Mp 150–152 °C. ¹H NMR (500 MHz, CD₂Cl₂): δ 9.15 (d, J = 6.1 Hz, 4H), 8.40 (d, J = 8.7 Hz, 8H), 8.37 (d, J = 4.6 Hz, 4H), 7.79–7.77 (m, 6H), 7.63 (d, J = 8.4 Hz, 4H), 7.45 (d, J = 8.4 Hz, 4H), 7.30 (t, J = 1.7 Hz, 6H), 7.26 (d, J = 8.8 Hz, 8H), 7.0 (d, J = 1.7 Hz, 8H), 6.77–6.71 (m, 8H), 6.20 (dd, *J*₁ = 8.12 Hz, *J*₂ = 2.3 Hz, 4H), 4.28 (m, 4H), 4.16 (m, 4H), 4.07–3.97 (m, 8H), 1.90 (m, 8H), 1.83–1.60 (m, 32H), 1.51 (s, 36H), 1.43–1.39 (m, 12H), 1.19 (s, 108H). ¹³C NMR (125 MHz, CD₂Cl₂): δ 160.9, 160.9, 155.2, 153.0, 150.8, 150.7, 150.4, 149.2, 145.2, 143.9, 141.0, 135.8, 133.3, 132.0, 130.9, 129.8, 129.7, 129.2, 128.3, 126.5, 124.8, 124.5, 124.0, 121.6, 121.0, 120.9, 118.2, 115.3, 107.5, 100.6, 98.4, 88.2, 82.8, 81.5, 71.7, 69.9, 68.4, 68.3, 67.5, 63.7, 63.6, 59.9, 57.9, 35.3, 35.1, 31.9, 31.5, 29.9, 29.4, 26.3, 26.3, 25.4. m/z (MALDI

TOF MS+) requires 3378.96 calcd for $C_{234}H_{260}N_8O_8Zn$; (M⁺), found 3378.48. UV-vis (THF) λ_{max} / nm (ϵ / M^{-1} cm⁻¹) 288 (129000), 320 (57000), 466 (452000), 651 (155000), 661 (129000). UV-vis (CH₂Cl₂) λ_{max} / nm (ϵ / M^{-1} cm⁻¹) 288 (126000), 467 (361000), 689 (115000).

Rr

Br

6

TBAF

THE

Τr

TIPS

6a: To a solution of TIPS protected precursor $6^{[S1]}$ (400 mg, 0.413 mmol) in THF (25 mL) water was added (15 µL) and the mixture cooled down to 0 °C. TBAF (1.0 M in THF, 0.5 mL, 0.5 mmol) was added dropwise and reaction mixture was allowed to

warm up to 20 °C. After 30 min stirring the reaction was quenched by adding saturated NH₄Cl(aq) (10 mL). The organic layer was separated, washed with water (50 mL), brine (50 mL) and solvents were removed. The product was obtained by passing the crude mixture through a silica plug (hexanes/CH₂Cl₂ 5:1) affording **6a** (340 mg, 100%) as a pale yellow solid. $R_f = 0.5$ (CH₂Cl₂/hexanes 1:10). ¹H NMR (400 MHz, CDCl₃): δ 7.26 (overlap with solvent residual signal), 6.98 (d, J = 2 Hz, 6H), 3.42 (s, 1H), 1.20 (s, 54H). ¹³C NMR (100 MHz, CDCl₃): δ 149.9, 144.2, 123.9, 120.0, 114.1, 104.4, 83.4, 80.7, 80.3, 57.2, 34.9, 31.5.

6b:^[S8] To a mixture of **6a** (150 mg, 370 μ mol) in acetone (15 mL) was added *N*-bromosuccinimide (39.8 mg, 450 μ mol) and AgNO₃ (6.2 mg, 74 μ mol) and the reaction mixture was stirred at 20 °C in darkness for 12 h. The reaction was quenched by adding water (10 mL), then extracted with hexanes (100 mL). The organic layer was washed with brine (50

Br Br Tr* 6b Br

mL) and dried over Mg₂SO₄. The solvent was removed and the crude product was purified by passing through a silica plug (CH₂Cl₂/hexanes 1:10) to yield **6b** (158 mg, 96%) as a white solid: $R_f = 0.52$ (CH₂Cl₂/hexanes 1:10). ¹H NMR (400 MHz, CDCl₃): δ 7.24 (t, J = 2 Hz, 3H), 6.96 (d, J = 2 Hz, 6H), 1.19 (s, 54H). ¹³C NMR (100 MHz, CDCl₃): δ 149.9, 144.1, 123.9, 120.0, 114.5, 107.5, 104.4, 80.5, 77.3, 57.3, 57.2, 34.9, 31.4.

Rotaxane 7a·M1: To a solution of macrocycle **M1** (29.8 mg, 46.7 μ mol) in CH₂Cl₂ (1.5 mL) a solution of CuI (8.9 mg, 46.7 μ mol) in CH₃CN (1.5 mL) was added and the mixture was stirred for 1 h at 20 °C. The solvent was removed *in vacuo* and the residue re-dissolved in THF (2 mL). This solution was then added to a mixture of dibromoolefin **6a** (38 mg, 47 μ mol), dibromoolefin bromide **6b** (50 mg, 56 μ mol) K₂CO₃ (25.8 mg, 187 μ mol) in THF (2

mL). The mixture was flushed with nitrogen, and stirred at 60 °C for 2 d. After cooling to 20 °C, the reaction was quenched by the addition of KCN (12 mg, 0.19 mmol, in 1 mL H₂O), diluted with CH₂Cl₂ (1 mL), MeCN (1 mL), and stirred at 20 °C for 1 h. More CH₂Cl₂ (5 mL) was added, the organic phase separated, washed with H₂O and the solvents were removed. Flash column chromatography (silica, hexanes/EtOAc 25:1) afforded **7a**·**M1** (6 mg, 9%) as a yellow solid. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.55 (d, *J* = 8.6 Hz, 4H, H_d), 8.30 (br. s, 2H, H_b), 8.14 (d, *J* = 8.2 Hz, 2H, H_b), 7.78 (s, 2H, H_a), 7.23 (s, 6H, H₁), 7.16 (d, *J* = 8.8 Hz, 4H, H_e), 7.0 (t, *J* = 8.2 Hz, 1H, H_h), 6.92 (t, *J* = 1.5 Hz, 12H, H₂), 6.58 (br. t, *J* = 1.7 Hz, 1H, H_f), 6.41 (dd, *J*₁ = 2.2 Hz, *J*₂ = 6.0 Hz, 2H, H_g), 4.15 (t, *J* = 7.2 Hz, 4H, H_i), 4.0 (t, *J* = 6.6 Hz, 4H, H_j), 1.92 (m, 4H, H_k), 1.84 (m, 4H, H₁), 1.61 (m, 8H, H_{m,n}), 1.14 (s, 108H). ¹³C NMR (125 MHz, CD₂Cl₂): δ 161.1, 160.9, 156.0, 150.6, 146.3, 144.3, 130.0, 129.4, 127.9, 125.9, 125.3, 124.0, 120.7, 115.2, 114.7, 113.2, 107.9, 105.7, 100.4, 80.1, 79.4, 75.3, 70.1, 68.6, 68.2, 65.4, 57.7, 35.1, 31.5, 30.1, 29.6, 26.4, 26.3. *m*/*z* (MALDI TOF MS+) requires 2262.97 calcd for C₁₄₀H₁₆₈N₂O₄Br₄ ((M))⁺, found 2261.93, calcd for C₁₄₀H₁₆₈N₂O₄Br₃ ([M–Br]⁺) 2182.06, found 2182.03, calcd for C₁₄₀H₁₆₈N₂O₄Br₃ ([M–Br]⁺) 2182.06, found 2182.03, calcd for C₁₄₀H₁₆₈N₂O₄Br₃ ([M–Br]⁺) 2182.06, found 2182.03, calcd for C₁₄₀H₁₆₈N₂O₄Br₄ ((M))⁺.

S12

 $C_{140}H_{168}N_2O_4Br_2$ ([M–2Br]⁺) 2102.14, found 2101.99. UV-vis (THF) λ_{max} / nm (ϵ / M⁻¹ cm⁻¹) 286 (74000), 327 (40000). UV-vis (CH₂Cl₂) λ_{max} / nm (ϵ / M⁻¹ cm⁻¹) 286 (69100), 327 (38800).

6.1:^[S8] To a solution of 1,4-bis(trimethylsilyl)butadiyne (410 mg, 2.11 mmol) in THF (10 mL) cooled to 0 °C under N2 atmosphere was added MeLi (1.33 mL, 1.6 M in Et₂O, 2.13 mmol) and the mixture was stirred for 30 min. at 20 °C. To this mixture was added a solution of $Tr^*C \equiv CCHO$ aldehyde^[S1,8] (1.25 g, 1.98 mmol) in THF (15 mL) at

mL), the aqueous phase was extracted with hexanes (3×30 mL). The organic phase was washed with brine (2×30 mL). 50 mL) and dried over MgSO₄. The solvent was removed and the crude product was purified by column chromatography (silica, gradient with hexanes/EtOAc 50:1 to 20:1) to yield 6.1 (1.0 g, 67%) as a brown oil. ¹H NMR (400 MHz, CDCl₃): δ 7.26 (t, J = 1.8 Hz, 3H), 6.95 (d, J = 1.8 Hz, 6H), 5.26 (d, J = 8.8Hz, 1H), 2.20 (d, J = 8.3 Hz, 1H), 1.21 (s, 54H), 0.20 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 150.0, 144.5, 123.9, 120.1, 93.1, 88.7, 87.2, 79.6, 74.6, 69.3, 56.3, 53.2, 35.0, 31.6, 0.4.

6.2: To a solution of **6.1** (300 mg, 0.409 mmol) in CH_2Cl_2 (25 mL) was added celite (0.352 g), molecular sieves (0.352 g), and PCC (176 mg, 0.918 mmol) in that order and the reaction stirred at 20 °C under a N₂ atmosphere for 1 d. The mixture was Tr' 6.2 filtered through a plug of silica with CH₂Cl₂ and the solvent removed in vacuo to yield **6.2** (286 mg, 93%) as an orange-brown solid. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (t, J = 2.1 Hz, 3H), 6.95 (d, J = 1.8 Hz, 6H), 1.23 (s, 54H), 0.25 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 150.4, 143.0, 123.9, 120.7, 102.7, 98.7, 86.1, 84.7, 75.4, 74.5, 57.0, 35.0, 31.5, 0.6. FTIR (ATR) 2952, 2900 (w), 2866 (w), 2198(m),

6.3: To a solution of CBr₄ (243 mg, 0.746 mmol) in CH₂Cl₂ (5 mL) was added PPh₃ (391 mg, 1.49 mmol) and the resulting mixture stirred at 20 °C under a N_2 atmosphere for 3 h. A solution of 6.2 (280 mg, 0.373 mmol) in CH₂Cl₂ (5 mL) was added and the reaction was stirred for 18 h. The reaction mixture was concentrated by removing the solvent and hexanes were added to precipitate the phosphine salts as a

2098 (m), 1634(s), 1593(m) cm⁻¹. LRMS ESI m/z 681.3 ([M – TMS]⁺).

white solid along with an oily residue. The supernatant was decanted and filtered through a pad of silica gel (hexane). The oily residue left in the flask was dissolved in minimal CH₂Cl₂ and hexane was added; the heterogeneous mixture was then decanted and the supernatant filtered through silica gel (this procedure was repeated three times). The filtrate was passed through silica plug until the filtrate remained a clear dark yellow solution. The solvent was removed yielding **6.3** (206 mg, 61%) as a brown solid. ¹H NMR (400 MHz, CDCl₃): δ 7.26 (t, J = 1.7 Hz, 3H), 6.98 (d, J = 1.5 Hz, 6H), 1.22 (s, 54H), 0.22 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 150.0, 144.2, 124.0, 120.1, 114.1, 109.2, 105.0, 94.7, 87.5, 80.3, 80.0, 73.0, 57.4, 36.0, 31.6, -0.4. FTIR (ATR) 2947, 2867, 2362 (vw), 2108 (w), 1461 cm⁻¹.

7b·M1: To a solution of 6.3 (270 mg, 297 µmol) in THF (30 mL) and MeOH (30 mL) was added K₂CO₃ (45 mg, 3.3 mmol). After stirring for 1 h, the solvent was removed and the crude product was purified by passing through silica plug (hexane/CH₂Cl₂ 20:1) to yield deprotected 6c as a white solid (240 mg, 97%). The product was immediately proceeded for the next step. To a solution of macrocycle M1 (63.8 mg, 100 µmol) in CH₂Cl₂ (5 mL) a solution of CuI

TMS

OH

(19.1 mg, 100 µmol) in CH₃CN (5 mL) was added and the mixture was stirred for 1 h at 20 °C. The solvent was removed in vacuo and the residue re-dissolved in THF (5 mL). This solution was then added to a mixture of 6c (230 mg, 275 µmol), K₂CO₃ (55.2 mg, 400 µmol) and I₂ (33.3 mg, 130 µmol) in THF (3 mL). The reaction mixture was flushed with nitrogen, and stirred at 60 °C for 15 h. After cooling to 20 °C, the reaction was quenched by the addition of KCN (26 mg, 0.40 mmol, in 3 mL H₂O), diluted with CH₂Cl₂ (5 mL), CH₃CN (3 mL), and stirred at 20 °C for 2 h. More CH₂Cl₂ (5 mL) was added, the organic phase separated, washed with H₂O (10 mL) and the solvents were removed. Column chromatography (silica, hexane/EtOAc 25:1) followed by recrystallization from CH₂Cl₂/MeOH afforded the product **7b**·**M1** (180 mg, 78%) as a yellow solid. ¹H NMR (500 MHz, CD₂Cl₂): δ 8.55 (d, J = 8.3 Hz, 4H, H_d), 8.30 (br. s, 2H, H_b), 7.98 (d, J = 8.2 Hz, 2H, H_c), 7.78 (s, 2H, H_a), 7.23 (br. s, 6H, H₁), 7.16 (d, J = 8.8 Hz, 4H, H_e), 7.0 (t, J = 8.2 Hz, 1H, H_b), 6.93 (d, J = 1.5 Hz, 12H, H₂), 6.58 (br. s, 1H, H_f), 6.41 (dd, $J_1 = 2.2$ Hz, $J_2 = 6.0$ Hz, 2H, H_g), 4.13 (t, J = 7.3 Hz, 4H, H_i), 4.0 (t, J = 6.7 Hz, 4H, H_i), 1.93–1.84 (m, 8H, H_{k1}), 1.61 (br. s, 8H, H_{mn}), 1.14 (s, 108H, H₃). ¹³C NMR (125 MHz, CD₂Cl₂): δ 160.9, 156.0, 150.6, 146.3, 144.3, 137.1, 131.7, 130.0, 129.4, 127.9, 125.9, 125.3, 124.0, 120.6, 119.2, 115.2, 110.2, 114.7, 113.2, 107.9, 105.7, 100.4, 80.1, 79.4, 75.3, 70.1, 68.6, 68.2, 65.4, 57.7, 35.1, 31.5, 30.1, 29.6, 26.4, 26.3. m/z (MALDI TOF MS+) requires 2311.97 calcd for $C_{144}H_{169}N_2O_4Br_4$ ([M + H]⁺), found 2311.93, calcd for $C_{140}H_{168}N_2O_4Br_2$ ([M - 2Br]⁺) 2151.06, found 2152.03, for $C_{140}H_{168}N_2O_4Br$ ([M - 3Br]⁺) 2072.14, found 2071.99. UV-vis (THF) λ_{max} / nm (ϵ / M⁻¹ cm⁻¹) 286 (92000), 340 (52000), 361 (38300), 389 (27000), 421 (18500). UV-vis (CH₂Cl₂) λ_{max} / nm (ϵ / M⁻¹ cm⁻¹) 286 (156000), 340 (88100), 361 (64700), 389 (45500), 421 (22000).

Rotaxane $(2c)_2 \cdot M1$: To a solution of rotaxane $2c \cdot M1$ (60 mg, 31 mmol) in CH₂Cl₂ (4.0 mL) a solution of CuI (5.9 mg, 31 mmol) in CH₃CN (1.0 mL) was added and the mixture stirred at 20 °C for 1.5 h. The mixture was then dried under vacuum and re-dissolved in dry THF (5.0 mL) (CuI· $2c \cdot M1$ complex solution). Bromotriyne **3** (35.6 mg, 48.8 mmol) was added to the solution with **1c** (23.8 mg, 36.6 mmol) and K₂CO₃ (20 mg, 0.14 mmol). The reaction mixture was degassed through three time freeze-pump-thaw cycles, flushed with nitrogen gas and stirred in dark at 60 °C for 36 h. The progress of reaction was

monitored by TLC (PE_{40/60}/EtOAc 6:1). After cooling to 20 °C the reaction was quenched by adding CH₃CN (1.0 mL), CH₂Cl₂ (2.0 mL) and KCN (10.0 mg, 0.15 mmol in 1.0 mL water). The mixture was diluted with CH₂Cl₂ (4.0 mL), the organic fraction was separated, washed with water (3 × 5.0 mL) and solvents were removed. The residue was purified by flash column chromatography (silica, PE _{40/60}/EtOAc 30:1) and followed by size-exclusion chromatography (on Biobeads-S-X1) in CH₂Cl₂ to afford (**2c**)₂·**M1** (5.9 mg, 6%) as a yellow solid. ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ 8.23 (d, *J* = 4.4, 2H, H_c), 8.19 (d, *J* = 4.1, 4H, H4_d), 7.95 (d, *J* = 4.0, 2H, H_b), 7.74 (s, 2H, H_a), 7.23 (t, *J* = 3.6, 12H, H₁), 7.07 (d, *J* = 4.1, 4H, H_e), 6.98 (t, *J* = 3.5, 1H, H_h), 6.88 (d, *J* = 3.4, 24 H, H₂), 6.59 (t, *J* = 3.3, 1H, H_f), 6.36 (dd, *J*₁ = 6.2 Hz, *J*₂ = 3.2, 2H, H_g), 4.04 (t, *J* = 4.0, 4H, H_i), 3.99 (t, *J* = 3.9, 4H, H_j), 1.82–1.76 (m, 8H, H_{k,1}), 1.61 (m, 8H, H_{m,n}), 1.12 (s, 216H, H₃). ¹³C NMR (125 MHz, CD₂Cl₂, 298 K): δ 161, 160.6, 157.6, 150.5, 146.9, 143.8, 136.5, 133.0, 129.6, 129.5, 127.7, 125.7, 123.9, 120.9, 120.2, 115.4, 108, 101.2, 86.1, 69.8, 68.5, 68.2, 64.7, 64.3, 63.6, 63.6, 57.7, 35.5, 31.4, 30.4, 30.0, 26.4, 26.4; *m*/*z* (MALDI TOF MS+) requires 3244.8 calcd for C₂₃₈H₃₉₄N₂O₄ (M)⁺, found 3244.3. Uv-vis(THF) λ_{max} / nm (ε / M^{-1} cm⁻¹) 317 (391000), 298 (366000), 285 (317000), 267 (192000). UV-vis (CH₂Cl₂) λ_{max} / nm (ε / M^{-1} cm⁻¹) 317 (417000), 298 (38300), 282 (262000), 267 (154000).

Rotaxane $(2c)_2 \cdot M4$: CuI (2.8 mg, 15 µmol) in CH₃CN (2.5 mL) was added to a solution of rotaxane $2c \cdot M4$ (20 mg, 15 µmol) in CH₂Cl₂ (9 mL) and the mixture was stirred at 20 °C for 1.5 h. The solvent was removed *in vacuo* and the residue redissolved in THF (5 mL). This solution was then added to triyne 1c (16 mg, 22 µmol), bromotriyne 3 (16 mg, 22 µmol), and K₂CO₃ (8.2 mg, 59 µmol) in THF (3 mL) and the mixture was stirred at 60 °C for 18 h. After cooling to 20 °C, the reaction was quenched by the addition of CH₂Cl₂ (2 mL), CH₃CN (2 mL), and

KCN (30 mg, 0.46 mmol, in 1 mL H₂O) and stirred at 20 °C for 4 h. CH₂Cl₂ (20 mL) was added, the organic phase separated, washed with H₂O (10 mL), brine (10 mL), and the solvent was removed *in vacuo*. Flash column chromatography (silica, hexanes/EtOAc 20:1 \rightarrow 10:1 and then second column, silica, hexanes/CH₂Cl₂ 1:1 \rightarrow hexanes/CH₂Cl₂ 1:2 + 1% EtOAc) followed by recrystallization from CH₂Cl₂/CH₃OH afforded (**2c**)₂·**M4** (9 mg, 18%) as a yellow solid. $R_{\rm f} = 0.51$ (hexanes/EtOAc 6:1). Mp 264–266 °C (decomp). IR (ATR) 2954 (s), 2904 (m), 2864 (m), 2189 (w), 2168 (w), 1589 (s), 1475 (m), 1361 (m), 1248 (s), 1174 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 8.9 Hz, 4H), 8.18 (d, *J* = 8.5 Hz, 2H), 8.02 (d, *J* = 8.5 Hz, 2H), 7.67 (s, 2H), 7.18 (t, *J* = 1.7 Hz, 12H), 7.09 (d, *J* = 8.9 Hz, 4H), 7.00 (t, *J* = 8.2 Hz, 1H), 6.83 (d, *J* = 1.7 Hz, 24H), 6.56 (t, *J* = 2.1 Hz, 1H), 6.40 (dd, *J* = 8.2, 2.3 Hz, 2H), 4.02 (t, *J* = 7.6 Hz, 4H), 3.94 (t, *J* = 7.0 Hz, 4H), 1.76–1.71 (m, 8H), 1.44–1.34 (m, 16H), 1.10 (s, 216H). ¹³C NMR (100 MHz, CD₂Cl₂) δ 161.1, 161.0, 156.5, 150.6, 146.5, 143.7, 136.7, 131.8, 129.6, 129.0, 127.7, 125.6, 123.9, 120.8, 119.2, 115.2, 107.9, 100.2, 86.1, 69.7, 68.5, 68.2, 63.7, 63.4, 63.34, 63.26, 57.7, 35.0, 31.5, 30.13, 30.06, 30.03, 29.99, 26.24, 26.18. *m/z* APPI HRMS (in toluene) requires 3300.3484 calcd for C₂₄₂H₃₀₂N₂O₄, (M⁺), found 3300.3480.

C. Attempted Carbenoid Rearrangement in 6e-M1 Rotaxane

The synthesis of octayne rotaxane $2d \cdot M1$ from the $7b \cdot M1$ rotaxane via carbenoid rearrangement was attempted according to the published procedure.^[S9]

In a typical procedure, rotaxane $7b \cdot M1$ (10 mg, 4.3 µmol) was dissolved in dry solvent (toluene or methylcyclohexane, 5 mL, passed through active Al₂O₃ and kept over molecular sieves) in a two-neck flask. The solution was degassed by three freeze-pump-thaw cycles. Then the corresponding reagent was added at low temperature and the reaction mixture was allowed to warm up over 20–30 min. The reaction mixture was quenched at various temperatures and the resulting crude product was analyzed by UV-Vis absorption, MALDI and NMR spectra. The table below summarizes the results of experiments.

Table S1. Summary of FBW reaction conditions for rotaxane 7b·M1.

reagent	solvent	Reaction temperature	Quench temperature	yield
t-BuLi (2.4 equiv)	toluene	-40 °C	0 °C	-
	toluene	-78 °C	-70 °C	-
sec-BuLi (2.4 equiv)	MCH	-78 °C	-20 °C	-
<i>n</i> -BuLi (2.4 equiv)	toluene	-78 °C	-70 °C	-
	toluene	-78 °C	-40 °C	-
	toluene	-78 °C	-20 °C	-
	МСН	-78 °C	0 °C	-
PhLi (2.5 equiv.)	toluene	-78 °C	-5 °C	-

Disappointingly, we never detected the formation of the expected product $2d \cdot M1$: Quenching the reaction at different temperatures (-70, -40, -20, 0 °C) or repeating the experiment with more concentrated 10 mM solution of the $7b \cdot M1$ (45 mg in 2 mL MCH) were equally futile. During the reaction the starting rotaxane $7b \cdot M1$ was completely consumed giving a complex mixture of by-products and farther separation and characterization of crude products was not pursued. Additionally, the rearrangement reaction was tested by refluxing the toluene solution of the rotaxane with activated Zn dust, however, after 2 h heating the UV-Vis spectra indicated no reaction and the starting material was recovered.

It was thought that perhaps the threaded macrocycle reacts with intermediate carbene and prevents the rearrangement to take place. To check this hypothesis we tested separately the reactivity of the free macrocycle and unthreaded polyyne dumbbell with *n*-BuLi.

To a dry, degassed solution of macrocycle **M1** (10 mg, 16 μ mol) in toluene (5 mL) *n*-BuLi (2.5 M in hexane, 6.3 μ L, 16 μ mol) was added at -78 °C. The reaction mixture was allowed to warm up to 20 °C and after quenching and the workup of the crude mixture the starting macrocycle was recovered almost quantitatively. The reaction product structure was confirmed by ¹H NMR spectroscopy.

The free dumbbell **7b** was synthesized via Hay coupling according the scheme given below.

To a solution of **6.3** (33.0 mg, 35.9 µmol) in a mixture of THF (2 mL) and CH₃OH (2 mL) K₂CO₃ (5 mg, 35.9 µmol) was added and the reaction mixture was stirred for 3 h at 20 °C. The solvent was removed in vacuo and the crude product was purified by passing through silica plug (hexanes) to yield deprotected **6c**. To a solution of TMEDA (16 µL, 0.11 mmol) in CH₂Cl₂ (6 mL) CuCl (3.6 mg, 36 µmol) was added and oxygen was bubbled into the solution for 5 min. The deprotected **6c** was dissolved in CH₂Cl₂ (4 mL) and the solution was transfer to the CuCl TMEDA mixture. After 5 min stirring (TLC monitoring, hexanes + 10% CH₂Cl₂) the reaction mixture was passed through silica plug (CH₂Cl₂) and the solvent was removed affording the product **7b** (29.0 mg, 99%) as a yellow solid. $R_{\rm f} = 0.78$ (hexanes + 10% CH₂Cl₂). ¹H NMR (500 MHz, CD₂Cl₂) δ 7.32 (t, J = 1.9 Hz, 6H), 7.0 (d, J = 1.8 Hz, 12H), 1.22 (s, 108H). ¹³C NMR (125 MHz, CD₂Cl₂) δ 150.7, 144.3, 124.1, 120.8, 113.7, 112.5, 106.0, 80.4, 79.9, 74.8, 70.3, 64.7.0, 57.8, 35.3, 31.6. Uv-vis (THF) $\lambda_{\rm max}$ / nm (ϵ / M⁻¹ cm⁻¹) 417 (18000), 387 (27000), 358 (27000), 337 (52000), 315 (45000), 301 (48000), 255 (48000).

The rearrangement of **7b** (15 mg, 9.0 μ mol) was carried out in dry, degassed MCH (2 mL) by adding *n*-BuLi (1.6M in hexane, 13.4 μ L, 21.4 μ mol) at -78 °C and slowly warming the temperature to -20 °C over 20 minutes and the reaction mixture was quenched by aqueous NH₄Cl. After the workup and silica column chromatography (hexane/EtOAc 50:1) the octayne **2d** was isolated in 11% yield (calculated from the extinction coefficient in hexane). This experiment suggested that, the FBW rearrangement of supertrityl-capped dumbbell is achievable despite the low yield.

D. Selected NMR spectra

Figure S1. ¹H NMR spectrum of 2d·M1 rotaxane (400 MHz, 298 K, CD₂Cl₂).

Figure S2. ¹H NMR spectrum of 2f·M1 rotaxane (500 MHz, 298 K, CD₂Cl₂).

Figure S4. ¹H NMR spectrum of 2c·M3 rotaxane (500 MHz, 298 K, CD₂Cl₂).

Figure S5. ¹H NMR spectrum of 2c·M6 rotaxane (500 MHz, 298 K, CD₂Cl₂).

Figure S6. ¹H NMR spectrum of $2c \cdot M7$ rotaxane (500 MHz, 298 K, CD_2Cl_2).

Figure S7. ¹H NMR spectrum of 2c·M8 rotaxane (500 MHz, 298 K, CD₂Cl₂).

Figure S8. ¹H NMR spectrum of 2c·M4 rotaxane (400 MHz, 298 K, CD₂Cl₂).

Figure S9. ¹H NMR spectrum of 5a·M1 rotaxane (500 MHz, 298 K, CD₂Cl₂). # denotes pyridine-d5 residual peaks.

9.15 9.14 8.41 8.33 8.33 45 1.65 1.65 1.65 1.63 1.63 1.63 1.63 61.0 R 4 8 8 23 222 2 50 8 62 179 78 8 29 29 2 4.20 4.10 4.05 4.00 4.30 4.25 4.15 f1 (pp 3.95 126.8-12.0 6.0 4.0 6.7 8.1 7.4 7.4

4.5

5.0 f1 (ppm)

4.0 4.1 8.1

4.0

3.5

3.0

0.0 2

1.5

1.0

0.5

0.0

2.0

2.5

3.7

6.0

5.5

6.5

4.0

9.0

8.5

8.0

7.5

7.0

9.5

0.0

Figure S11. ¹H NMR spectrum of (2c)₂·M1 rotaxane (500 MHz, 298 K, CD₂Cl₂).

Figure S12. ¹H NMR spectrum of (2c)₂·M4 rotaxane (400 MHz, 298 K, CDCl₃).

Figure S13. ¹H NMR spectrum 7a·M1 rotaxane (500 MHz, 298 K, CD₂Cl₂).

Figure S14. ¹H NMR spectrum 7b·M1 rotaxane (500 MHz, 298 K, CD₂Cl₂).

Figure S15. The ¹H NMR (400 MHz, 298 K, CDCl₃) spectra of hexayne rotaxane $2c \cdot M1$ (top) compared to the product mixture from the cross-coupling reaction (bottom). The blue colored peaks belong to the pentayne rotaxane.

Figure S16. ¹³C NMR spectra of **2c**·**M1** (orange) and (**2c**)₂·**M1** (blue) rotaxanes (125 MHz, CD_2Cl_2 , 298 K), showing the region containing resonances of the polyme *sp* carbons. Signals designated with * belong to the macrocycle and the another one with # comes from quarterly carbon of Tr* group.

Figure S17. VT ¹H NMR spectra of (**2c**)₂·**M1** rotaxane (500 MHz, CD₂Cl₂).

E. X-ray Crystallography

For all crystals except **2c·M7**, single crystal X-ray diffraction data were collected at 100 K using synchrotron radiation at the Diamond Light Source, beamline I19(EH1).^{S10} In general, raw frame data were collected using CrystalClear and reduced using CrysAlisPro. The structures were solved using charge flipping^{S11} with SuperFlip^{S12} and refined using full-matrix least-squares within CRYSTALS.^{S13} In some cases, the structure contained large solvent-accessible voids comprising diffuse electron density. In these cases the discrete Fourier transforms of the void regions were treated as contributions to the A and B parts of the calculated structure factors using PLATON/SQUEEZE SQUEEZE^{S14} to leave a void from which the electron density had been effectively removed. Hydrogen atoms were positioned geometrically and refined separately with soft restraints within *CRYSTALS*.^{S15} The diffraction data for **2c·M7** were collected at 173 K using an Oxford Diffraction/Agilent SuperNova (Cu) X-ray Source. The structure was solved with ShelXS^{S16} using Direct Methods and refined with ShelXL^{S16} by full-matrix least-squares within OLEX2.^{S17} Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre (CCDC 1437276–1437283) and copies of these data can be obtained free of charge via www. ccdc.cam.ac.uk/data_request/cif.

The error propagation in the calculation of BLA values for $(2c)_2 \cdot M1$ rotaxane was done using the following equation.

$$\delta R = \sqrt{(\delta X)^2 + (\delta Y)^2 + \cdots}$$

where δX , δY are uncertainties of X and Y, respectively.

We have investigated the distribution of intermolecular aromatic CH/π_{sp} interactions by searching the Cambridge Structural Database (CSD). Mean values of $C-H/C_{sp}$ distances are calculated by measuring the distance between carbon atom of polyyne and proton of the interaction aromatic CH group. We considered only polyynes with four or more triple bonds, in accordance with the structure of rotaxanes. The table below and Figure S18 summarize the results. From the graph it seems that number of molecules form short contacts at the distance of 2.71 Å. In rotaxanes 2d·M1 (d = 2.738 Å), 2c·M6 (d = 2.670 Å) and 2c·M2 (d = 2.625, 2.576 Å) there are several CH/C_{sp} short contacts with distances distributed around 2.71 Å.

Figure S18. Distance distribution of aromatic CH/C_{sp} short contacts (< sum of van der Waals radii) found in CSD for tetraynes and longer polyynes.

Crystal Packing

2d·**M1:** Crystals suitable for X-ray diffraction studies were grown by liquid diffusion of overlaid CH₃OH into solution of the compound in THF at 20 °C. The rotaxane **2d**·**M1** crystallizes in P-1 space group and the asymmetric unit contains one molecule of **2d**·**M1**. In the crystal lattice *t*-Bu moieties of neighboring supertrival end groups of the rotaxane **2d**·**M1** interact with each other via dispersion interactions. In addition, *t*-Bu groups interact with π system of macrocycle (C–H/ π_{arene}) and octayne (C–H/ π_{sp} and C/ π_{sp}). There is also π - π stacking between two phenanthrolines. Distances for all mentioned short contacts are listed below and the crystal packing is shown in Figure S19.

$\pi - \pi$ stacking (Å)	C _{sp3} –H/C _{arene} (Å)	C_{sp3} –H/ C_{sp} (Å) Å	C_{sp3}/C_{sp}
3.393	2.813, 2.812	2.713	3.275
	2.842, 2.745	2.835	3.378
	2.729, 2.862	2.830	
			ť

Figure S19. The crystal packing of $2d \cdot M1$ rotaxane viewed down to crystallographic *b* axis (left) and highlighting π - π stacking between two phenanthrolines (right). Hydrogen atoms are omitted for clarity.

2c·M6: Crystals of **2c·M6** suitable for X-ray diffraction studies were grown from slow diffusion of CH₃OH vapor into solution of the compound (c = 1.5 mg/mL) in THF at 20 °C. The asymmetric unit contains one molecule of **2c·M6** and one CH₃OH molecule, and the space group is P-1. In the crystalline rotaxane **2c·M6** there is a plethora of various type of non-covalent interactions. Macrocycles form π - π stacking involving phenanthroline part of the molecule and weak hydrogen bonds between neighboring hexayne π system and decyl strap. *t*-Bu moieties of the supertrityl groups in addition to dispersion interactions between themselves, become involved in CH/ π_{arene} , CH/O and C_{sp3}/ π_{arene} type interactions. All non-covalent bonds are listed below with corresponding distances and the crystal packing diagram is given in Figure S20.

π-π stacking (Å)	C _{sp3} – H/C _{arene} (Å)	C_{sp3} – $H/C_{sp}(Å)$	C _{sp3} /C _{arene} (Å)	<i>C_{sp3}–</i> Н/О (Å)	C _{arene} –H/C _{sp3} (Å)	C _{arene} –H/C _{arene} (Å)
3.494	2.736	2.863	2.940	2.665	2.410	2.842
	2.171		3.434			2.688
	2.805					
	2.724					
		× ×				

Figure S20. The crystal packing of $2c \cdot M6$ rotaxane viewed down to crystallographic *b* (left) and *a* (right) axes. Hydrogen atoms and solvent molecules are omitted for clarity.

2c·M7: Crystals of **2c·M7** suitable for X-ray diffraction studies were grown from slow diffusion of CH₃OH vapor into solution of the compound (c = 1.5 mg/mL) in THF at 20 °C. The space group is P2₁/c and asymmetric unit contains one molecule of **2c·M7**. In the crystal, neighboring molecules of rotaxane form various type of none-covalent interaction, such as π - π stacking, CH/ π_{sp} and CH/O hydrogen bonds. It worth to mention that in π - π stacking takes place between aryl side groups of two adjacent macrocycles. The crystal packing of the molecule is shown in Figure S21 and the short contacts are listed in the table below.

π - π stacking (Å)	C_{sp3} – H/C_{sp} (Å)	Carene-H/O (Å)	C_{arene} – $H/C_{sp}(Å)$	C_{arene} -H/ C_{sp3} (Å)
3.185	2.822	2.653	2.851	2.858
	2.713	2.605		

Figure S21. The crystal packing of $2c \cdot M7$ rotaxane viewed down to crystallographic *b* axis (left. The figure in right shows the packing of the molecules with highlighted (with space-filling model) π - π stacking. Solvent molecules and hydrogen atoms are omitted for clarity.

2c·M2: Crystals suitable for X-ray diffraction studies were grown from slow diffusion of CH₃OH vapor into solution of the compound (c = 2 mg/mL) in CH₂Cl₂ at 20 °C. The space group is P2₁, asymmetric unit contains one molecule of **2c·M2**, 0.15 dichloromethane and 0.85 methanol. Number of as CH/ π and CH/O weak interactions between neighboring rotaxane molecules are involved in crystal packing. In crystal, the rotaxane molecules are packed in lamellar fashion, where two distinctive layers of hexaynes are twisted over each other. Figure S22 depicts the crystal packing of the molecule and the table below summarizes the non-covalent contacts.

C _{sp3} –H/C _{arene} (Å)	C_{sp3} –H/O (Å)	C_{arene} – H/C_{sp} (Å)	C _{arene} -H/C _{arene} (Å)
2.789	2.625	2.878	2.858
2 816		2.753	
2.810		2.625	
		2.576	
1 X X			

Figure S22. The crystal packing of $2c \cdot M2$ rotaxane viewed down to crystallographic *c* (left) and *a* axes (right). On the right picture two layers of polyynes are colored differently for visual assistance. Solvent molecules and hydrogen atoms are omitted for clarity.

7a·M1: Crystals suitable for X-ray diffraction studies were grown from slow diffusion of CH₃OH vapor into solution of the compound (c = 2 mg/mL) in CH₂Cl₂ at 20 °C. The crystals are assigned to the P-1 space group, the asymmetric unit contains one molecule of **7a·M1**, one CH₂Cl₂ and seven CH₃OH molecules.

For the macrocycle-nested dibromoolefin part, the $\angle Br-C(sp^2)-Br$ angle is 114.8°, and for the second dibromoolefin moiety the $\angle Br-C(sp^2)-Br$ angle is 116.3° (Figure S23).

In the crystal, the macrocycle interacts with its thread through couple of CH/ π_{sp} contacts formed between π system of the polypne and alkyl chain of the macrocycle. Bromine atoms also interact with neighboring macrocycle molecule through Br-C_{arene} interactions, mentioned below. Non-covalent interactions contribution to the crystal packing of the rotaxane molecules are summarized in the table below and the crystal packing is shown in Figure S23.

C _{arene} /Br (Å)	C_{sp3} –H/Br (Å)	C_{arene} – H/C_{sp} (Å)	C_{arene}/C_{sp3} (Å)
3.308	3.038	2.872	3.331
3.414		2.736	
3.489			

Figure S23. X-ray crystal structure of $7a \cdot M1$ with highlighted C_{aryl}/Br short contacts: a: 3.33 Å; b: 3.37 Å (left). The crystal packing of $7a \cdot M1$ viewed down to crystallographic *c* axis (right). Solvent molecules and hydrogen atoms are omitted for clarity.

5a·M1: Crystals suitable for X-ray diffraction studies were grown by liquid diffusion of CH₃OH layer into solution of the compound (c = 1.5 mg/mL) in CH₂Cl₂ at 20 °C. The crystals are assigned to the P 2₁/c space group, and the asymmetric unit contains one molecule of **5a·M1**, one dichloromethane molecule and three molecules of methanol, one of which is coordinated to the Zn centre of the porphyrin (Figure S24). The distance (r) between the Zn and O atom of the methanol is 2.106 Å. The Cambridge Structural Database revealed numerous Zn porphyrin structures with fifth-coordinated methanol with similar r (Zn-O) distances. The tetrayne chain is slightly bent in an arc-shaped fashion with average $\angle C$ –C=C angle equal to 176.3 \pm 1.3°. Average C=C and C–C bond lengths are 1.213 \pm 0.007 Å and 1.354 \pm 0.011 Å, respectively. The Tr* and TIPS groups are in staggered conformation with respect to each other. The TIPS- acetylene chain is deviated from linearity and the $\angle Si$ –C=C angle is 173.5°.

Macrocycle is distorted and the resorcinol part possesses two conformations. In both conformations, it interacts weakly with porphyrin π system. The rotaxane molecules form pairs through π - π interactions between vicinal phenanthroline moieties. The distance between phenanthroline planes is 3.523 Å. In the **5a**·**M1** molecular pairs, two dumbbells are aligned opposite each other in a head-to-tail way (Figure S24)

Figure S24. X-ray crystal structure of rotaxane $5a \cdot M1$ (left). Crystal packing of the rotaxane $5a \cdot M1$ viewed down the crystallographic *c* axis showing the π - π stacking of adjacent phenanthrolines. Only one conformation of the macrocycle is shown. Hydrogen atoms and free solvent molecules are omitted for clarity.

5c·(**M1**)₂: Crystals suitable for X-ray diffraction studies were grown from slow diffusion of CH₃OH vapor into solution of the compound (c = 1.5 mg/mL) in THF at 20 °C. The crystals are assigned to the P -1 space group, the asymmetric unit contains one molecule of **5c**·(**M1**)₂ and six molecules of methanol one of which is coordinated to the Zn centre of the porphyrin (Figure S25). The distance (r) between the Zn and O atom of the methanol is 2.094 Å, and the Zn atom is slightly out of the porphyrin plane (0.368 Å), similar to the **5a**·**M1**. The tetrayne chains are slightly bent in an arc-shaped fashion and average C=C and C-C bond lengths are identical (within error) for both tetrayne chains (1.198 ± 0.017 Å (triple bond) and 1.369 ± 0.019 Å (single bond). The 3,5-di(*t*-butyl)phenyl (Ar') substituent of the porphyrin moiety are twisted regarding the porphyrin plane (~61°). The torsion angle (ϕ) between two Ar' planes is 52.8°. Two Tr* end-groups are in staggered position in respect to each other.

In the crystal, one of the macrocycles interacts with the polyyne chain $(d(C/C_{sp}) = 3.358 \text{ Å})$ as well as with porphyrin $(CH/\pi_{arene}, d(C_{porph}H/C_{arene}) = 2.817 \text{ Å})$. In crystal, $5c \cdot (M1)_2$ molecules interact via CH/π_{sp} short contacts (2.639 and 2.519 Å) and form a layer. Molecular layers are also separated from each other forming a multilayer 3D structure (Figure S25).

Figure S25. The crystal structure the [3]rotaxane $5c \cdot (M1)_2$ (left) and the side view of crystal packing. Hydrogen atoms and free solvent molecules are omitted for clarity.

 $(2c)_2 \cdot M1$: Crystals suitable for X-ray diffraction studies were grown by diffusion of CH₃OH layer into solution of the compound (c = 2.5 mg/mL) in THF at 20 °C. The asymmetric unit contains one molecule of $(2c)_2 \cdot M1$, and the crystal belongs to the P-1 space group. Rotaxane molecules interact through dispersion forces between *t*-butyl groups of the Tr* moiety. Similar interactions exist between two identical hexayne chains locked inside the macrocycle. The crystal packing is shown in Figure S26.

Figure S26. The crystal packing the [3]rotaxane $(2c)_2 \cdot M1$ viewed down to crystallographic *a* (left) and *b* axes. The A and B chains of hexayne are colored differently. Hydrogen atoms are omitted for clarity.

F. Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) measurements were performed on a Mettler Toledo TGA/ STDA 851e/1100/SF instrument using aluminum plate as a reference.

Figure S27. DSC trace of $2c \cdot M1$. We assign the peak at 216 °C to the melting of the compound (from measuring the melting points by conventional method). The peaks at 203 and 228 °C are attributed to the phase transitions.

Figure S28. DSC trace of 2d·M1.

Figure S29. DSC trace of 2e·M1.

Figure S30. DSC trace of 2f·M1.

G. References

- S1. Chalifoux, W. A.; Tykwinski, R. R. Nature Chem., 2010, 2, 967–971.
- S2. DiMagno, S. G.; Lin, V. S. Y.; Therien, M. J. J. Org. Chem. 1993, 58, 5983-5993.
- S3. (a) Saito, S.; Nakazono, K.; Takahashi, E. J. Org. Chem. 2006, 71, 7477–7480. (b) Franz, M.; Januszewski, J. A.; Wendinger, D.; Neiss, C.; Movsisyan, L. D.; Hampel, F.; Anderson, H. L.; Görling, A.; Tykwinski, R. R. Angew. Chem. Int. Ed. 2015, 54, 6645–6649
- S4. Lahlali, H.; Jobe, K.; Watkinson, M.; Goldup, S. M. Angew. Chem. Int. Ed. 2011, 50, 4151-4155.
- Movsisyan L. D.; Kondratuk D. V.; Franz M.; Thompson A. L.; Tykwinski R. R.; Anderson H. L. Org. Lett. 2012, 14, 3424–3426.
- S6. Ogawa, T.; Kishimoto, T.; Kobayashi, K.; Ono, N. J. Chem. Soc. Perkin. Trans. 1 1998, 529-534.
- S7. Caldarelli, S. A.; Duckert, J.-F.; Wein, S.; Calas, M.; Périgaud, C.; Vial, H.; Peyrotte, S. Chem. Med. Chem. 2010, 5, 1102–1109.
- S8. Chalifoux, W. A. 'Towards Carbyne: Synthesis and Study of Extremely Long Polyynes' PhD thesis, University of Alberta, Alberta, 2009.
- S9. Jahnke, E. Tykwinski, R. R. Chem. Commun. 2010, 46, 3235–3249.
- S10. Nowell, H.; Barnett, S. A.; Christensen, K. E.; Teat, S. J.; Allan, D. R. J. Synch. Rad. 2012, 19, 435-441.
- S11. (a) Palatinus, L.; van der Lee, A. J. Appl. Cryst. 2008, 41, 975. (b) Palatinus, L. Acta Cryst. 2013, B69, 1–16.
- S12. Palatinus L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786–790.
- S13. Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. J. Appl. Cryst. 2003, 36, 1487; Parois, P.; Cooper, R. I.; Thompson, A. L. Chem. Cent. 2015, 9, 30.
- S14. (a) Spek, A. J. Appl. Cryst. 2003, 36, 7–13. (b) van der Sluis, P. Spek, A. L. Acta Cryst. 1990, A46, 194–201.
- S15. Cooper, R. I.; Thompson, A. L.; Watkin, D. J. J. Appl. Cryst. 2010, 43, 1100-1107.
- S16. Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122.
- S17. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard J. A. K.; Puschmann H. J. Appl. Cryst. 2009, 42, 339–341.