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Supplementary Figure 1. Schematic representation of the neonatal diabetes cohort. Analysis of genetic aetiologies excluded patients for whom there
was insufficient DNA for comprehensive testing (n=85).
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Supplementary Figure 2: Current genetic testing pipeline for neonatal diabetes referrals. Blue outline: diagnostic pipeline. Red outline: gene discovery
pipeline

Rapid analysis (<2 weeks):
Sanger Sequencing
(KCNJ11, ABCCS8,INS)
Methylation analysis of 6q24

|

l

No Mutation

Targeted next generation
sequencing assay of all known Update of
causes of neonatal diabetes assay design

[
Y

N\
) New cause of
No Mutation neonatal diabetes

Gene discovery: whole
exome and/or whole

[ Mutation ] genome sequencing




Supplementary Figure 3. Fall of the median time from diagnosis to referral for genetic testing over time. Bar chart representing the median time from

clinical diagnosis of diabetes to referral for genetic testing between 01/01/2000 and 31/08/2013 (N=1016, age at diagnosis not available for N=4).
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Supplementary Figure 4. Increase in the total number of referrals over time. Bar chart representing the cumulative number of worldwide referrals
from 01/01/2000 to 31/08/2013 (N=1020).
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Supplementary Table 1. List of countries with high prevalence (>20%) of consanguineous unions® and number of referrals for neonatal diabetes testing
to the Exeter Molecular Genetics laboratory

Country Number of neonatal diabetes referrals
Bahrain 2
Bangladesh 10
Egypt 9
India 75
Iran
Iraq
Israel 6
Jordan 16
Kuwait 8
Lebanon 2
Libya 6
Morocco 8
Oman 8
Pakistan 9
Qatar 1
Saudi Arabia 36
Sudan 8
Syria
Tunisia
Turkey 83

United Arab Emirates 14




Supplementary Table 2. Number and references for 253 patients included in the cohort who have been included in previous publications by the Exeter

team.

N of patients tested in Exeter

Gene and previously published References
ABCC8 41 213
EIF2AK3 27 3,14-17
FOXP3 5 18
GATA4 4 18
GATA6 25 2022
GCK 28 PE]

GLIS3 4 15,24
HNF1B 1 %5
IER3IP1 0
INS 40 26-28
KCNJ11 50 3,4,7,9,29-43
MNX1 1 7
NEUROD1 2 45
NEUROG3 1 46
NKX2-2 2 7
PDX1 3 47
PTF1A 11 22,48
RFX6 1 49
SLC19A2 2 50
SLC2A2 5 51
Total 253



Supplementary Table 3. Genetic causes of neonatal diabetes identified in 840 neonatal diabetes patients.

Genetic cause

Mode on inheritance

Non consanguineous N (%)

Consanguineous N (%)

6q24 101 (12.8%) 12 (5.2%)
Dominant 112 (14.2%) 3(1.3%)
ABCC8 -
Recessive 22 (2.8%) 13 (5.7%)
EIF2AK3 Recessive 20 (2.5%) 56 (24.3%)
FOXP3 X-linked 11 (1.4%) 3 (1.3%)
GATA4 Dominant 3 (0.4%) 1(0.4%)
GATA6 Dominant 29 (3.7%) 0 (0.0%)
GCK Recessive 8 (1.0%) 22 (9.6%)
GLIS3 Recessive 3(0.4%) 6 (2.6%)
HNF1B Dominant 2 (0.3%) 0 (0.0%)
IER3IP1 Recessive 0 (0.0%) 1(0.4%)
e Dominant 77 (9.7%) 6 (2.6%)
Recessive 9(1.1%) 18 (7.8%)
KCNJ11 Dominant 228 (28.9%) 12 (5.2%)
MNX1 Recessive 0 (0.0%) 1(0.4%)
NEUROD1 Recessive 1(0.1%) 2 (0.9%)
NEUROG3 Recessive 2 (0.3%) 0 (0.0%)
NKX2-2 Recessive 0(0.0%) 2 (0.9%)
PDX1 Recessive 2 (0.3%) 4 (1.7%)
PTF1A Recessive 3 (0.4%) 19 (8.3%)
RFX6 Recessive 0 (0.0%) 1(0.4%)
SLC19A2 Recessive 2 (0.3%) 5(2.2%)
SLC2A2 Recessive 2 (0.3%) 4 (1.7%)
ZFP57 Recessive 8 (1.0%) 4 (1.7%)
Unknown 145 (18.4%) 35 (15.2%)
Total 790 230



Supplementary Table 4. Summary of the clinical features associated with the 22 neonatal diabetes subtypes. * indicates features associated to specific

mutations.
Genetic Neonatal Diabetes Exocrine insufficiency
Diabetes Treatment needing replacement Additional Features References
cause Phenotype
therapy
| i h i lossi ilical .
6924 Transient Insulin No ntrauterine grgwt retardétlon, macroglossia, umbilica 52-55 56
hernia, neurological features (rare)
. Devel tal del ith/without epil *(22% of

ABCC8 Transient, Permanent Sulfonylureas No evelopmental delay with/without epilepsy* (22% o 12,57 56

cases)

EIF2AK3 Permanent Insulin No Skeletal dysplasia, liver dysfunction, developmental delay 17,58
FOXP3 Permanent Insulin No Eczema, enteropathy, other autoimmune features >9
GATA4 Transient, Permanent Insulin Yes* Congenital heart malformation e
GATAG Transient (rare), Insulin Yes Congenlta! heart malformation, nggrologlcal defe(fts, 21,22

Permanent hypothyroidism, gut and hepato-biliary malformation
GCK Permanent Insulin No 61:67
GLIS3 Permanent Insulin No Congenital hypothyroidism, renal cysts 24,68,69
HNF1B Transient Insulin No Pancreatic hypoplasia, renal cysts =k
IER3IP1 Permanent Insulin No Microcephaly, epilepsy 773
INS Transient, Permanent Insulin No AL
. Devel | del ith/with il *(29% of
KCNJ11 Transient, Permanent Sulfonylureas No evelopmental delay with/without epilepsy* (29% o 3536 36
cases)
MNX1 Permanent Insulin No Sacral agenesis, neurological defects 4
NEUROD1 Permanent Insulin No Cerebellar hypopla5|f'a, ser)sorlneural deafness, visual 45
impairment
NEUROG3 Permanent Insulin No Congenital malabsorptive diarrhea 4




a4

NKX2-2 Permanent Insulin No Severe neurodevelopmental defects
PDX1 Permanent Insulin Yes* s
PTF1A Permanent Insulin Yes Cerebellar agenesis* 77,78, 48
. Intestinal atresia and/or malrotation, gall-bladder
RFX6 Permanent Insulin No / . & 978
agenesis
L Thiamine-responsive megaloblastic anemia, '
SLC19A2 Permanent Thiamine No P . & >0, 80-82
sensorineural deafness
. . Hepato-renal glycogen accumulation, renal dysfunction,
SLC2A2 Transient Insulin No P . . gy'.g . v >
impaired utilization of glucose and galactose
. . Intrauterine growth retardation, neurological features
ZFP57 Transient Insulin No & g 83,84

(rare)



Supplementary Methods

Samples were fragmented using a Bioruptor (Diagenode, Liege, Belgium), indexed for multiplexing and hybridised (in pools of 12 samples)
according to the manufacturer’s instructions. Sequencing was performed with an lllumina HiSeq 2000 (lllumina, San Diego, CA, USA) (48
samples per lane) and 100 bp paired end reads. The resulting reads were aligned with BWA and duplicates were removed with Picard. We
then applied GATK indel realignment, and performed SNV and INDEL discovery and genotyping using GATK UnifiedGenotyper with
standard hard filtering parameters according to GATK Best Practices recommendations®*. Variants were annotated with ANNOVAR and

pathogenic mutations located within 50 bp upstream and 50 bp downstream of each exon were identified.

As previously described®, for the 21 genes for which testing is available in the Exeter laboratory by Sanger sequencing, the average depth
of coverage was over 250 reads and >99% of bases had a minimum read depth of 30. Two specific regions of low coverage (<20 reads)
were observed across two ~300bp GC-rich regions in the exon 2 of GATA6 and GATA4. In patients for whom these regions were not
sufficiently covered and no pathogenic mutation was identified, Sanger sequencing of the specific exon 2 amplicons were carried out in
patients with congenital features suggestive of a GATA6/GATA4 mutation (e.g. low birth weight, exocrine insufficiency, congenital heart
malformation). Two positive controls (for a known heterozygous deletion and a known insertion) were included in each 48 sample batch to

verify the ability to detect deletions/insertions.
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