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1 Discrete Equations

Differential equations are commonly used as mathematical modeling method
to represent dynamic evolution of biological propagation. However, differ-
ential equations is difficult to compute accurate simulation and apply algo-
rithms. Therefore, the most popular way is to convert differential equations
to discrete equations of the following type:

xn+1 = f(xn, xn−1, . . .), x0 = a0. (1)

A discrete equation needs an initial value for the first state, and it iterates
computing next states recursively depending on previous state. Basically,
the differential equation form can be represented in discrete-time with con-
stant sampling interval 4t as:

ẏ = ay + bu(t), (2)

yk+1 = Φyk + Γuk, (3)

where the integer constant k is the sample index, and

Φ = ea4t, (4)

Γ =

∫ 4t
0

beatdt =
b

a
(ea4t − 1). (5)

In this way, mathematical differential equations for the consecutive events
during transmigration can be transformed to the following equations. For
residual histamine,

Crh(k+1) = e−krhch4tCrh(k) −
1

krhch
(e−krhch4t − 1)Uxrmc(k). (6)

For histamine,

Ch(k+1) = e−khs4tCh(k) −
1

khs
(e−khs4t − 1)krhchCrh(k)Imc(t). (7)

For histamine receptors,

Chr(k+1) = e−krhs4tChr(k) −
1

krhs
(e−krhs4t − 1)

khchrtCh(k)

khchrb + Ch(k)
. (8)

For P/E selectins,

Cs(k+1) = e−kss4tCs(k) −
1

kss
(e−kss4t − 1)

khcstCh(k)

khcsb + Ch(k)
. (9)
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For permeability of PMN,

Cpmnp(k+1) = e−kpmnps4tCpmnp(k)−
1

kpmnps
(e−kpmnps4t−1)

kpmniptCh(k)Cs(k)Ipmns(t)Ipmnhr(t)

kpmnipb + Ch(k)Cs(k)Ipmns(t)Ipmnhr(t)
.

(10)
For PMN

Cpmn(k+1) = e−kpmns4tCpmn(k) −
1

kpmns
(e−kpmns4t − 1)Cpmnp(k). (11)

For permeability of MΦ

Cmpp(k+1) = e−kmpps4tCmpp(k)−
1

kmpps
(e−kmpps4t−1)

kmpiptCh(k)Cs(k)Imps(t)Imphr(t)

kmpipb + Ch(k)Cs(k)Imps(t)Imphr(t)
.

(12)
For MΦ

Cmp(k+1) = e−kmps4tCmp(k) −
1

kmps
(e−kmps4t − 1)Cmpp(k). (13)

The initial value of Equation (6) was set by the mean of the variables
of observation data set at time 0, and initial values for other Equations (7),
(8), (9), (10), (11), (12), (13) were set as 0 for simplification.

2 Synthetic Data Using Iterative Weighted Mean
Algorithm

The small sample size makes it hard to estimate parameters of the system
without bias. To overcome the shortage of limited available experiment
data, we generated synthetic data. By generating synthetic data, we can
have not only supplementary data to provide more reasonable result, but
also consistent data with naturally removed outliers.

To generate the synthetic data from small size real biological data, it-
erative weighted mean algorithm (IWM) was used. While arithmetic mean
assumes same weight for each variable, IWM calculates the mean using adap-
tive weight, µk =

∑n
i=1wixi/

∑n
i=1wi, where wi = e−(xi−µk−1)

2/ς2 . Here,
normal distribution with previous mean, µk and variance, σ2 at the itera-
tion k, is used to determine the weight. The algorithm iterates until the
weight difference, wk - wk−1, is smaller than a sufficiently small constant ε.
The initial mean starts with an arithmetic mean, and is updated to a more
precise value considering different observation weights. After the calculation
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of the mean vector, the synthetic data is generated by normal distribution
with the finally calculated mean by the iterative weighted mean algorithm
and the variance of original data to mimic as close as possible the original
data dispersion. Then, the synthetic data was linearly interpolated due to
the sparse time-series (two-hour interval).
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