SUPPLEMENTAL MATERIAL

Sibling rivalry in Myxococcus xanthus is mediated by kin recognition and a polyploid prophage

Arup Dey, Christopher N. Vassallo, Austin C. Conklin, Darshankumar T. Pathak, Vera Troselj, and

Daniel Wall

Department of Molecular Biology University of Wyoming 1000 E. University Ave. Laramie, WY 82071, U.S.A.

SUPPLEMENTAL TEXT

Sibling antagonism does not correlate to phenotypic differences in S-motility. We sought to investigate whether strain antagonism was correlated to phenotypic differences in motility between strains. To test this, we systematically assayed all possible combinations of motility phenotypes when strains were mixed and strain fitness was monitored by fluorescence microscopy. This method was chosen because it avoids technical problems associated with severe cell clumping of S-motile strains propagated on agar (unpublished results). First, we found that wild type (WT; A^+S^+) suffered a near 100-fold decrease in fitness when mixed with an A^-S^+ strain (Fig. S2A). Similarly, a >10-fold decrease in the WT fitness occurred when mixed with a nonmotile strain (A⁻S⁻). Although WT was outcompeted by both strains, the A⁻S⁺ strain reproducibly did so at a faster rate and to a larger degree (data not shown). In contrast, when WT was mixed with an A⁺ S⁻, strain there was no antagonism (Fig. S2A). Similarly, when both strains lacked Amotility (A⁻ S⁻ versus A⁻S⁺), there was no antagonism (Fig. S2B). However, similar to WT, the A⁺ S⁻ strain was outcompeted by both the A^-S^+ and A^-S^- strains by nearly 100-fold (Fig. S2B). These antagonistic interactions were confirmed when an A⁻S⁺ strain was found to inhibit an A⁺S⁻ strain from swarming, which also was Tra dependent (Fig. S3). In summary, in these experiments, A-motile strains were antagonized by strains that lacked A-motility. In contrast, when both strains had identical A-motility phenotypes (A⁻ or A^{+}) they interacted harmoniously. These findings raised the possibility that phenotypic differences in Amotility led to killing.

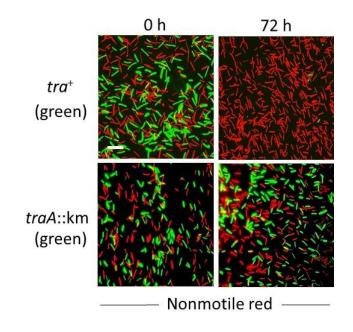
aglB1 is allelic to aglQ and does not cause antagonism. The A-motility defects described in the above strains were all caused by the mutation aglB1. We sought to identify the gene associated with aglB1 for two reasons: (i) the *aqlB1* mutation was correlated with the kill phenotype, and (ii) the *aqlB1* allele resides in DK1217, which is the parental strain used for the construction of DK1622 (1). DK1217 (A⁻S⁺) was made aqlB⁺ by phage transduction from the A-motile YS donor strain (see Fig. 5 for strain construction history). Because DK1217 and DK1622 are presumed isogenic strains and do not contain antibiotic markers, DK1217 was used by us and others as a reference A⁻S⁺ strain. To identify the *aqlB1* mutation, the Tn5- Ω 2213 insertion, which was 73% co-transducible with the *aglB* locus (data not shown), was sequenced. This insertion resides in MXAN 6867 and was therefore linked to the aglRQS operon (MXAN 6862/61/60) known to be involved in A-motility (2, 3). To test if the ag/B1 mutation was in ag/RQS, the WT operon was cloned (pDP110) and found to rescue the A-motility defect of two ag/B1 strains (DK1217 and DK8601). This operon was sequenced from an *agIB1* mutant, and two mutations were found in *agIQ* (MXAN_6861). One mutation was silent and the other mutation was in codon 36 (TTC \rightarrow ATC), resulting in a Phe \rightarrow IIe substitution in a predicted transmembrane helix. Consistent with reports that AgIQ functions as part of the A-motility motor (3), time-lapse microscopy studies found that ag/B1 mutants completely lacked single cell movements (data not shown). We conclude that agIB1 is allelic to agIQ (F36 \rightarrow I) and this mutation abolishes A-motility.

To test whether phenotypic differences in A-motility caused by *aglB1* have a role in antagonism, this mutation was rescued in strain DK1217, yielding DW2401. This A⁺S⁺ strain was then mixed with a nonmotile aggressor (DK8601) and, importantly, no swarm inhibition was observed (Fig. S4A). In addition, DW2401 was mixed with a susceptible strain, and its ability to kill was identical to that of the DK1217 parental strain (Fig. S4B). In contrast, DK1622 did not antagonize the indicator strain. These results show that phenotypic differences in A-motility do not cause antagonistic interactions.

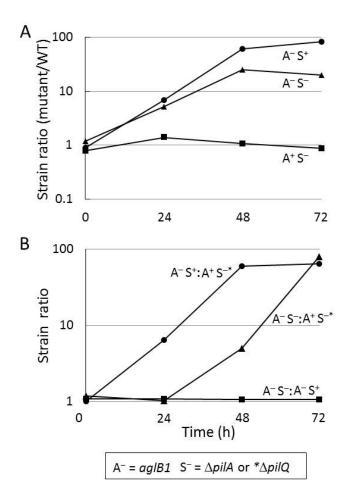
Plasmid/Primer	Relevant properties	Source
Plasmids		
pCR2.1-TOPO	Cloning vector, Km ^r	Life Technologies
pCR-XL-TOPO	Cloning vector, Km ^r Zm ^r	Life Technologies
pAD3	omrB (insertion cassette) in pCR2.1 TOPO XL, Km ^r Zm ^r	(4)
pAD4	<i>traA</i> (insertion cassette) in pCR2.1 TOPO XL, Km ^r Zm ^r	This study
pCV101	Δ Mx alpha cassette in pBJ114, Gal ^s Km ^r	This study (5)
pDP1	P _{pi/A} -SS _{IM} - <i>mCherry</i> in pCR2.1 TOPO TA, Km ^r	(6)
pDP2	<i>traA</i> (insertion cassette) in pCR2.1 TOPO TA, Km ^r	(7)
pDP25	P _{pilA} -traA ^{M.fulvus} in pSWU19, Km ^r	(8)
pDP110	aglRQS (aglB) in pCR2.1 TOPO TA, Km ^r	This study
pTdTomato	P _{IPTG} - <i>td-Tomato</i> in pMR3487, Tc ^r	Shimkets lab
pXW6	P _{pilA} -SS _{OM} -mCherry in pKSAT, Sm ^r	(6)
Primers		
aglQRS FWD	ACGCGTCCTTCTTCACAAAC	This study
aglQRS REV	GACGTCAGGTCTGGAAGGTC	This study
Mx-alphaDelUp-F	AACAGCTATGACCATGATTACGCCAAGCTTCAGACCGAGCAGATCCCTAG	This study
Mx-alphaDelUp-R	ATCGCCGAGAACGCCAATAGCCCCAAGACTCCA	This study
Mx-alphaDelDn-F	TTGGGGCTATTGGCGTTCTCGGCGATTCTCTGA	This study
Mx-alphaDelDn-R	CGACGTTGTAAAACGACGGCCAGTGAATTCCCATCCTCTTCCGTCACCTT	This study
MXF1DRAFT_07228 FWD	GAGTCGATACCCACGCACT	This study
MXF1DRAFT_07228 REV	GAAGACGATGACTCCCGCTA	This study
traA KO FWD	TCACTGTCTTGTCGGTGTGC	(7)
traA KO REV	GCCGGTTGATGACCTGATAC	(7)

Table S1 Plasmids and primers used in this study

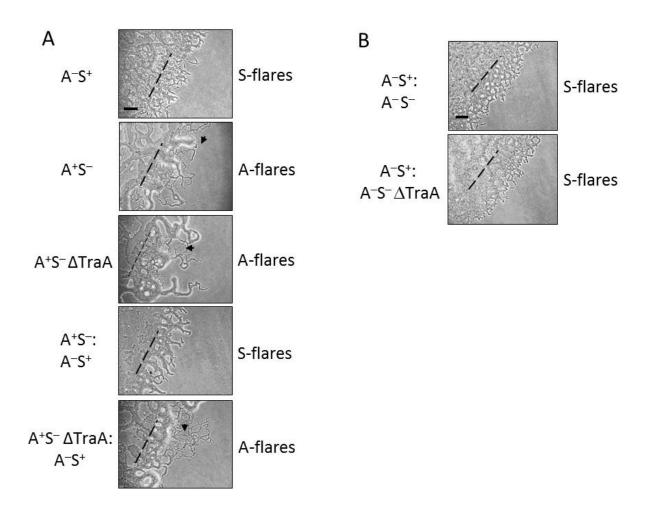
Table S2 Mx alpha polyploid units


		DZF1 Mx alpha paralogs; locus tag (DZF1DRAFT#); % amino acid identity	
DK1622 locus tags	Predicted functions	Unit 1	Unit 2
MXAN_1800	transposase, IS4 family	no	ne
MXAN_1801	RibD domain protein	none	07452; <mark>96</mark>
MXAN_1802	hypothetical protein	07211; <mark>90</mark>	07453; <mark>84</mark>
MXAN_1803	hypothetical protein	no	ne
MXAN_1805	hypothetical protein	none	
MXAN_1806	hypothetical protein	none	
	putative restriction/modification		
MXAN_1808	enzyme	no	ne
MXAN_1809	hypothetical protein		ne
MXAN_1810	RDD family protein	07206; <mark>89</mark>	07459; <mark>92</mark>
MXAN_1811	PBS lyase HEAT-like repeat protein	7205; <mark>88</mark>	07460; <mark>94</mark>
MXAN_1812	hypothetical protein	7202; <mark>37</mark>	07463; <mark>39</mark>
MXAN_1813	hypothetical protein	none	07464; <mark>31</mark>
MXAN_1814	hypothetical protein	none	07465; <mark>30</mark>
MXAN_1815	hypothetical protein	07199; <mark>37</mark>	07466; <mark>38</mark>
MXAN_1816	hypothetical protein	07198; <mark>67</mark>	07467; <mark>66</mark>
MXAN_1817	hypothetical protein	none	07468; <mark>95</mark>
MXAN_1818	hypothetical protein	07197; <mark>100</mark>	07469; <mark>99</mark>
MXAN_1819	hypothetical protein	07196; <mark>93</mark>	07470; <mark>88</mark>
MXAN_1820	hypothetical protein	07195; <mark>97</mark>	07471; <mark>92</mark>
MXAN_1821	hypothetical protein	07193; <mark>97</mark>	07473; <mark>95</mark>
MXAN_1822 ^a	hypothetical protein	07191; <mark>44</mark>	none
MXAN_1823	hypothetical protein	none	
MXAN_1824ª	hypothetical protein	07272; <mark>38</mark>	07474; <mark>95</mark>
MXAN_1826 ^a	hypothetical protein	07273; <mark>75</mark>	07192; <mark>54</mark>
MXAN_1827	hypothetical protein	none	
MXAN_1828	hypothetical protein	none	
MXAN_1829	hypothetical protein	07271; <mark>99</mark>	07190; <mark>83</mark>
MXAN_1831	hypothetical protein	07270; <mark>97</mark>	07189; <mark>85</mark>
MXAN_1832	hypothetical protein	07268; <mark>96</mark>	07188; <mark>85</mark>
MXAN_1833	hypothetical protein	07267; <mark>99</mark>	none
MXAN_1834	hypothetical protein	07266; <mark>95</mark>	07187; <mark>88</mark>
MXAN_1835	hypothetical protein	07265; <mark>95</mark>	07186; <mark>93</mark>
MXAN_1836	putative phage tail protein	07264; <mark>94</mark>	07185; <mark>93</mark>
MXAN_1837	hypothetical protein	07263; <mark>92</mark>	07184; <mark>95</mark>

MXAN_1838	hypothetical protein	07262; <mark>97</mark>	07183; <mark>96</mark>
MXAN_1839	hypothetical protein	07261; <mark>90</mark>	07182; <mark>87</mark>
MXAN_1840	hypothetical protein	07260; <mark>96</mark>	07181; <mark>96</mark>
MXAN_1841	hypothetical protein	07259; <mark>78</mark>	07180; <mark>77</mark>
MXAN_1842	hypothetical protein	07258; <mark>90</mark>	07179; <mark>88</mark>
MXAN_1843	hypothetical protein	07257; <mark>94</mark>	07178; <mark>92</mark>
MXAN_1844	hypothetical protein	07256; <mark>96</mark>	07177; <mark>95</mark>
	putative phage late control		
MXAN_1845	gene D protein	07255; <mark>99</mark>	07417; <mark>94</mark>
MXAN_1846	hypothetical protein	07254; <mark>98</mark>	07416; <mark>89</mark>
MXAN_1847	hypothetical protein	07253; <mark>95</mark>	07415; <mark>95</mark>
	phage tail tape measure		
MXAN_1848	protein, TP901 family	07251; <mark>95</mark>	07414; <mark>93</mark>
MXAN_1849	hypothetical protein	07250; <mark>98</mark>	07413; <mark>89</mark>
MXAN_1850	hypothetical protein	07249; <mark>95</mark>	07412; <mark>94</mark>
	conserved hypothetical		
MXAN_1851	phage tail region protein	07248; <mark>97</mark>	07411; <mark>96</mark>
NAVANI 1050	putative phage tail sheath protein	07247; <mark>95</mark> ^b	07210, 02b
MXAN_1852	putative phage sheath	07247, 95	07210; <mark>93</mark> ^b
MXAN 1853	protein	07247; <mark>91</mark> ^b	07210; <mark>89</mark> ^b
MXAN 1854	hypothetical protein	07246; 84	07409; 93
MXAN 1855	IPT/TIG domain protein	07245; 97	07408; 93
MXAN 1856	hypothetical protein	07244; 97	07407; 96
MXAN 1857	hypothetical protein	07243; 94	07406; 96
MXAN 1858	hypothetical protein	07242; 88	07405; 86
MXAN 1859	hypothetical protein	07241; 95	07404; 96
MXAN 1860	hypothetical protein	07240; 95	07403; 95
MXAN_1861	hypothetical protein	07239; 94	07402; 91
	phage-like element pbsx	07200,01	07102, 51
MXAN 1862	protein xkdg	07237; <mark>99</mark>	07401; <mark>97</mark>
	hypothetical protein	07236; 96	07399; 75
	N6 adenine-specific DNA	·	
MXAN_1864	methyltransferase	07235; <mark>96</mark>	07398; <mark>95</mark>
MXAN_1865	hypothetical protein	07234; <mark>89</mark>	07397; <mark>84</mark>
	putative phage head		
MXAN_1866	morphogenesis protein	07232; <mark>92</mark>	07396; <mark>93</mark>
MXAN_1867	hypothetical protein	07231; <mark>95</mark>	07395; <mark>91</mark>
	phage portal protein, PBSX		
MXAN_1868	family	07230; 95	07394; <mark>95</mark>
MXAN_1869	hypothetical protein	07226; <mark>92</mark>	none
MXAN_1870	putative phage terminase, ATPase subunit	07627; <mark>96</mark>	none


	putative terminase, atpase		
MXAN_1871	subunit	non	e
	putative bacteriophage		
MXAN_1872	L54a, antirepressor	07633; <mark>99</mark>	07625; <mark>98</mark>
	site-specific recombinase,		
MXAN_1873	phage integrase family	non	
MXAN_1874	hypothetical protein	07551, <mark>89</mark>	07606, <mark>93</mark>
MXAN_1875	hypothetical protein	07552; <mark>89</mark>	07605; <mark>94</mark>
MXAN_1876	exonuclease	07554; <mark>97</mark>	07603; <mark>95</mark>
MXAN_1877	hypothetical protein	07555; <mark>95</mark>	07602; <mark>93</mark>
MXAN_1878	hypothetical protein	07556; <mark>88</mark>	07601; <mark>85</mark>
MXAN_1879	hypothetical protein	07557; <mark>68</mark>	07332; <mark>94</mark>
MXAN_1880	hypothetical protein	07558; <mark>86</mark>	07331; <mark>86</mark>
MXAN_1881	hypothetical protein	07559; <mark>95</mark>	07330; <mark>91</mark>
	putative helicase, ATP-		
	dependent, intein-		
MXAN_1882	containing	07560; <mark>81</mark>	07329; <mark>90</mark>
MXAN_1883	hypothetical protein	07528 & 07561; <mark>99^c</mark>	07328; <mark>94</mark>
MXAN_1884	hypothetical protein	07527; <mark>88</mark>	07327; <mark>99</mark>
	putative bacteriophage		
MXAN_1885	related protein	07525; <mark>92</mark>	07326; <mark>95</mark>
MXAN_1886	hypothetical protein	07524; <mark>88</mark>	07325; <mark>81</mark>
	site-specific recombinase,		
MXAN_1887	resolvase family	07523; <mark>96</mark>	07324; <mark>97</mark>
MXAN_1888	hypothetical protein	07522; <mark>93</mark>	07323; <mark>93</mark>
MXAN_1890	hypothetical protein	07521; <mark>84</mark>	07322; <mark>92</mark>
MXAN_1891	hypothetical protein	none	07321; <mark>91</mark>
	putative serine/threonine		
MXAN_1892	protein kinase	07519; <mark>86</mark>	07320; <mark>99</mark>
MXAN_1893	hypothetical protein	none	07319; <mark>98</mark>
MXAN_1894	DNA-binding protein	07518; <mark>87</mark>	07318; <mark>99</mark>
MXAN_1895	DNA-binding protein	07517; <mark>66</mark>	07317; <mark>98</mark>
	serine/threonine protein		
MXAN_1896	kinase	07516; 68	07316; 87
MXAN_1897	hypothetical protein	07515; <mark>58</mark>	07315; <mark>61</mark>
MXAN_1898	hypothetical protein	07514; <mark>56</mark>	07314; <mark>53</mark>
MXAN_1899	hypothetical protein	none	
MXAN_1900	hypothetical protein	07511; <mark>68</mark>	07312; <mark>70</mark>
MXAN_1901	transposase, IS5 family	none	

^aparalogs


^bfusion protein of MXAN_1852 and MXAN_1853 ^ctwo contigs that each partly cover MXAN_1883

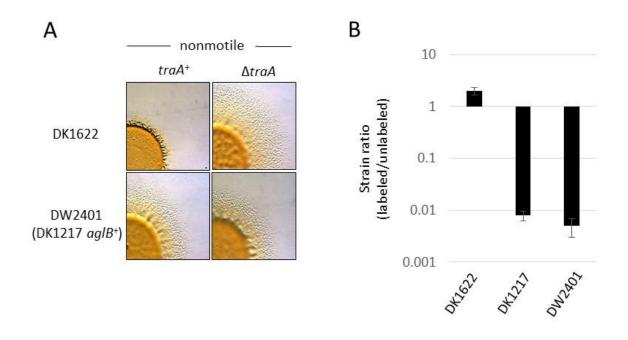

Fig. S1. Antagonism of A-motile cells by nonmotile cells is Tra-dependent. A nonmotile mCherry-labeled strain (DW1048) was mixed 1:1 with A-motile strains labeled with GFP that were either tra^+ (DW709) or traA::km (DW1613). At indicated times, cells were harvested and viewed on glass slides. Fluorescence micrographs were merged from the green and red channel. Bar, 10 µm.

Fig. S2. A-motility mutants antagonize A-motile strains. A) An A⁺S⁺ strain labeled with mCherry (DW1616; WT) was mixed at a 1:1 ratio with three different types of motility mutants labeled with GFP (DW709, DK8605, and DK8606; phenotypes shown). The ratio of the strain mixtures was monitored over 72 h by harvesting cells from ¼ CTT agar plates and enumerating cell ratios by fluorescence microscopy. See Figure S1 for a representative panel image. B) All possible combinations of motility mutants were mixed and their fitness assessed as described in A. GFP-labeled strains were DK8605 and DK8606, and mCherry-labeled strains were DW1048 and DW1619. The *agIB1* allele was used for A-motility defects and all of these strains were derived from DK1217, whereas S-motility defects were caused by $\Delta pilA$ or $\Delta pilQ$ alleles and all strains were derived from DK1622. See Table 1 for strain details.

Fig. S3. Antagonism of A-motility by an A⁻S⁺ mutant. A) Aliquots of indicated monocultures or mixed cultures (1:1 ratio) were placed on TPM agar and incubated for 24 h. Arrows mark individual cells or small groups of cells (A-flares), which are characteristic of A-motility and were absent from the A⁺S⁻:A⁻S⁺ strain mixture (which instead had S-flares). B) S-motile cells were not inhibited by nonmotile cells. Strains with indicated phenotypes were mixed 1:1 on TPM agar and incubated for 24 h. Strains used: DK1217 (A⁺S⁻), DK8615 (A⁻S⁺), DW1482 (A⁺S⁻ $\Delta traA$), DK8601 (A⁻S⁻), and DW1467 (A⁻S⁻ $\Delta traA$). Dashed lines, initial inoculum edge; bars, 100 µm.

Fig. S4. The *aglB1* defect does not cause antagonism. A) Nonmotile strain DK8601 inhibits swarming of WT (A⁺S⁺; DK1622) by a Tra-dependent mechanism ($\Delta traA$, DW1467). In contrast, an *aglB1* mutant (DK1217) rescued by an *aglB*⁺ construct (A⁺S⁺; DW2401,) exhibits no inhibition. B) A susceptible strain that was labeled with mCherry (DW1619) was mixed 1:1 with a non-aggressor (DK1622) or a parental aggressor strain (DK1217) or DW2401. After 72 h, strain fitness was microscopically determined by counting labeled and unlabeled cells.

MOVIE LEGENDS

Movie S1. Time-lapse microscopy shows A-motile cells are inhibited from moving when mixed with nonmotile cells. Strains DK8615 and DK8601 were mixed 1:1 and visualized following a one day incubation on a $\frac{1}{4}$ CTT 1% agarose pad with 2 mM CaCl₂. Cells at the colony edge were viewed with a 20× phase contrast objective. Note, many of the cells at the swarm edge are not moving or are moving slowly. In two cases cells marked with arrows lyse. For a comparison see Move S2 where an isogenic $\Delta traA$ mutant was instead mixed. A 2-h movie was made with frames captured at 30-sec intervals. Movie format is MP4.

Movie S2. Time-lapse microscopy shows that a $\Delta traA$ mutant elicits wild-type A-motility when incubated with nonmotile cells. Strains DW1482 and DK8601 were mixed 1:1 and incubated as described in Movie S1 legend. A 1-h movie was made with frames captured at 30-sec intervals. Movie format is MP4.

REFERENCES

- 1. **Wall D, Kolenbrander PE, Kaiser D.** 1999. The *Myxococcus xanthus pilQ* (*sglA*) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development. J Bacteriol **181**:24-33.
- 2. **Youderian P, Burke N, White DJ, Hartzell PL.** 2003. Identification of genes required for adventurous gliding motility in *Myxococcus xanthus* with the transposable element mariner. Mol Microbiol **49:**555-570.
- 3. **Sun M, Wartel M, Cascales E, Shaevitz JW, Mignot T.** 2011. Motor-driven intracellular transport powers bacterial gliding motility. Proc Natl Acad Sci U S A **108**:7559-7564.
- 4. **Dey A, Wall D.** 2014. A genetic screen in *Myxococcus xanthus* identifies mutants that uncouple outer membrane exchange from a downstream cellular response. J Bacteriol **196**:4324-4332.
- 5. **Julien B, Kaiser AD, Garza A.** 2000. Spatial control of cell differentiation in *Myxococcus xanthus*. Proc Natl Acad Sci U S A **97:**9098-9103.
- 6. **Wei X, Pathak DT, Wall D.** 2011. Heterologous protein transfer within structured myxobacteria biofilms. Mol Microbiol **81:**315-326.
- Pathak DT, Wei X, Bucuvalas A, Haft DH, Gerloff DL, Wall D. 2012. Cell contact-dependent outer membrane exchange in myxobacteria: Genetic determinants and mechanism. PLoS Genet 8:e1002626.
- 8. **Pathak DT, Wei X, Dey A, Wall D.** 2013. Molecular recognition by a polymorphic cell surface receptor governs cooperative behaviors in bacteria. PLoS Genet **9**:e1003891.