Supplemental Table 1

Dye/Kit	Manufacturer (catalog #)	# of assays/kit	Price/kit in US \$	US \$/1000 assays	Recommended use/well	Ref.
Acridine Orange	Thermo Fisher Scientific (A3568)	1 x 10 ⁷	70	0.007	0.01 µg	This study
AQ _{UEOUS} MTS Reagent	Promega (G1111)	2.5×10^4	922	36.88	20 μl MTS (3.9 mM)	[1]
LIVE/DEAD viability/cyto- toxicity kit	Thermo Fisher Scientific (L3224)	8000 – 10,000	400	40 – 50	5 μl Calcein AM (8 μM) and 5 μl EthD- 1 (16 μM)	[2]
WST-1 reagent	Roche (11644807001)	2500	468	187.2	10 µl	This study
CellTiter-Glo Luminescent Cell viability assay	Promega (G9683)	1000	418	418	100 µl	[3]
Cultrex 3D Spheroid Fluorometric Assay	Trevigen (3510-096-K)	250	295	1180	10 µl	

Cost comparison for spheroid assays.

1. Hoffmann, O.I., C. Ilmberger, S. Magosch, M. Joka, K.W. Jauch, and B. Mayer. 2015. Impact of the spheroid model complexity on drug response. J Biotechnol *205*:14-23.

2. Hsiao, A.Y., Y.C. Tung, X. Qu, L.R. Patel, K.J. Pienta, and S. Takayama. 2012. 384 hanging drop arrays give excellent Z-factors and allow versatile formation of co-culture spheroids. Biotechnol Bioeng *109*:1293-1304.

3. Vinci, M., S. Gowan, F. Boxall, L. Patterson, M. Zimmermann, W. Court, C. Lomas, M. Mendiola, et al. 2012. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol *10*:29.

Preparation and Analysis of Acridine Orange

Stained Neurospheres

PROTOCOL FOR:

A Simple, Low-Cost Staining Method for Rapid-Throughput Analysis of Tumor Spheroids

Frank Eckerdt^{1, *}, Angel Alvarez², Jonathan Bell¹, Constadina Arvanitis³, Asneha Iqbal^{1, 4}, Ahmet D. Arslan¹, Bo Hu², Shi-Yuan Cheng², Stewart Goldman^{1, 4}, and Leonidas C. Platanias^{1, 5}

¹*Robert H. Lurie Comprehensive Cancer Center and Division of Hematology- Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA*

²Department of Neurology, Robert H. Lurie Comprehensive Cancer Center, Northwestern Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL USA

³Center for Advanced Microscopy and Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL USA

⁴Division of Hematology and Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL USA

⁵Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL, USA

*Address correspondence to: Frank Eckerdt, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Lurie 3-220, Chicago, IL 60611, Email: frank.eckerdt@northwestern.edu

BioTechniques Vol#:pp-pp (Month Year)

LEGEND

REAGENTS

DMEM/F12 (Thermo Fisher Scientific, Grand Islands, NY catalog # 10565-018) B27 Supplement (Thermo Fisher Scientific, Grand Islands, NY catalog # 17504-044) Heparin (Sigma-Aldrich, St. Louis, MD catalog # H3149) EGF (20 ng/ml, Peprotech, Rocky Hill, NJ catalog # AF-100-15) basic FGF (20 ng/ml, Peprotech, Rocky Hill, NJ catalog # 100-18B)

TrypLE Express (Thermo Fisher Scientific, Grand Island, NY catalog # 12604-013) Acridine Orange (Thermo Fisher Scientific, Grand Island, NY catalog #A3568)

PROCEDURE

GENERATION AND SEEDING OF NEUROSPHERE CELLS:

- 1. Trypsinize adherent growing U87 cells, collect in PBS and centrifuge at 1000 rpm for 5 min.
- 2. Resuspend in PBS and count cells.
- 3. Seed 4,000,000 cells into 75 cm² low adhesion flask, (Greiner bio-one, cat. # 658195) in 12 ml cancer stem cell medium (CSC medium).
- 4. Allow neurosphere formation for > 4 days, replace medium every other day. Resulting neurospheres can be cultured for up to eight passages.
- 5. Prepare round bottom 96-well plates (96 Well Suspension Culture Plate from Greiner bio-one, cat #650185) with 50 μl CSC medium per well.
- 6. Dissociate U87 neurospheres with TrypLE Express into single cells, centrifuge at 1000 rpm for 5 min and resuspend in 1 ml PBS.
- Subject cells to flow cytometry using a BD FACSAria2 Special Order Research Product (SORP) instrument (San Jose, CA) in a biosafety cabinet and sort cells by forward-scattered light (FSC) vs. side-scattered light (SSC). Seed 1000 cells/well into the round bottom 96-well plates prepared in step 5.
- 8. Add 50 μl of CSC medium with or without 2X inhibitors, resulting in a total volume of 100 μl CSC medium per well.
- 9. Incubate at 37° C in a CO₂ incubator for 14 days.

* This protocol is not limited to U87 cells and can be used for most adherent growing cell lines (composition of CSC medium might need to be adjusted for non-neuronal cell lines). In case of highly "sticky" cells, Ultra Low Attachment 96-well round bottom plates (Corning, cat. #7007) can be used to facilitate sphere formation. Also, other Cell Sorting Instruments can be used for sorting cells.

ACRIDINE ORANGE STAINING OF NEUROSPHERES:

10. To each well add 1 μ l of Acridine Orange (10 μ g/ml) for 1 hour at 37°C in a CO₂ incubator.

Cells can remain with acridine orange overnight at 37°C in a CO_2 incubator for analysis on the next day.

IMAGING AND ANALYSIS OF NEUROSPHERES

- If using NIS-Elements software and a 10x air PlanApo objective, Image Acquisition is set to "Capture Large Images Setting" using the 3 x 3 tile function (resulting image size is 2282.35 x 2282.35 μm).
- 12. General Analysis Parameters include: Threshold: ≥ 300. (Threshold should be adjusted according to the fluorescence intensity of the cell line.) Size: ≥ 100, Circularity: ≥ 0.12
- 13. Using these settings, image capture and data collection will require 5 minutes, 18 seconds.

RECIPES

<u>Cancer Stein Cen (CSC) medium (ST1.5 m)</u>				
Component	Vulume (ml)	[final]		
DMEM/F12	500 ml	1 x		
B27 Supplement (50x)	10 ml	1 x		
Heparin (25 mg/ml)	100 µl	5 μg/ml		
EGF (0.1 mg/ml)	100 µl	20 ng/ml		
bFGF (0.1 mg/ml)	100 µl	20 ng/ml		
Gentamicin (50 mg/ml)	1 ml	0.1 mg/ml		

Cancer Stem Cell (CSC) medium (511.3 ml)

* Stock solution for EGF is prepared in ddH₂O with 1 % BSA, for bFGF in 5 mM Tris pH 7.6, 0.1%BSA. Instead of Gentamicin, Pen Strep (1%, Thermo Fisher Scientific, Grand Islands, NY) can be used.