Electronic Supplementary Materials

Supplementary Figure S1. Modelling of the coiled-coil based interaction between Mis12 and Nnf1a.

3600 alternative structural alignments of Mis12 and Nnf1a proteins on the reference coiledcoil structure, scored according to the number of intermolecular Leu-Leu contacts. All structures with more than 8 contacts are denoted by circles. The best alignments (difference in register shifts by 14 aa), represented by solid line, identify five highly-scored structures (3 with 13 and 2 with 12 Leu-Leu contacts, respectively), all of which are almost equivalent due to (i,i+7) pseudo-translational symmetry of a coiled-coil, known as heptad repeat [51]. The alternative set of alignments (dotted line, relative shift between registers either 10 or 11aa) identify next four slightly less-scored structures (2 with 12 and 2 with 11 contacts), however, according to Mann's-Whithey U-test, this subsets is scored lower at p = 0.05.

Supplementary Figure S2. Circular dichroism measurements show that Nnf1a¹²²⁻¹⁴⁷ and Mis12¹⁰¹⁻¹³⁰ fragments have α-helical structure and interact with each other.

Concentration dependence of the circular dichroism spectra of a mixture of Mis12 peptide $T_{101}SEE..HLK_{130}$ and Nnf1 peptide $R_{122}FLD...AMA_{147}$. Mean residue ellipticity (MRE) values show a double minimum at 208 and 222 nm, characteristic for α -helical structure. Signal becomes stronger with peptide concentration increasing from 13 mM to 100 mM, indicating increased helix content at higher concentration. Concentration dependence implies the presence of intermolecular interactions stabilizing the Mis12-Nnf1 peptide complex. Inset shows the concentration dependence of MRE values at 222 nm for the complex (red) and separate preparation of Mis12 peptide (blue) and Nnf1 (green), indicating the presence of non-

covalent complexes in all three cases in the form of Mis12-Mis12 and Nnf1-Nnf1 dimers and Mis12-Nnf1 dimers and tetramers.

Supplementary Figure S3. NMR of Mis12¹⁰¹⁻¹³⁰ and Nnf1a¹²²⁻¹⁴⁷.

The representative high-field region of 2D[1H-1H]-TOCSY spectra recorded for Mis12 (left) and Nnfla (right), overlaid with that of equimolar mixture of Mis12 and Nnfla proteins (green). Signals of V128 and I144 of Nnfla are assigned unequivocally, while these of Leu residues are only assigned to a separate spin systems (L1-L4). Location of most of resonances, with the exception of a single Leu residue of Nnfla (L2), visibly varies upon mixing of both protein samples, thus identifying regions involved in the intermolecular interaction.

Supplementary Figure S4. Neither Nnf1a nor Mis12 interacts with CENP-C¹⁻⁹⁴ or Nsl1 on its own.

A. Schematic representation of Y2H experiments used for an analysis of pairwise proteinprotein interactions of Mis12 complex subunits (Mis12, Ns11, Nnf1a) and the amino-terminal region of CENP-C (CENP-C¹⁻¹⁸⁸). Red arrows indicate positive interactions. Grey arrows with crosses indicate interactions that were tested and gave negative results. Lines with double arrowheads indicate that the interaction was performed in both configurations, meaning each protein was tested in fusion to the transcription activation domain (AD), while the partner was fused to DNA-binding domain (BD), and in the reciprocal fusion protein configuration. As Ns11 fused to the DNA-binding domain of GAL4 auto-activated the transcription from the promoter, it was not included in the assay. Therefore the interactions with Ns11 were performed only in a configuration where Ns11 was fused to AD (indicated by single headed arrows).

B. Western Blots showing results of co-expressions and co-purifications of Mis12 Complex subunits (Mis12, Nsl1, Nnf1a) and the amino-terminal region of CENP-C (CENP-C¹⁻⁹⁴) in

E.coli. Mis12 co-purified with 6xHis::Nnf1a provides positive control. All proteins were expressed as indicated by specific bands in unbound fraction.

Supplementary Figure S5. Size Exclusion Chromatography - Multiple Angle Light Scattering (SEC-MALS) mass measurements of recombinant complexes.

Chromatograms show elution profiles measured in UV₂₈₀ and UV₂₅₄, Light Scattering (LS) signals and calculated molecular weight (MW). X axis shows elution volume in ml. AU – Arbitrary Unit.

Supplementary Figure S6. SEC-MALS mass measurements of recombinant dimerised complexes

A – C. Chromatograms show elution profiles for 3 reconstituted protein complexes measured in UV₂₈₀ and UV₂₅₄, Light Scatering (LS) signals and calculated molecular weight (MW). X axis shows elution volume in ml. AU – Arbitrary Unit.

D. Table showing theoretical masses of monomeric and dimeric complexes and masses calculated by Multiple Angle Light Scattering (MALS)

Supplementary Figure 7. Testing the specificity of antibody raised against CENP-C¹⁻¹⁸⁸ Western Blot analysis showing specificity of anti-CENP-C¹⁻¹⁸⁸ antibody after gene specific

RNAi in *D.mel-2* cells.

			Р	Proteins pulled	down with ba	ait			
Bait	CEI	NP-C	Nr	Nnfla		Mis12		Nsl1	
	Protein score	Matches	Protein score	Matches	Protein score	Matches	Protein score	Matches	
PtA::CENP-C 1-188 aa	4696	93	69	2	423	8	267	4	
PtA::CENP-C 1-94 aa	5860	90	243	4	-	-	151	2	
GFP::CENP-C	28139	468	1045	24	2715	44	50	1	
GFP::CENP-C F26A, F29A	66390	1049	-	-	-	-	-	-	
GFP::CENP-C 1-94: F26A, F29A	13122	170	-	-	-	-	-	-	
GFP::CENP-C 1-94: L12A, L16A	17934	300	1812	25	852	19	499	6	
GFP::Nsl1	-	-	1871	31	5959	145	16153	254	
Nsl1 1-101 aa::GFP	-	-	-	-	-	-	17580	233	
GFP::Nsl1 102-157aa	16	785	2394	38	8063	130	10404	163	
Nsl1 102-157aa::GFP	5	258	1046	23	2211	42	6765	108	
GFP::Nsl1 158-183aa	-	-	-	-	-	-	3333	39	
GFP::Nsl1 102-183aa	5	185	1273	32	4660	83	6845	95	
GFP::Nsl1 102-170aa	1510	23	728	17	3041	54	5751	104	
GFP::Nsl1 F138A,T139A,N140A (purification 1)	-	-	-	-	79	2	16689	185	
GFP::Nsl1 F138A,T139A,N140A (purification 2)	-	-	133	3	589	15	8299	157	
GFP::Nsl1 F138A,T139A,N140A (purification 3)	-	-	58	2	104	3	4984	70	
GFP::Nnfla	541	11	19164	390	1365	37	1386	19	
GFP::Nnf1a 122-194 aa	-	-	53164	776	1106	24	172	2	
GFP::Nnf1a 1-150 aa	1203	20	33338	457	2959	70	-	-	
GFP::Nnf1a L142D	-	-	16554	341	-	-	-	-	

GFP:: Nnfla W41A, I44A, Y45A	-	-	30758	517	1976	44	723	12
GFP::Mis12	1313	28	5335	87	39708	941	4380	71
GFP::Mis12 103-181 aa	-	-	862	18	25809	790	344	5
GFP::Mis12 1-132 aa	433	8	570	16	43650	948	-	-
GFP::Mis12 1-89 aa	-	-	-	-	9357	112	-	-
GFP::Mis12 90-181 aa	-	-	968	18	11854	225	1492	17
GFP::Mis12 L112D, L115D, L126D, L129D	-	-	-	-	24299	421	-	-
GFP::Mis12 L126D, L129D	-	-	-	-	20720	354	-	-
GFP::Mis12 L112D, L115D	-	-	-	-	26491	428		
GFP::Mis12 F12A, F13A, F15A, T16A	-	-	1938	37	46887	908	2292	33

Supplementary Table S1.

List of selected proteins identified in AP-MS experiments. Protein Score is a number that reflects the combined scores of all observed mass spectra

that can be matched to amino acid sequences within that protein. Matches reflect number of peptides identified for each protein by Mascot software

(Matrix Science). (-) - no matches corresponding to particular protein were identified in the search.

#	AD	BD	Selection	Interaction
1	CENP-C ^{1-188 aa}	Mis12	SD-LW + XaGal	No
2	CENP-C ^{1-188 aa}	Nnfla	SD-LW + XaGal	No
3	CENP-C ¹⁻¹⁸⁸ aa	CENP-C ¹⁻¹⁸⁸ aa	SD-LW + XaGal	No
4	CENP-C ^{1-188 aa}	Empty	SD-LW + XaGal	No
5	Empty	CENP-C ¹⁻¹⁸⁸ aa	SD-LW + XaGal	No
6	Empty	CENP-C ¹⁻⁷⁸⁸ aa	SD-LW + Aba	No
7	Mis12	CENP-C ¹⁻⁷⁸⁸ aa	SD-LW + XaGal	No
8	Nnfla	CENP-C ¹⁻⁷⁸⁸ aa	SD-LW + XaGal	No
9	Nsl1	CENP-C ¹⁻⁷⁸⁸ aa	SD-LW + XaGal	No
10	Empty	CENP-C ¹⁻⁷⁸⁸ aa	SD-LW + XaGal	No
11	Nnfla	Mis12	SD-LW + XaGal	Yes
12	Nnfla	Nnfla	SD-LW + XaGal	No
13	Nnfla	CENP-C ¹⁻¹⁸⁸ aa	SD-LW + XaGal	No
14	Nnfla	Empty	SD-LW + XaGal	No
15	Nnfla	Empty	SD-LW + Aba	No
16	Nnfla	Mis12 L112D	SD-LW + Aba	No
17	Nnfla	Mis12 L115D	SD-LW + Aba	No
18	Nnfla	Mis12 L126D, L129D	SD-LW + Aba	No
19	Nnfla	Mis12 L126D	SD-LW + Aba	No
20	Nnfla	Mis12 L129D	SD-LW + Aba	No
21	Empty	Nnfla	SD-LW + XaGal	No
22	Empty	Nnfla L142D	SD-LW + Aba	No
23	Mis12	Nnfla	SD-LW + XaGal	Yes
24	Mis12	Mis12	SD-LW + XaGal	No
25	Mis12	CENP-C ¹⁻¹⁸⁸ aa	SD-LW + XaGal	No
26	Mis12	Empty	SD-LW + XaGal	No
27	Mis12	Empty	SD-LW + Aba	No

28	Mis12	Nnfla L142D	SD-LW + Aba	No
29	Empty	Mis12	SD-LW + XaGal	No
30	Empty	Mis12 L112D	SD-LW + Aba	No
31	Empty	Mis12 L115D	SD-LW + Aba	No
32	Empty	Mis12 L126D, L129D	SD-LW + Aba	No
33	Empty	Mis12 L126D	SD-LW + Aba	No
34	Empty	Mis12 L129D	SD-LW + Aba	No
35	Nsl1	Empty	SD-LW + XaGal	No
36	Nsl1	Empty	SD-LW + Aba	No
37	Empty	Nsl1	SD-LW + XaGal	Yes
38	Nsl1	Nsl1	SD-LW + XaGal	Yes
39	Nsl1	Mis12	$SD-LW + X\alpha Gal$	No
40	Nsl1	Nnfla	SD-LW + XaGal	No
41	Nsl1	CENP-C ¹⁻¹⁸⁸ aa	SD-LW + XaGal	No
42	Nsl1	CENP-C ¹⁻⁷⁸⁸ aa	SD-LW + Aba	No

Supplementary Table S2.

List of performed Yeast-2-Hybrid experiments. Note that Nsl1 fused to the DNA-binding domain of GAL4 (BD) auto-activated the transcription from the promoter therefore it was not included in further assays. Interactions with Nsl1 were performed only in a configuration where Nsl1 was fused to the transcription activation domain (AD). SD-LW+Aba – selection plate without leucine and tryptophan supplemented with AureobasidinA. SD-LW+ X α Gal - selection plate without leucine and tryptophan supplemented with X α Gal.

Yeast 2 Hybrid vectors

#	Vector	cDNA	Enzymes used for cloning	Fusion	Selectable marker (for propagation in yeast)	Selectable marker (for propagation in <i>E.coli</i>)	Forward primer (used for cloning)	Reverse primer (used for cloning)	Mutagenesis primer - forward	Mutagenesis primer - reverse
1	pGBT9	CenpC ¹⁻¹⁸⁸	EcoR1, BamH1	N terminal Gal4 BD	TRP1	Amp ^R	5'GTGACAGAATTCATGTCGA ACCCCCAGAACAAC3'	5'ATACGCGGATCCTCATTAGGCA ACTTCCTCTTTTTGTTT3'		
2	pGBT9	Mis12	EcoR1, Sal1	N terminal Gal4 BD	TRP1	Amp ^R	5'GTGACAGAATTCATGGACT TCAATAGCCTAGCC3'	5'ATACGCGTCGACTCATTAATCA GTCTCCTTCTTTATGTC3'		
3	pGBT9	Nnf1a	Sal1, Sma1	N terminal Gal4 BD	TRP1	Amp ^R	5'GTGACACCCGGGTATGGAG GATTCGGAAGCC3'	5'ATACGCGTCGACTCATTAGAAG TCGTTCAATGCTTCGCC3'		
4	pGBT9	Nsl1	EcoR1, Sal1	N terminal Gal4 BD	TRP1	Amp ^R	5'GTGACAGAATTCATGGAGC CAGCCGAAAGTCCA3'	5'ATACGCGTCGACTCATTACCGT TGGTTGGCCATATTCTG3'		
5	pGAD424	CenpC ¹⁻¹⁸⁸	EcoR1, BamH1	N terminal Gal4 AD	LEU2	Amp ^R	5'GTGACAGAATTCATGTCGA ACCCCCAGAACAAC3'	5'ATACGCGGATCCTCATTAGGCA ACTTCCTCTTTTTGTTT3'		
6	pGAD424	Mis12	EcoR1, Sal1	N terminal Gal4 AD	LEU2	Amp ^R	5'GTGACAGAATTCATGGACT TCAATAGCCTAGCC3'	5'ATACGCGTCGACTCATTAATCA GTCTCCTTCTTTATGTC3'		
7	pGAD424	Nnf1a	Sal1, Sma1	N terminal Gal4 AD	LEU2	Amp ^R	5'GTGACACCCGGGTATGGAG GATTCGGAAGCC3'	5'ATACGCGTCGACTCATTAGAAG TCGTTCAATGCTTCGCC3'		
8	pGAD424	Nsl1	EcoR1, Sal1	N terminal Gal4 AD	LEU2	Amp ^R	5'GTGACAGAATTCATGGAGC CAGCCGAAAGTCCA3'	5'ATACGCGTCGACTCATTACCGT TGGTTGGCCATATTCTG3'		
9	pGBKT7	CenpC ^{1-788 aa}	Nde1, BamH1	N terminal Gal4 BD	TRP1	Kan ^R	5'AGGAGGACCTGCATATGAT GGTCGAAGCCC3'	5'TAGGATCCCTACAGTTCGTTCT CCATCGCC3'		
10	pGBT9	CenpC ^{1-788 aa}	EcoR1, BamH1	N terminal Gal4 BD	TRP1	Amp ^R	5'GTGACAGAATTCATGTCGA AGCCCCAGAACAAC3'	5'ATACGCGGATCCTCATTACAGT TCGTTCTCCATCGCCCT3'		
11	pGBT9	Mis12 L112D	EcoR1, Sal1	N terminal Gal4 BD	TRP1	Amp ^R	5'GTGACAGAATTCATGGACT TCAATAGCCTAGCC3'	5'ATACGCGTCGACTCATTAATCA GTCTCCTTCTTTATGTC3'	5'AGAGGAGGAGGAGCAGAAGACA GCCAGGGACGAGGAGCTGAA GGCCAAATACAGAGAGAACAT GG3'	5'CCATGTTCTCTCTGTATTT GGCCTTCAGCTCCTCGTCCC TGGCTGTCTTCTGCTCCTCCT CT3'
12	pGBT9	Mis12 L115D	EcoR1, Sal1	N terminal Gal4 BD	TRP1	Amp ^R	5'GTGACAGAATTCATGGACT TCAATAGCCTAGCC3'	5'ATACGCGTCGACTCATTAATCA GTCTCCTTCTTTATGTC3'	5'AGAGGAGGAGCAGAAGACA GCCAGGTTGGAGGAGGACAA GGCCAAATACAGAGAGAACAT GG3'	5'CCATGTTCTCTCTGTATTT GGCCTTGTCCTCCTCCAACCT GGCTGTCTTCTGCTCCTCCTC T3'
13	pGBT9	Mis12 ^{L126D,L129D}	EcoR1, Sal1	N terminal Gal4 BD	TRP1	Amp ^R	5'GTGACAGAATTCATGGACT TCAATAGCCTAGCC3'	5'ATACGCGTCGACTCATTAATCA GTCTCCTTCTTTATGTC3'	5'CAAATACAGAGAGAACATG GCCATGGACGCGCATGACAAG ATCGAGGAGGAGGAGAAGTACGC CG3'	5'CGGCGTACTTCTCCTCCTC GATCTTGTCATGCGCGGTCCA TGGCCATGTTCTCTCTGTATT TG3'
14	pGBT9	Mis12 L126D	EcoR1, Sal1	N terminal Gal4 BD	TRP1	Amp ^R	5'GTGACAGAATTCATGGACT TCAATAGCCTAGCC3'	5'ATACGCGTCGACTCATTAATCA GTCTCCTTCTTTATGTC3'	5'CAAATACAGAGAGAACATG GCCATGGACGCGCATTTGAAG ATCGAGGAGGAGGAGAAGTACGC CG3'	5'CGGCGTACTTCTCCTCCTC GATCTTCAAATGCGCGTCCA TGGCCATGTTCTCTCTGTATT TG3'
15	pGBT9	Mis12 L129D	EcoR1, Sal1	N terminal Gal4 BD	TRP1	Amp ^R	5'GTGACAGAATTCATGGACT TCAATAGCCTAGCC3'	5'ATACGCGTCGACTCATTAATCA GTCTCCTTCTTTATGTC3'	5'CAAATACAGAGAGAACATG GCCATGCTGGCGCATGACAAG ATCGAGGAGGAGGAGAAGTACGC CG3'	5'CGGCGTACTTCTCCTCCTC GATCTTGTCATGCGCCAGCA TGGCCATGTTCTCTCTGTATT TG3'
16	pGBT9	Nnf1a ^{L142D}	Sal1, Sma1	N terminal Gal4 BD	TRP1	Amp ^R	5'GTGACACCCGGGTATGGAG GATTCGGAAGCC3'	5'ATACGCGTCGACTCATTAGAAG TCGTTCAATGCTTCGCC3'	5'CAGCGTGGAATTCATGGAG CAGCAACTGGCCTCTCAGGCA AAAGAAGATGAGATTGCTATG GCCAAGAGCAAT3'	5'ATTGCTCTTGGCCATAGCA ATCTCATCTTCTTTGCCTGA GAGGCCAGTTGCTGCTCCAT GAATTCCACGCTG3'

Gateway expression vectors

#	Vector	cDNA	Fusion	Selectable marker	Forward primer	Reverse primer	Mutagenesis primer -	Mutagenesis primer
				(for propagation in E.coli)	(used for generation	(used for generation of	forward	- reverse
					of entry clone)	entry clone)		
1	pMT-GFP	CenpC	N terminal eGFP	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA		
-		•		•	AAAGCAGGCTTAATGTCGAA	AGCTGGGTACTAACTGCGTATAC		
					GCCCCAGAACAACGACA3'	ACATCAGCACA3'		
2	pMT-GFP	CenpC F26A, F29A	N terminal eGFP	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA	5'CCAGCCAGTGAAGGACAAG	5'TATTTTCGGCAAGCTTGCG
_					AAAGCAGGCTTAATGTCGAA	AGCTGGGTACTAACTGCGTATAC	GAGCGCGCCGCCGCCGCCATG	CATCATGGCGGCGGCGGCG
					GCCCCAGAACAACGACA3'	ACATCAGCACA3'	ATGCGCAAGCTTGCCGAAAAT	CGCTCCTTGTCCTTCACTGGC
						-	A3'	TGG3′
3	pMT-GFP	CenpC ^{1-94 F26A, F29A}	N terminal eGFP	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA	5'CCAGCCAGTGAAGGACAAG	5'TATTTTCGGCAAGCTTGCG
					AAAGCAGGCTTAATGTCGAA	AGCTGGGTACTAATTGACTTTCTC	GAGCGCGCCGCCGCCGCCATG	CATCATGGCGGCGGCGGCG
					GCCCCAGAACAACGAC3'	GGTGGCGGC3'	ATGCGCAAGCTTGCCGAAAAT	CGCTCCTTGTCCTTCACTGGC
							A3'	TGG3′
4	pMT-GFP	CenpC ^{1-94 L12A, L16A}	N terminal eGFP	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA	5'GCCCCAGAACAACGACACTC	5'GCTCCTTGTCCTTCACTGG
					AAAGCAGGCTTAATGTCGAA	AGCTGGGTACTAATTGACTTTCTC	TGGAGGCCGACGACATCGCCA	CTGGCTGGCGATGTCGTCG
					GCCCCAGAACAACGAC3′	GGTGGCGGC3'	GCCAGCCAGTGAAGGACAAG	GCCTCCAGAGTGTCGTTGTT
		1.100					GAGC3′	CTGGGGC3'
5	pMT-DESTNPta	CenpC 1-188	N terminal Protein A	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA		
					AAAGCAGGCTTAATGTCGAA	AGCTGGGTACTAGGCAACTTCCT		
					GCCCCAGAACAACG3'	CTITITGT3'		
6	pMT-DESTNPta	CenpC ¹⁻⁹⁴	N terminal Protein A	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA		
					AAAGCAGGCIIAAIGICGAA	AGCIGGGTACTAATIGACTITCTC		
					GCCCCAGAACAACGAC3	GGTGGCGGC3'		
7	pMT-GFP	Nsl1	N terminal eGFP	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA		
					AAAGCAGGCIIAAIGGAGCC	AGCIGGGIAICACCGIIGGIIGG		
					AGCCGAAAGTCCAGAAA3			
8	pMT-GFP	NsI1 ¹⁻¹⁰¹	C terminal eGFP	Amp ^ĸ	SIGGGGACAAGIIIGIACAAA	5 GGGGACCACITIGTACAAGAA		
					AAAGCAGGCITAATGGAGCC	AGCIGGGIACGCAIGCAIIACAA		
					AGCCGAAAGTCCAGAAA3	AGICGAAGAAC3		
9	pMT-GFP	NsI1 ¹⁰²⁻¹⁸³	N terminal eGFP	Amp ^ĸ	5'GGGGACAAGIIIGIACAAA	5'GGGGACCACITIGTACAAGAA		
					AAAGCAGGCIIAGCACIGGA	AGCIGGGIAIIAICACCGIIGGI		
	-	. 402.457			CAUGGACAATCGCAAGG3'	IGGCCATATIC3'		
10	pMT-GFP	NsI1 ¹⁰²⁻¹⁵⁷	C terminal eGFP	Amp ^r	5 GGGGACAAGTTTGTACAAA	5 GGGGACCACTITGTACAAGAA		
					AAAGCAGGCIIAAIGGCACI	AGCIGGGIAGCACIGCAGCICCA		
					GGALALGGALAATLGLA3'			
11	pMT-GFP	NsI1 ¹⁰²⁻¹⁵⁷	N terminal eGFP	Amp ^r	5 GGGGACAAGTITGTACAAA	5 GGGGACCACITIGIACAAGAA		
					AAAGCAGGCIIAGCACIGGA			
					CALGGACAATCGCAAGG3	CLAICAIGICC3		

12	pMT-GFP	Nsl1 ¹⁵⁸⁻¹⁸³	N terminal eGFP	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA		
12				P	AAAGCAGGCTTAAATATGGA	AGCTGGGTATTATCACCGTTGGT		
					CGATCACTACCTATTCA3'	TGGCCATATTC3'		
12	nMT-GFP	Nsl1 ¹⁵⁸⁻¹⁷⁰	N terminal eGFP	Amn ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA		
13	pini en	11011		,p	AAAGCAGGCTTAAATATGGA	AGCTGGGTATTACATGGTGTTCC		
					CGATCACTACCTATTCA3'	GCATGAATAGGTAG3'		
1/	nMT-GEP	Nsl1 1364	N terminal eGEP	Amn ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA	5'TTTGCAAAACTTCGTGCGAA	5'ATCGGATGGCCGCGTTTG
14	pini en			,p	AAAGCAGGCTTAATGGAGCC	AGCTGGGTATCACCGTTGGTTGG	GCTCGGCGGCTTTCACAAACG	TGAAAGCCGCCGAGCTTCGC
					AGCCGAAAGTCCAGAAA3'	CCATATTCTGG3'	CGGCCATCCGAT3'	ACGAAGTTTTGCAAA3'
15	nMT-GFP	Nsl1 F138A, T139A, N140A	N terminal eGFP	Amn ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA	5'AAAACTTCGTGCGAAGCTCG	5'GCTCCGCCTGAAATCGGA
10	pini en	11011		,p	AAAGCAGGCTTAATGGAGCC	AGCTGGGTATCACCGTTGGTTGG	TTGGCTGCCGCCGCCGCGGCC	TGGCCGCGGCGGCGGCAGC
					AGCCGAAAGTCCAGAAA3'	CCATATTCTGG3'	ATCCGATTTCAGGCGGAGC3'	CAACGAGCTTCGCACGAAGT
								TTT3'
16	nMT-GEP	Nnf1a	N terminal eGEP	Amn ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA		
10	piùri di l	Ninita		, inp	AAAGCAGGCTTAATGGAGGA	AGCTGGGTATCAGAAGTCGTTCA		
					TTCGGAAGCCGCATTTA3'	ATGCTTCGCCT3'		
17	pMT-GEP	Nnf1a ¹²²⁻¹⁹⁴	N terminal eGEP	Amn ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA		
1/		NIIIIa	N terminal corr	Ашр	AAAGCAGGCTTACGATTTTTG	AGCTGGGTATTATCAGAAGTCGT		
					GACTTCAGCGTGGAAT3'	TCAATGCTTCG3'		
10	nMT-GEP	Nnf1a ¹⁻¹⁵⁰	N terminal eGFP	Amn ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA		
10	piùri di l	Ninita		, inp	AAAGCAGGCTTAGAGGATTC	AGCTGGGTATCAATTGCTCTTGG		
					GGAAGCCGCATTTAAA3'	CCATAGCAATCT3'		
10	nMT-GEP	Nnf1a ^{L142D}	N terminal eGFP	Amn ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA	5'CAGCGTGGAATTCATGGAG	5'ATTGCTCTTGGCCATAGCA
19	piùri di l	Ninita		, inp	AAAGCAGGCTTAATGGAGGA	AGCTGGGTATCAGAAGTCGTTCA	CAGCAACTGGCCTCTCAGGCA	ATCTCATCTTCTTTTGCCTGA
					TTCGGAAGCCGCATTTA3'	ATGCTTCGCCT3'	AAAGAAGATGAGATTGCTATG	GAGGCCAGTTGCTGCTCCAT
							GCCAAGAGCAAT3'	GAATTCCACGCTG3'
20	nMT-GFP	Nnf1a ^{W41A, I44A, Y45A}	N terminal eGEP	Amn ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA	5'GCTGCGCAGATCTGCAAGC	5'CCAGAGCGGATTGCTCGT
20	pini en			,p	AAAGCAGGCTTAATGGAGGA	AGCTGGGTATCAGAAGTCGTTCA	GGCGGATGCCGCTGCCCAGGA	GCTCCTGGGCAGCGGCATCC
					TTCGGAAGCCGCATTTA3'	ATGCTTCGCCT3'	GCACGAGCAATCCGCTCTGG3'	GCCGCTTGCAGATCTGCGCA
								GC3'
21	pMT-GFP	Mis12	N terminal eGFP	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA		
21				P	AAAGCAGGCTTAATGGACTT	AGCTGGGTATTAATCAGTCTCCTT		
					CAATAGCCTAGCCTACG3'	CTTTATCTGC3'		
22	pMT-GFP	Mis12 ¹⁰³⁻¹⁸¹	N terminal eGFP	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA		
22	P			P	AAAGCAGGCTTAGAAGAGGA	AGCTGGGTATTAATCAGTCTCCTT		
					GGAGCAGAAGACAGCCA3'	CTTTATCTGC3'		
23	pMT-GFP	Mis12 ¹⁻¹³²	N terminal eGFP	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA		
25				P	AAAGCAGGCTTAGACTTCAAT	AGCTGGGTATTACTCGATCTTCA		
					AGCCTAGCCTACGATC3'	AATGCGCCAGC3'		
24	pMT-GFP	Mis12 ¹⁻⁸⁹	N terminal eGFP	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA		
27	1	-		1 ⁻	AAAGCAGGCTTAATGGACTT	AGCTGGGTACAGCACATGCGGT		
					CAATAGCCTAGCCTACG3'	GGAACGTGGAAC3'		
25	pMT-GFP	Mis12 ⁹⁰⁻¹⁸¹	N terminal eGFP	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA		
25				P	AAAGCAGGCTTACATCCGGA	AGCTGGGTATTAATCAGTCTCCTT		
	<u> </u>				GCACATGTTCGTCGAGA3'	CTTTATCTGC3'		
26	pMT-GFP	Mis12 L112D, L115D, L126D, L129D	N terminal eGFP	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA	L112D, L115D:	L112D, L115D:
20					AAAGCAGGCTTAATGGACTT	AGCTGGGTATTAATCAGTCTCCTT	5'AGAGGAGGAGCAGAAGACA	5'CCATGTTCTCTCTGTATTT
					CAATAGCCTAGCCTACG3'	CTTTATCTGC3'	GCCAGGGACGAGGAGGACAA	GGCCTTGTCCTCCTCGTCCCT
							GGCCAAATACAGAGAGAACAT	GGCTGTCTTCTGCTCCTCCTC
							GG3′	Т3'

							L126D, L129D:	L126D, L129D:
							5'CAAATACAGAGAGAACATG	5'CGGCGTACTTCTCCTCCTC
							GCCATGGACGCGCATGACAAG	GATCTTGTCATGCGCGTCCA
							ATCGAGGAGGAGAAGTACGC	TGGCCATGTTCTCTCTGTATT
							CG3'	TG3'
27	pMT-GFP	Mis12 L126D, L129D	N terminal eGFP	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA	5'CAAATACAGAGAGAACATG	5'CGGCGTACTTCTCCTCCTC
21				· ···Þ	AAAGCAGGCTTAATGGACTT	AGCTGGGTATTAATCAGTCTCCTT	GCCATGGACGCGCATGACAAG	GATCTTGTCATGCGCGTCCA
					CAATAGCCTAGCCTACG3'	CTTTATCTGC3'	ATCGAGGAGGAGAAGTACGC	TGGCCATGTTCTCTCTGTATT
							CG3'	TG3'
28	pMT-GFP	Mis12 L112D, L115D	N terminal eGFP	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA	5'AGAGGAGGAGCAGAAGACA	5'CCATGTTCTCTCTGTATTT
20	1	-		F	AAAGCAGGCTTAATGGACTT	AGCTGGGTATTAATCAGTCTCCTT	GCCAGGGACGAGGAGGACAA	GGCCTTGTCCTCCTCGTCCCT
					CAATAGCCTAGCCTACG3'	CTTTATCTGC3'	GGCCAAATACAGAGAGAACAT	GGCTGTCTTCTGCTCCTCCTC
							GG3'	Т3'
29	pMT-GFP	Mis12 F12A, F13A, F15A, T16A	N terminal eGFP	Amp ^R	5'GGGGACAAGTTTGTACAAA	5'GGGGACCACTTTGTACAAGAA	5'CAATAGCCTAGCCTACGATC	5'CGCGCTCTGCAGACAACT
25	•	-		r.	AAAGCAGGCTTAATGGACTT	AGCTGGGTATTAATCAGTCTCCTT	AGAAGGCCGCCAATGCCGCCG	GTGCCGCGGCGGCATTGGC
					CAATAGCCTAGCCTACG3'	CTTTATCTGC3'	CGGCACAGTTGTCTGCAGAGC	GGCCTTCTGATCGTAGGCTA
							GCG3'	GGCTATTG3'

Duet Vectors

#	Vector	I	MCSI		MCSII		Selectable marker	Forward primer	Reverse primer	Forward primer	Reverse primer	Mutagenesis primer -	Mutagenesis primer -
		cDNA	Enzymes used for cloning	His tag	cDNA	Enzymes used for cloning	(for propagation in <i>E.coli</i>)	MCSI (used for cloning)	MCSI (used for cloning)	MCSII (used for cloning)	MCSII (used for cloning)	forward	reverse
1	pET	Mis12	BamH1, Asc1	+			Amp ^R	5'CAGGATCCTATG GACTTCAATAGCCT A3'	5'TGGCGCGCCCTA TTAATCAGTCTCCT TCTT3'				
2	pET	Nsl1	EcoR1, Asc1	+			Amp ^R	5'CGAATTCGATGG AGCCAGCCGAAAG T3'	5'TGGCGCGCCTTA TCACCGTTGGTTGG CCAT3'				
3	pET	Mis12	BamH1, Asc1	+	Nsl1	Bgl2, Kpn1	Amp ^R	5'CAGGATCCTATG GACTTCAATAGCCT A3'	5'TGGCGCGCCCTA TTAATCAGTCTCCT TCTT3'	5'GAAGATCTCATG GAGCCAGCCGAAA GT3'	5'GTGGTACCTTAT CACCGTTGGTTGG CCAT3'		
4	pET			-	Nsl1	Bgl2, Kpn1	Amp ^R			5'GAAGATCTCATG GAGCCAGCCGAAA GT3'	5'GTGGTACCTTAT CACCGTTGGTTGG CCAT3'		
5	pCOLA	Nnf1a	BamH1, Asc1	+			Kan ^R	5'CGGGATCCTATG GAGGATTCGGAAG CC3'	5'AGGCGCGCCTCA GAAGTCGTTCAAT GC3'				
6	pCOLA	Nnf1a	BamH1, Asc1	+	Mis12	Nde1, Asis1	Kan ^R	5'CGGGATCCTATG GAGGATTCGGAAG CC3'	5'AGGCGCGCCTCA GAAGTCGTTCAAT GC3'	5'GTGACACATATG ATGGACTTCAATAG CCTA3'	5'ATACGCGCGAT CGCTCATTAATCA GTCTCCTTCTTTAT 3'		
7	pCOLA	Nnf1a	Nco1, BamH1	-	Mis12	Nde1, Asis1	Kan ^R	5'CCTTCCATGGTT ATGGAGGATTCGG AAGCC3'	5'CGGGATCCTTAT CAGAAGTCGTTCA ATGC3'	5'GTGACACATATG ATGGACTTCAATAG CCTA3'	5'ATACGCGCGAT CGCTCATTAATCA		

											GTCTCCTTCTTTAT 3'		
8	pACYC	CenpC ¹⁻⁹⁴	BamH1, Asc1	+			Cm ^R	5'GTGACAGGATCC TTCGAAGCCCCAG AACAACGAC3'	5'ATACGCGGCGCG CCTCATTAGACTTT CTCGGTGGCGGCA CTGTTTTT3'				
9	рАСҮС	CenpC ¹⁻⁹⁴	Nco1, Asc1	-			Cm ^R	5'GTGACACCATGG GCATGTCGAAGCC CCAGAACAAC3'	5'ATACGCGGCGCG CCTCATTAGACTTT CTCGGTGGCGGCA CTGTTTTT3'				
10	pACYC	CenpC ^{1-94 F26A,F29A}	BamH1, Asc1	+			Cm ^R	5'GTGACAGGATCC TTCGAAGCCCCAG AACAACGAC3'	5'ATACGCGGCGCG CCTCATTAGACTTT CTCGGTGGCGGCA CTGTTTTT3'			5'CCAGCCAGTGA AGGACAAGGAGC GCGCCGCCGCCG CCATGATGCGCA AGCTTGCCGAAA ATA3'	5'TATTTTCGGCAA GCTTGCGCATCAT GGCGGCGGCGGC GCGCTCCTTGTCC TTCACTGGCTGG3 '
11	pCOLA	Nnf1a	BamH1, Asc1	+	Mis12 ^{F12A, F13A, F15A, T16A}	Nde1, Asis1	Kan ^R	5'CGGGATCCTATG GAGGATTCGGAAG CC3'	5'AGGCGCGCCTCA GAAGTCGTTCAAT GC3'	5'GTGACACATATG ATGGACTTCAATAG CCTA3'	5'ATACGCGCGAT CGCTCATTAATCA GTCTCCTTCTTTAT 3'	5'CAATAGCCTAG CCTACGATCAGAA GGCCGCCAATGC CGCCGCGGCACA GTTGTCTGCAGA GCGCG3'	5'CGCGCTCTGCA GACAACTGTGCC GCGGCGGCATTG GCGGCCTTCTGAT CGTAGGCTAGGC
12	pCOLA	Nnf1a ^{W41A, 144A,} Y45A	BamH1, Asc1	+	Mis12	Nde1, Asis1	Kan ^R	5'CGGGATCCTATG GAGGATTCGGAAG CC3'	5'AGGCGCGCCTCA GAAGTCGTTCAAT GC3'	5'GTGACACATATG ATGGACTTCAATAG CCTA3'	5'ATACGCGCGAT CGCTCATTAATCA GTCTCCTTCTTTAT 3'	5'GCTGCGCAGAT CTGCAAGCGGCG GATGCCGCTGCCC AGGAGCACGAGC AATCCGCTCTGG3 ,	5'CCAGAGCGGAT TGCTCGTGCTCCT GGGCAGCGGCAT CCGCCGCTTGCAG ATCTGCGCAGC3'
13	pCOLA	Nnf1a ¹²²⁻¹⁹⁶	BamH1, Asc1	+	Mis12	Nde1, Asis1	Kan ^R	5'GTGACAGGATCC TCGCATGCGATTTT TGGACTTCAGCGT G3'	5'ATACGCGGCGCG CCTCATTAGAAGTC GTTCAATGCTTCGC CTAGT3'	5'GTGACACATATG ATGGACTTCAATAG CCTA3'	5'ATACGCGCGAT CGCTCATTAATCA GTCTCCTTCTTTAT 3'		
14	pCOLA	Nnf1a ¹²²⁻¹⁹⁶	BamH1, Asc1	+	Mis12 ¹⁰⁴⁻¹⁸¹	Nde1, Asis1	Kan ^R	5'GTGACAGGATCC TCGCATGCGATTTT TGGACTTCAGCGT G3'	5'ATACGCGGCGCG CCTCATTAGAAGTC GTTCAATGCTTCGC CTAGT3'	5'GTGACACATATG ATGGAAGAGGAGG AGCAGAAGACAGC C3'	5'ATACGCGCGAT CGCTCATTAATCA GTCTCCTTCTTTAT 3'		
15	pCOLA	Nnf1a	BamH1, Asc1	+	Mis12 ¹⁰⁴⁻¹⁸¹	Nde1, Asis1	Kan ^R	5'CGGGATCCTATG GAGGATTCGGAAG CC3'	5'AGGCGCGCCTCA GAAGTCGTTCAAT GC3'	5'GTGACACATATG ATGGAAGAGGAGG AGCAGAAGACAGC C3'	5'ATACGCGCGAT CGCTCATTAATCA GTCTCCTTCTTTAT 3'		

Supplementary Table S3.

List of vectors used in this study with sequences of primers used for cloning and mutagenesis.

Supplementary References

51. Mason JM, Arndt KM 2004 Coiled coil domains: stability, specificity, and biological implications. Chembiochem 5: 170–6. doi:10.1002/cbic.200300781

Supplementary Figure S1

Mis12

Nnf1a

D

A

Complex	Theoretical mass of monomeric complex (kDa)	Theoretical mass of dimeric complex (kDa)	Mass calculated by MALS (kDa)
6xHis::Nnf1a+Mis12	45.378	90.75	88.79
6xHis::Nnf1a+Mis12 + CENP-C ¹⁻⁹⁴	56.367	112.73	106.6
6xHis:: CENP-C ¹⁻⁹⁴ + Nnf1a + Mis12	56.525	113.05	103.7

