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S1. Details of MCMC algorithms.

S1.1. Posterior Computation. Let Yi = (yi1, . . . ,yiTi), Y = (Y1, . . . ,Yn),
and θ = {b,µ,Λ,Σε}. Given the approximation in (3.4), we have

Pk(Y,X(k)|θ) = P (Y|µ,Λ,Σε,X
(0))Pk(X

(k)|b)

=
n∏
i=1

{ Ti∏
j=1

P (yij |xij ,µ,Λ,Σε)

T
(k)
i −1∏
j=0

Pk(x
(k)
i,j+1|x

(k)
ij ,θxi)

}
,

where

(S1.1) P (yij |xij ,µ,Λ,Σε) = φp(µ + Λxij ,Σε).

Let yijr be the rth element of yij , ỹijr = yijr − µr, ỹir = (ỹi1r, . . . , ỹiTir)
T ,

ỹr = (ỹT1r, . . . , ỹ
T
nr)

T , and y∗ijr = yijr − ΛT
r xij , for 1 ≤ j ≤ Ti, 1 ≤ i ≤ n.

The Gibbs sampler cycles through the following steps:

1. Sample µr from N(µ∗r , σ
2
µr), where µ∗r = σ2

µr(
∑n
i=1

∑Ti
j=1 y

∗
ijr/σ

2
εr +

µr0/σ
2
µ0) and σ2

µr = 1/(
∑n
i=1 Ti/σ

2
εr + 1/σ2

µ0);
2. Sample σ2

εr from IG(a1r+
∑n
i=1 Ti/2, a

∗
2r) and then Λr fromN(Λ∗r , σ

2
εrΣ

∗
Λr),

where a∗2r = a2r + (ỹTr ỹr − Λ∗Tr Σ∗−1
Λr Λ∗r + ΛT

0rΣ
−1
ΛrΛ

T
0r)/2, in which

Σ∗Λr = (X(0)X(0)T + Σ−1
Λr )−1 and Λ∗r = Σ∗Λr( Σ−1

ΛrΛ0r + X(0)ỹr);
3. Sample b from Pk(b|X(k)) ∝ Pk(X

(k)|b)P (b). More details are given
in Supplement S1.5.

4. Sample X(k) from Pk(X
(k)|Y,θ).

Samples are kept for posterior estimation and inference after the convergence
of Gibbs sampler.
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S1.2. Multiresolution (MR) Algorithm. Step 4 in the Gibbs sampler may
be inefficient when k is large. We develop an efficient multiresolution MCMC
algorithm (Kou et al., 2012) to address such challenging issue, which consists
of a global cross-resolution sampler and a Gibbs sampler that use two local
samplers for Step 4: (i) a block updating scheme with k̃+ 2-step regularized
Brownian bridge sampler (RBBS), and (ii) a Gibbs sampler that updates

x
(k)
ij sequentially with 1-step RBBS. The MR algorithm is implemented as

follows.

1. Construct R resolutions k1 < k2 < . . . < kR to be sequentially sampled
from k1 to kR. The sequence of resolutions ranges from the lowest (k1)
to the highest (kR) resolution and the differences between successive
resolutions can follow any appropriately chosen scheme thought to help
capture the global and local dynamics of the system. For instance, we
may set k∗r = 2kr and kr = kr−1+1. In this way, X(kr) is constructed by

augmenting X(kr−1) with xi(t) at the mid point between every t
(kr−1)
i,j+1

and t
(kr−1)
ij for all i and j. Let X(kr)\(kr−1) be xi(t) at the imputed mid

points for all subjects, and Pkr be the posterior distribution at the
kr−th resolution for r = 1, . . . , R.

2. Let r = 1. The kr missing data points are imputed between two
observed time points in the Euler-Maruyama approximation. Monte
Carlo samples from the posterior distribution Pkr(θ,X(kr)|Y) are it-
eratively generated following the Gibbs sampler in Section S1.1. Two
samplers described in Section 4.1.1 are used randomly with equal prob-
ability in Step 4 of the Gibbs sampler. After a sufficient burn-in pe-
riod, an empirical posterior distribution is gathered as samples from
Pkr(θ,X(kr)|Y).

3. Proceed to the next higher resolution (i.e., let r = r + 1). Monte
carlo samples from Pkr(θ,X(kr)|Y) are generated by the Gibbs sampler
similar to Step 2 and the cross-resolution sampler. In each iteration,
a random number, α1, is generated from the uniform distribution on
[0, 1] to select the samplers:

a. if α1 < pα1, obtain samples from Pkr with the Gibbs sampler
(pα1 ∈ [0, 1] controls the proportion of the Gibbs sampler);

b. else, sample Pkr with the cross-resolution global sampler in two
steps. First, we sample the empirical samples θ and X(kr−1) from
Pkr−1(θ,X(kr−1)|Y) uniformly. Then, X(kr)\(kr−1) is obtained by

generating xi(t) at (t
(kr−1)
i,j+1 + t

(kr−1)
ij )/2 with the 1-step RBBS,

leading to a complete new X(kr). The new sample of (θ,X(kr)) is
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Fig S1: Graphical illustrations of (a) the cross-resolution sampler, (b) the
k̃-step RBBS and (c) the k̃ + 2 step RBBS, respectively.

then accepted with a Metropolis-Hasting (MH)–type probability.

Iterate until a desired number of samples after burn-in. The retained
samples form the posterior samples from Pkr(θ,X(kr)|Y).

4. If r < R, return to step 3, otherwise exit the algorithm.

Block updating schemes (Durham and Gallant, 2002; Lindström, 2012)

update highly correlated variables (in our case, X
(kr)
is = (x

(kr)
i,sk∗ , . . . ,x

(kr)
i,(s+1)k∗))

jointly to increase sampling efficiency. However, they are still local updating

algorithms because X
(kr)
is depends on X

(kr)
i,s−1 and X

(kr)
i,s+1. Their performances

become worse for X
(kr)
is strongly correlated with adjacent blocks, which may

exist at small time intervals in irregularly spaced longitudinal data. Global
updating samplers, which sample parameters and the stochastic processes
simultaneously, may be used to further improve the MCMC performance.
However, such samplers are often hard to construct due to the lack of ef-
ficient proposal distributions. One novel exception is the cross-resolution
sampler in the MR algorithm.

S1.3. Cross-resolution Sampler. Cross-resolution sampler is a global sam-
pler that updates all parameters and latent variables (X(kr),θ) jointly. It is
essentially an independent MH sampler and does not depend the current
state of X(kr) and θ. The target distribution is the posterior distribution
in the krth resolution Pkr(X(kr),θ|Y). We break down X(kr) into X(kr−1)

and X(kr)\(kr−1). The proposal sample (X(kr−1)∗,θ∗) is generated from the
empirical distribution of Pkr−1(X(kr−1),θ|Y). Let µ∗, Λ∗, Σε

∗ and b∗ be the
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elements in θ∗, θxi
∗ = g(wi,b

∗). X(kr)\(kr−1)∗ is generated from

q∗kr(X(kr)\(kr−1)|X(kr−1)∗,b∗) =
n∏
i=1

T
(kr−1)

i∏
j=1

q1(x
(kr)
i,2j−1|x

(kr)∗
i,2j ,x

(kr)∗
i,2j−2,θxi

∗),

where q1(x
(kr)
i,2j−1|x

(kr)∗
i,2j ,x

(kr)∗
i,2j−2,θ

∗) is the proposal density of 1-step RBBS in
equation (S1.4). The Metropolis-Hasting (MH)–type acceptance probability
is:

min

[
1,
Pkr(X(kr)∗,θ∗|Y)

Pkr(X(kr),θ|Y)

q∗kr(X(kr)\(kr−1)|X(kr−1),b)Pkr−1(X(kr−1),θ|Y)

q∗kr(X(kr)\(kr−1)∗|X(kr−1)∗,b∗)Pkr−1(X(kr−1)∗,θ∗|Y)

]
.

Let X(0)∗ be the submatrix of X(kr)∗ at observed time points. X(0)∗ is in-
cluded in X(k1)∗, and hence all X(kr)∗ for r = 1, . . . , R. As a result, in the
cross-resolution sampler, X(0)∗ is always generated from Pkr−1(X(kr−1),θ|Y)

and is not generated from the q∗kr(X(kr)\(kr−1)|X(kr−1)∗,b∗). Because

Pkr(X(kr),θ|Y) ∝ P (Y|µ,Λ,Σε,X
(0))Pkr(X(kr)|b)P (θ),

Pkr−1(X(kr−1),θ|Y) ∝ P (Y|µ,Λ,Σε,X
(0))Pkr−1(X(kr−1)|b)P (θ),

Pkr(X(kr)∗,θ∗|Y) ∝ P (Y|µ∗,Λ∗,Σε
∗,X(0)∗)Pkr(X(kr)∗|b∗)P (θ∗),

Pkr−1(X(kr−1)∗,θ∗|Y) ∝ P (Y|µ∗,Λ∗,Σε
∗,X(0)∗)Pkr−1(X(kr−1)∗|b∗)P (θ∗),

P (Y|µ,Λ,Σε,X
(0)), P (Y|µ∗,Λ∗,Σε

∗,X(0)∗), P (θ) and P (θ∗) appear in
both the numerator and the denominator, and are cancelled out in the ac-
ceptance probability:

min

[
1,
Pkr(X(kr)∗ |b∗)
Pkr(X(kr)|b)

q∗kr(X(kr)\(kr−1)|X(kr−1),b)Pkr−1(X(kr−1)|b)

q∗kr(X(kr)\(kr−1)∗|X(kr−1)∗,b∗)Pkr−1(X(kr−1)∗|b∗)

]
.

The cross-resolution sampler is essentially a MH sampler for the parameters
θ and latent processes at all time points X(kr) (including the observation
times X(0)).

S1.4. Local Updating Algorithms. The superscripts (k) of x’s and t’s are
suppressed for notational simplicity since the samplers are applied to differ-
ent resolutions in the same manner. We use two local samplers for Step 4
of the Gibbs sampler in order to generate X: (i) a 1-step RBBS that sam-
ples xij at each time point sequentially; and (ii) a block updating scheme
based on a (k̃ + 2)-step RBBS, which updates the latent variable scores
in Xis = (xi,sk∗ , . . . ,xi,(s+1)k∗) jointly for s = 0, . . . , Ti − 1. Analogues of
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samplers (i) and (ii) were proposed to sample univariate and multivariate
nonlinear SDEs for a single subject, respectively, in Kou et al. (2012) and
Lindström (2012). We will extend these samplers to handle latent SDEs for
population data.

S1.4.1. 1-step RBBS.. To implement the 1-step RBBS, different pro-
posal distributions for the full conditional distributions of xij have to be
used at the observed versus unobserved (i.e., imputed) time points. The full
conditional distributions of the xij at the imputed (i.e., (s−1)k∗ < j < sk∗)
and observed time points (i.e., j = sk∗) for s = 1, . . . , Ti are given by

P (xij |Xi,−j ,θxi) ∝ P (xi,j+1|xij ,θxi)P (xij |xi,j−1,θxi),(S1.2)

P (xij |Xi,−j ,θ,Y) ∝ P (yis|xij ,µ,Λ,Σε)P (xij |Xi,−j ,θxi),(S1.3)

where the conditional distributions in the right-hand side are defined in
(3.4) and (S1.1), and Xi,−j denotes the submatrix of X which includes all
other x’s except for xij . As xij is involved in the nonlinear drift function
in P (xi,j+1|xij ,θxi), (S1.2) and (S1.3) are nonstandard distributions of xij .
We use the 1-step RBBS with the following proposal distributions for (S1.2)
and (S1.3), respectively:

q1(xij |xi,j+1,xi,j−1,θxi)

∝ P ∗(xi,j+1|xij ,xi,j−1,θxi)P (xij |xi,j−1,θxi),(S1.4)

q2(xij |xi,j+1,xi,j−1,yis,θ)

∝ P (yis|xij ,µ,Λ,Σε)q1(xij |xi,j+1,xi,j−1,θxi),(S1.5)

where P ∗(xi,j+1|xij ,xi,j−1,θxi) is given by

φq

(
xij + f(xi,j−1,θxi)∆tij , Σ(xi,j−1,θxi)

[
(ti,j+1 − tij) + α

(ti,j+1 − tij)2

(tij − ti,j−1)

])
,

in which α is a fixed scalar in [0.01, 1]. Moreover, α = 0.2 is used through
out the paper, which is in the range suggested by Lindström (2012). The
α(ti,j+1 − tij)2/(tij − ti,j−1) was proposed by Lindström (2012) to correct
the approximation bias induced by P ∗, which was shown to be critical for
capturing the nonlinear drifts of processes observed at sparse time points
when the model is dominated by the nonlinear drift functions. Otherwise,
the linear bridge (e.g., Durham and Gallant, 2002) may be used, which is
equivalent to setting α = 0. The densities in (S1.4) and (S1.5) are multivari-
ate Gaussian densities of xij . Denote Ctij = ∆t∗ij∆ti,j−1/(∆t

∗
ij + ∆ti,j−1),

and ∆t∗ij = {(ti,j+1 − tij) + α(ti,j+1 − tij)2/(tij − ti,j−1)}. q1(·|·) in (S1.4)
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is a q-dimensional multivariate Gaussian density with mean and covariance
matrix

Σ2xij = CtijΣ(xi,j−1,θxi),

µ2xij
= Ctij

(
xi,j+1 −∆tijf(xi,j−1,θxi)

∆t∗ij
+

xi,j−1 + ∆ti,j−1f(xi,j−1,θxi)

∆ti,j−1

)
.

q2(·|·) in (S1.5) is a q-dimensional multivariate Gaussian density with mean
and covariance matrix

Σ∗2xij
=

[
Σ−1

2xij
+ ΛTΣε

−1Λ

]−1

, and(S1.6)

µ∗2xij
= Σ∗2xij

[
Σ−1

2xij
µ2xij

+ ΛTΣε
−1(yis − µ)

]
.

The MH acceptance probability for a proposal sample x∗ij generated from
q1(·|·) and q2(·|·) is given by

min

{
1,
P (xi,j+1|x∗ij ,θxi)P ∗(xi,j+1|xij ,xi,j−1,θxi)

P (xi,j+1|xij ,θxi)P ∗(xi,j+1|x∗ij ,xi,j−1,θxi)

}
.

The acceptance rate is close to 1 if ∆tij is small because f(xi,j−1,θxi) and
Σ(xi,j−1,θxi) are close to f(xij ,θxi) and Σ(xij ,θxi), respectively.

S1.4.2. (k̃+2)-step RBBS. Let k̃ = k∗−1. As k gets larger, sampling each
xij sequentially becomes progressively less efficient because of the strong cor-
relations among the xij ’s. When xi,sk∗ and xi,(s+1)k∗ are observed, Lindström

(2012) proposed to sample X̃is = (xi,sk∗+1, . . . ,xi,(s+1)k∗−1) as a whole block
for s = 0, . . . , Ti− 1. Figure S1b illustrates the procedure of this block sam-
pler. Squares represent observed time points and circles stand for imputed
time points. The circles are generated sequentially in k steps. Grey circles
represent the time point, where the processes are being generated, black
circles represent time points being conditional on at the current stage, and
white circles are time points not considered in this stage. Essentially, this
sampler utilizes the 1-step RBBS k̃ times. The proposal distribution is

qL(X̃is|xi,sk∗ ,xi,(s+1)k∗ ,θxi) =
sk∗+k∏
j=sk∗+1

q1(xij |xi,(s+1)k∗ ,xi,j−1,θxi),(S1.7)

which is a sequential implementation of k̃-step RBBS for xi,sk∗+1, . . . ,xi,sk∗+k.
To account that xi,sk∗ and xi,(s+1)k∗ are unobserved, we propose a new
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(k̃ + 2)-step RBBS for generating Xis = (xi,sk∗ , . . . ,xi,(s+1)k∗) from

qB(Xis|xi,sk∗−1,xi,(s+1)k∗+1,yis,yi,s+1,θ)(S1.8)

=q2(xi,(s+1)k∗ |xi,sk∗−1,xi,(s+1)k∗+1,yi,s+1,θ)×
q2(xi,sk∗ |xi,(s+1)k∗ ,xi,sk∗−1,yis,θ)qL(X̃is|xi,sk∗ ,xi,(s+1)k∗ ,θxi).

More specifically, elements of the proposal sample X∗is = (x∗i,sk∗ , . . . ,x
∗
i,(s+1)k∗)

are sequentially generated as follows:

• generate x∗i,(s+1)k∗ from q2(xi,(s+1)k∗ |xi,sk∗−1,xi,(s+1)k∗+1,yi,s+1,θ);

• generate x∗i,sk∗ from q2(xi,sk∗ |x∗i,(s+1)k∗ ,xi,sk∗−1,yis,θ);

• generate xij from q1(xij |x∗i,(s+1)k∗ ,x
∗
i,j−1,θxi), j = sk∗+1, . . . , sk∗+k.

The target distribution

P (X∗is|xi,(s+1)k∗+1,xi,sk∗−1,yis,yi,s+1,θ)

∝ P (yis,yi,s+1,X
∗
is|xi,(s+1)k∗+1,xi,sk∗−1,θ)

= P (yis|x∗i,sk∗ ,µ,Λ,Σε)P (yi,s+1|x∗i,(s+1)k∗ ,µ,Λ,Σε)×
P (X∗is|xi,(s+1)k∗+1,xi,sk∗−1,θxi),

where P (X∗is|xi,(s+1)k∗+1,xi,sk∗−1,θxi) is

P (x∗i,sk∗ |xi,sk∗−1,θxi)

{ (s+1)k∗−1∏
j=sk∗

P (x∗i,j+1|x∗ij ,θxi)
}
P (xi,(s+1)k∗+1|x∗i,(s+1)k∗ ,θxi).

The proposal distribution qB(X∗is|xi,sk∗−1,xi,(s+1)k∗+1,yis,yi,s+1,θ) is

q2(x∗i,(s+1)k∗ |xi,sk∗−1,xi,(s+1)k∗+1,yi,s+1,θ)×
q2(x∗i,sk∗ |x∗i,(s+1)k∗ ,xi,sk∗−1,yis,θ)×

qL(X̃∗is|x∗i,sk∗ ,x∗i,(s+1)k∗ ,θxi).

Let q−B(X∗is|xi,sk∗−1,xi,(s+1)k∗+1,θxi) be

q1(x∗i,(s+1)k∗ |xi,sk∗−1,xi,(s+1)k∗+1,θxi)q1(x∗i,sk∗ |x∗i,(s+1)k∗ ,xi,sk∗−1,θxi)

qL(X̃∗is|x∗i,sk∗ ,x∗i,(s+1)k∗ ,θxi).

The MH acceptance probability for X∗is is given by

min

{
1,
P (X∗is|xi,(s+1)k∗+1,xi,sk∗−1,θxi)q

−
B(Xis|xi,sk∗−1,xi,(s+1)k∗+1,θxi)

P (Xis|xi,(s+1)k∗+1,xi,sk∗−1,θxi)q
−
B(X∗is|xi,sk∗−1,xi,(s+1)k∗+1,θxi)

}
.
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P (yis|xi,sk∗ ,µ,Λ,Σε), P (yi,s+1|xi,(s+1)k∗ ,µ,Λ,Σε), P (yis|x∗i,sk∗ ,µ,Λ,Σε)
and P (yi,s+1|x∗i,(s+1)k∗ ,µ, Λ,Σε) are cancelled out because they appear in
both the numerator and the denominator.

Different orders of x in q2(·|·) define different conditional distributions.
The order in q2(x∗i,(s+1)k∗ |xi,sk∗−1,xi,(s+1)k∗+1,yi,s+1,θ) is time reversed be-

cause P ∗ in (S1.5) is used to account for the bias caused by the larger time
interval between xi,sk∗−1 and xi,(s+1)k∗ .

As shown in (Lindström, 2012), the tuning parameter is the size of the
squared truncation bias compared to the conditional variance under Euler-
Maruyama approximation, which is hard to estimate because it depends on
the state of the (latent) processes and the unknown parameters. To empir-
ically select a tuning parameter, we run a few short MCMC chains with
different tuning parameters and select the one that produces the most effi-
cient MCMC samples.

Golightly and Wilkinson (2008) also developed an alternative block up-
dating algorithm for sampling overlapping blocks (xi,sk∗+1, . . . ,xi,(s+2)k∗−1)

with 2k̃+ 1 time points. The model they considered consists of multivariate
stochastic processes with partial and discrete observations. More specifically,
certain elements in xij are observed directly and others are observed with er-
rors. The algorithm is efficient in this setting because it is a global updating
algorithm. Compared to the (k̃+2)−th block in (S1.8), one advantage of the
(2k̃ + 1)−th block is that information from xi,sk∗ , xi,(s+1)k∗ , and xi,(s+2)k∗

that are at least partially observed is used. In contrast, only xi,sk∗ , xi,(s+1)k∗

are used by the k̃ + 2 step RBBS. In our model, xij is fully latent. The full
conditional distribution of the (2k̃ + 1)−th block depends on xi,sk∗ , yi,s+1

and xi,(s+2)k∗ . In comparison, that of the (k̃ + 2)−th block is conditional
on xi,sk∗−1, yis, yi,s+1 and xi,(s+1)k∗+1. The additional information from yis
may be helpful to increase the convergence of the MCMC algorithm. We use
the (k̃ + 2) block updating algorithm in our study.

S1.5. Sampling Parameters in SDEs. In the dual OU model, we set b =
(βT1 , . . . ,β

T
6 , ψ)T . The full conditional distribution of ψ is an inverse Gamma

distribution. The derivation and sampling are standard. The βjs are sampled
with Metropolis-Hastings algorithm from their full conditional distributions
proportional to Pk(X

(k)|b)p(βj). The proposal distributions are constructed
with the hit-and-run Metropolis sampler (Chen and Schmeiser, 1993), which
is convenient for parameters in truncated spaces (e.g., β1).

S2. Additional Analysis of Case Study. To compare the MR algo-
rithm with local algorithms, we reanalyzed the same dataset using only Steps
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1 and 2 in the MR algorithm with the 4th resolution, which is essentially a
Gibbs sampler with only one resolution (termed “Local algorithm 1+2”).
To further investigate the efficiency of the block updating scheme based on
(k̃ + 2)-step RBBS over the 1-step RBBS, we applied the Gibbs sampler,
Step 4 of which only consists of 1-step RBBS (termed “Local algorithm
1”). The MR algorithm improves the efficiency of the MCMC algorithm by
dramatically reducing the autocorrelations of the MCMC samples of most
parameters. Figure S2 shows the autocorrelation plots of MCMC samples
of β11, β61, and ψ, and trajectories of MCMC samples of ψ generated by
the local algorithm 1, 1+2, and the MR algorithm, respectively. The local
algorithms produce inaccurate estimates and SEs of some coefficients based
on inefficient MCMC samples. For example, the Est and SE of β61 based
on the local algorithm 1 are 1.278 and 0.577, leading to invalid inference
results.
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Fig S2: Panels (a)-(c) are the autocorrelations of the MCMC samples of
β11, β62 and ψ. Red triangles, black circles, and blue crosses are the au-
tocorrelations of MCMC samples by the local algorithms 1, 1+2, and the
MR algorithm, respectively. Panels (d)-(f) are the trajectories of MCMC
samples of ψ produced by the local sampler 1, 1+2, and the MR algorith,
respectively.
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Fig S3: Observed and predicted trajectories of 3 randomly selected subjects
in the case study. Each row is for a subject. From left to right are the tra-
jectories of SBP, DBP, HR, respectively. Black solid curves are the observed
trajectories. Curves with red crosses are the estimated posterior median.
Curves with blue circles are the 95% pointwise credible intervals.
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