
Supplementary Figure 1: Systematic angle-resolved photoemission data. a, First-

principles calculated bulk Fermi surface in kx, ky, kz space. b,c, Calculated and ARPES measured

bulk Fermi surface in kx, kz space on the ky = 0 plane, showing the constant energy contours that

arise from the trivial hole-like bands. d,e, ARPES measured and calculated bulk Fermi surface in

kx, ky space at the kz value that corresponds to the W2 Weyl nodes. f, ARPES E− k// dispersion

map revealing the two nearby W2 Weyl cones. The direction of the dispersion cut is shown by the

dotted line in panel (e). g-i, Same as panels (d-f) but for the W1 Weyl cones.
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Supplementary Figure 2: Magneto-Transport and quantum oscillation data. a, Hall

resistivity versus the magnetic field in the temperature range from 2 to 300 K. Strong SdH oscilla-

tions were observed at 2 K. Inset: the high temperature Hall resistivity. b, Mobilities and carrier

concentrations of the electrons and holes, clearly showing the coexistence of Weyl electrons and

trivial holes in our samples. c, The oscillatory parts of σxx at various temperatures, showing the π

Berry’s phase of the Weyl electron pocket. d, The SdH fan diagram for four different samples. All

of the four intercepts are located around zero, suggesting the π Berry’s phase of the Weyl electron

pocket e, Magnetic field dependence of resistivity at representative Φ angles between 0◦ - 90◦ at

2K for sample a1, after heating the sample. The MR decreases rapidly when the magnetic field

is tilted from c to the direction of the current i. Inset: the frequency F versus Φ. The dashed

curve is (1/cos Φ)·F0. f, Schematics of the experimentally determined band diagram indicating

the positions of the two different types of Weyl nodes, W1 and W2, as well as the trivial hole-like

band, relative to the experimentally determined Fermi level of sample a1.
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Supplementary Figure 3: a, A schematic illustration of the current jetting effect [12]. b, Our

samples are carefully shaped to exclude the geometry/size effects.
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Supplementary Figure 4: a, Schematic band structure of a generic 3D metal without magnetic

field. b, Schematic band diagram in the quantum limit regime.
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Supplementary Figure 5: a, Density of states of the bulk band structure of TaAs. b, Average

of the square of the Berry curvature Ω1 over surfaces of equal energy in the bulk band structure of

TaAs. The results were obtained using an effective k · p Hamiltonian that was fitted to the DFT

band structure. While the density of states is featureless, the averaged Berry curvature is strongly

enhanced near the Weyl nodes W1 and W2. This proves that the Weyl cones really dominate the

contribution to the Berry curvature.
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Supplementary Figure 6: Bc as a function of temperature obtained from fitting of the temper-

ature dependent LMR data for sample a1 (Fig. 3a in the main text).
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DFT calculation ARPES Transport

−8 meV −5± 1.5 meV Sample a1: −1.5± 0.86 meV

Sample c2: 0.61 ± 0.18 meV

Sample a3: 3± 1.23 meV

Sample c4: 5.22 ± 0.58 meV

Sample a5: 32.41 ± 0.83 meV

Supplementary Table 1: Fermi energy (EF) with respect to the W2 Weyl node.
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ωτ LL index N

Sample a1 1.2 115

Sample c2 0.06 51

Sample a3 0.3 30

Sample c4 0.19 18

Supplementary Table 2: Band parameters for the trivial hole pockets. The ωτ and Lan-

dau level index N parameters of the trivial hole bands obtained from our transport measurements.

These parameters are determined at the magnetic field of 0.3 T, which is a representative field

value where the negative LMR takes place.
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Supplementary Note 1

In this section, we present systematic ARPES data to reveal the bulk electronic structure

of TaAs. Our ARPES data show that there are three pockets that cross the Fermi level,

namely, W1 Weyl cones, W2 Weyl cones and the trivial hole pockets. Supplementary Fig-

ure 1c shows the ARPES Fermi surface on the ky = 0 mirror plane. We observe ring-shaped

hole-like contours. These contours demonstrate the trivial hole pockets, consistent with the

calculations (Supplementary Figure 1c). In Supplementary Figure 1d, we show ARPES

measured kx, ky Fermi surface at the kz value that corresponds to the W2 Weyl nodes. We

observe that the Fermi surface consists of discrete points, which are the W2 Weyl nodes.

The energy dispersion measurement in Supplementary Figure 1f indeed reveals two cones,

which are the two nearby W2 Weyl cones. Similarly, Figs. 1g-i are data showing the W1

Weyl cones and Weyl nodes. We find that the energy of the W1 Weyl node is about 10-20

meV lower than that of the W2 Weyl node (Figs. 1f,i), in agreement with the calculation

(13 meV). More precisely determining their energy difference is limited by the experimental

energy resolution (> 40 meV). Because the k-space splitting of the W1 Weyl nodes is much

smaller than that of the W2, resolving the two nearby W1 Weyl cones is beyond the ex-

perimental resolution. We emphasize that our ARPES data are important in the following

aspects. First, our ARPES data experimentally prove the existence of Weyl fermions in

our TaAs samples. Second, they experimentally reveal that there are three kinds of pock-

ets crossing the Fermi level, W1 Weyl cones, W2 Weyl cones and the trivial hole bands.

Third, they experimentally determine the Fermi energy, which is quite close to the W2 Weyl

nodes. Thus W1 Weyl cones contribute electron pockets and the trivial bands contribute

hole pockets.The W2 Weyl cones have small carrier density, and can be either electron-like

or hole-like depending on the specific position of the Fermi energy with respect to the W2

nodes. These observations are crucial for our transport measurements.

Supplementary Note 2

We carried out magneto-transport and quantum oscillation measurements to determine

the band parameters of the TaAs samples in our transport experiments. In Figure 2, we show

the magneto-transport data on sample a1 as a representative example. Same measurements
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were also performed on other samples presented in the main text in order to obtain their band

parameters. Figure 2a shows the Hall resistance ρyx of sample a1 at different temperatures,

clearly revealing a coexistence of the electron and hole carriers. This is consistent with the

ARPES and first principles results presented above. We obtain the carrier density n and

the mobility µ for the electron and hole carriers, shown in Supplementary Figure 2b.

We analyze the SdH quantum oscillation data at T = 2 K. We use the following expression

to analyze the SdH oscillation data, ρxx at T = 2 K, for a 3D system [5].

ρxx = ρ0[1 + A(B, T ) cos 2π(F/B + γ)] (Supplementary Equation 1)

A(B, T ) ∝ exp(−2π2kBTD/~ωc)
2π2kBT/~ωc

sinh(2π2kBT/~ωc)
, (Supplementary Equation 2)

Here, ρ0 is the non-oscillatory part of the resistivity, A(B, T ) is the amplitude of the SdH

oscillations, B is the magnetic field, γ is the Onsager phase, TD is the Dingle temperature, kB

is the Boltzmann’s constant, ωc is the cyclotron frequency, and F = ~

2πe
AF is the frequency of

the oscillations. AF is the extremal cross-sectional area of the Fermi surface (FS) associated

with the Landau level (LL) index N , e is the electron charge, and 2π~ is the Planck’s

constant. For sample a1, we obtain a Fermi surface area of AF = 7.07 × 10−4 Å
−2

and a

Fermi wave vector kF is
√

AF/π = 0.015 Å
−1
. We note that since the magnetic field is

parallel to the c crystallographic axis, the obtained Fermi surface area corresponds to the

2D cross-section of the 3D Fermi pocket that is perpendicular to the kz direction.

The Landau level index N is plotted as a function of the inverse of the magnetic field

strength (1/µ0H) in Supplementary Figure 2d, from which one can see that, for all four

samples, the linear interpolation of the curve intersects with the x near zero (γ = 0). This

suggests that the electron carriers arise from a linearly dispersive band with a non-trivial

Berry’s phase [5], consistent with the ARPES and first principles results that the electron

carriers mainly arise from the W1 Weyl cones.

In order to obtain the Fermi velocity, the energy position of the chemical potential, and

other important band parameters, we apply Supplementary Equation 2. We obtained a

cyclotron mass mcyc of 0.15me. We obtain the Fermi wave vector kF is
√

AF/π = 0.015 Å
−1
,

and the Fermi velocity vF is ~kF/mcyc = 1.16 × 105 m/s. Using a linear dispersion of

this electron pocket, we obtain the chemical potential (relative to the energy of the W1

10



Weyl node) to be EF = mcycv
2
F = 11.48 meV for sample a1. Note that different samples

have slightly different values for the chemical potential and other band parameters. This

variation helps us to study the systematic dependence of the negative LMR, which is crucial

for understanding its origin.

To further confirm that the observed electron carriers indeed arise from the W1 Weyl

cones, we study the anisotropy of the electron-like pocket by tilting the magnetic field

away from the c direction in sample a1. Our data (Supplementary Figure 2e) shows that

the Fermi surface area along the a axis is about 5 times larger that of along the c axis.

Therefore, the transport data show that the electron-like Fermi pocket is an ellipsoid that is

elongated along the c axis. We systematically check if the obtained band parameters from

transport are consistent with ARPES and calculation. We place the chemical potential at

11.48 meV above the Weyl nodes W1 in our first-principles calculations and try to compare

the calculated band parameters to those of obtained from transport. We have found an

excellent agreement between calculation and transport: (1) The calculated carrier density

of the electron pockets is 5.07× 1017 cm−3, which agrees with our experimentally measured

value in Supplementary Figure 2d. (2) The anisotropy of the Fermi surface area is found to

be 4.9, which is also in line with the experimentally determined value of 5.

Based on our systematic measurements, we obtain a band diagram presented in Supple-

mentary Figure 2f. The chemical potential lies ∼ 11.5 meV above W1. Therefore it is very

close to W2, consistent with the ARPES results shown above.

Supplementary Table 2 shows the ωτ (ω is the cyclotron frequency and τ is the transport

lifetime) and the Landau level index N parameters of the trivial hole bands determined

from our transport measurements. These parameters define the (semiclassical or quantum)

regime. Both ωτ and ν are a function of the external magnetic field. The values in Supple-

mentary Table 2 is obtained at the magnetic field of 0.3 T, which is a representative field

value where the negative LMR takes place. Specifically, ωτ is obtained by the following

relationship, ωτ = µH , where µ is the carrier mobility and H is the magnetic field. The

Landau level index N is obtained from the Onsager relation (Supplementary Equation 3).

SF (B) =
2πeB

~
(N + γ), (Supplementary Equation 3)

It can be seen that for the magnetic field of 0.3 T, none of the samples satisfy ωτ >> 1 and

Landau level index N = 0 (EF only crosses the lowest LL). Thus the hole bands are not in
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the quantum limit. This is reasonable because the negative LMR is observed at quite low

field (e.g. 0.3 T).

In order to extract the information of the carriers, the Hall conductivity tensor

σxy = ρyx/(ρ
2
xx + ρ2yx) was fitted by adopting a two-band model derived from the two-band

theory [2],

σxy = [nhµ
2
h

1

1 + (µhH)2
− neµ

2
e

1

1 + (µeH)2
]eH, (Supplementary Equation 4)

Where ne (nh) and µe (µh) denote the carrier concentrations and mobilities for the electrons

(holes), respectively. Since there are four free parameters in this formula, we applied two

constraints in the fitting process [3]. The first constraint is the zero field resistivity.The

second constraint we adopted is the Hall resistivity in the large B-field limit. In high field,

the Hall resistivity reads ρxy = 1/ec× 1/(ne − nh)×B, so we can find the value of ne − nh

by a linear fitting of the high field data. These two constraints are standard constraints in

transport works, as reviewed in Ref. [3]. Therefore, the total number of free parameters in

fits was be reduced to two.

Supplementary Note 3

In the Supplementary Table 1, we provide the Fermi energy of the TaAs samples deter-

mined by different approaches.

The “+” and “−” sign in the table means the EF being above or below the energy of

the W2 Weyl node, respectively.The DFT calculated Fermi level is the norminal Fermi level

directed obtained from the DFT calculation. The ARPES Fermi level was obtained by a

linear fitting of the low energy Weyl fermion dispersion data (e.g. Fig. 1a). The transport

Fermi level data was obtained from the SdH oscillation data. We note that the Fermi energy

of the sample a5 is quite different from the others because sample a5 was grown by a different

method where a different agent was used in the chemical vapor transport growth process.

The error bars in this table are the errors in the fitting process.

Supplementary Note 4

We provide a diagrammatical highlight of the logical sequence for the experiments.
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Step-0 Basic spirit: Magnetoresistance is a quite complicated phenomenon [6–19]. A

negative LMR by itself, although quite rare, is not a unique signature of the Weyl fermions

[6–19].

In all previous studies [20–25] reporting the chiral anomaly in Weyl and Dirac semimetals,

the authors started by assuming that the negative LMR arises from the chiral anomaly.

However, the key aspect that was missed is that it is entirely possible that these systematic

dependence can be also consistent with other origins of the negative LMR. Specifically, none

of the works have listed all possible origins for a negative LMR, and none of the works have

discussed how one can distinguish each of the other origins from the chiral anomaly.

This is what has been achieved in this paper. We have considered comprehensively the

possible origins for a negative LMR, and we have presented systematic data and analyses

that lead us to the unique conclusion of the chiral anomaly due to Weyl fermions. In the

process of doing that, we found that not only systematic LMR data (temperature, angular

and other dependences) are necessary, but also having comprehensive information about the

band structure at the Fermi level is crucial. Below we elaborate on the logical sequence of

our work.

Step-1 Negative LMR in magnetic element based materials: The origin that is

the easiest to exclude is the negative MR in magnetic materials, such as the giant magne-

toresistance and the colossal magnetoresistance [6–11]. These effects do not strongly depend

on the angle between the electrical ~E and the magnetic ~B fields and occur in both the trans-

verse MR and longitudinal MR. This is not consistent with our observations because our

TaAs sample is nonmagnetic and because the MR in our experiment is only negative in the

presence of parallel electrical ~E and magnetic ~B fields.

Step-2 Classical (extrinsic) geometry or size effects: A negative LMR can arise

from a number of classical (extrinsic) geometry or size effects. They have been explained

in detail in Ref. [12]. Essentially, these effects are caused by the inhomogeneous spatial

distribution of the current in the sample. For example, Supplementary Figure 3a shows a

schematic of a scenario where the current jetting effect can take place. Because the current

and voltage contacts are misaligned in a four-probe setting, the current is largely distorted

to be localized in the upper part of the sample when the current i is parallel to the magnetic

field H (as indicated by the dotted lines). This causes a decrease of the measured voltage,
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leading to a negative LMR [12]. Other geometry or size effects are quite similar. For

example, in polycrystalline samples, the inhomogeneity of the sample can also distort the

current leading to a negative LMR. Similarly, anisotropy of the sample can cause similar

effects.

In order to exclude the geometry and size effects, the samples were shaped into long,

thin bars (thickness < 100 µm) with four silver paste contacts fully crossing their width

(Supplementary Figure 3b). This precaution can effectively prevent the current from dis-

torting. Moreover, we measured many samples with different sizes (thickness). All samples

with different thickness exhibited comparable negative LMR. This is inconsistent with the

size or geometry effect, which is expected to depend strongly on the size and the shape of

the samples. Furthermore, we have shown that the observed negative LMR is completely

suppressed at temperatures above 50 K. By contrast, the negative LMR from geometry or

size effects were found to survive even at room temperatures [13]. We also note that we ob-

serve the negative LMR with current flowing both along the crystallographic a and c axes.

We note that TaAs is a tetragonal lattice. Hence the a and c axes represent the largest

anisotropy that the system can offer. The fact that the negative LMR is observed along

both a and c axes proves that it is irrelevant to the anisotropy of the system.

Step-3 Chiral Landau levels in the quantum limit: It has been theoretically pointed

out [14, 16] that a negative LMR can occur in a general 3D metal if the system is in the

quantum limit regime, meaning that (1) one has ωτ >> 1 (ω is the cyclotron frequency and τ

is the transport lifetime) and that (2) the chemical potential only crosses the lowest Landau

level. This is quite intuitive because in the ultra quantum limit, the system essentially has

a pair of 1D chiral fermions with the opposite chiralities that arise from the lowest Landau

level (Supplementary Figure 4b). Apparently, this construction [14, 16] does not depend on

the band structure details and can be realized in a generic 3D metal in the ultra quantum

limit.

In order to check whether our negative LMR is due to this mechanism, we have carefully

studied in which regime (semiclassical or quantum) our samples are located at the magnetic

fields corresponding to the negative LMR. We note that the negative LMR are observed in

low fields (e.g. 0.1 T ≤ B ≤ 0.5 T for sample a1). We have checked it quantitatively (see

Table 2). For all samples studied, the system is always in the semiclassical limit.
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We further emphasize the tricky nature of the LMR in the quantum (large B field) limit.

First, as mentioned above, Ref. [16] showed that it is possible for a negative LMR to occur in

a general 3D metal in the quantum limit. Second, Refs. [16, 17] showed that the sign of the

LMR in fact depends on the nature of the impurities in the quantum limit [16, 17]. In fact,

it is even theoretically shown that the Weyl cones that respect time-reversal symmetry can

contribute a positive (not a negative) LMR in the quantum limit if the field dependence of

the scattering time and Fermi velocity of the Landau bands is fully respected [17]. Therefore,

the sign of the LMR in the quantum regime seems to depend on the details of the impurities

and scattering mechanisms. It cannot provide strong evidence for the Weyl fermions or the

chiral anomaly.

Step-4 Berry curvature in the semiclassical limit: In the semiclassical limit, a

negative LMR can occur if the band structure has a nonzero Berry curvature at the Fermi

level [19]. The negative LMR due to Weyl fermions belongs to this case because Weyl nodes

serve as sources or drains of Berry curvature. However, it is also important to note that

theoretically any band with a nonzero Berry curvature will contribute a term in the equation

of motion that leads to a negative LMR [19]. This means that, even up to here, after we have

excluded many origins above, we can show that the observed LMR is due to the nonzero

Berry curvature of the band structure in the semiclassical limit. We cannot yet show that

it is uniquely due to the Weyl fermions, let alone the chiral anomaly.

Thus we further show two pieces of evidence to establish the connection between the

negative LMR and the Weyl fermions in TaAs. (1) We have studied the contribution of

Berry curvature from each bands carefully (see Supplementary Figure 5). We show that

in our TaAs system the Berry curvature almost entirely arises from the Weyl cones. The

contribution from the trivial hole like bands is negligible. (2) We have fitted the negative

LMR and found that the chiral coefficient CW has a 1
E2

F

dependence. Note that the 1
E2

F

dependence of the chiral coefficient CW is a result of the linear dispersion and the specific

Berry curvature distribution of the Weyl cones. In order words, if one started with a different

band (not Weyl) that has a different dispersion and a different distribution of the Berry

curvature, then the expression of the chiral coefficient would have been different and the

CW ∝ 1
E2

F

dependence would have been invalid. These data and analyses show that the

observed negative LMR is not due to the trivial hole bands. Instead, it arises from the Weyl
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fermions in TaAs.

We emphasize that this last step is crucial. One of the reasons that this can be achieved

in our study is that we have systematically mapped out the band structure using three

independent ways (first-principles, ARPES and quantum oscillations). All the other sys-

tematic dependences, including the ( ~E vs ~B) angle, temperature, and the current direction

with respect to the crystallographic axis, which are presented here and also in Ref. [20–25],

can not distinguish the negative LMR due to Weyl fermions from the negative LMR due

to other band structures with nonzero Berry curvature. In other words, if a negative LMR

were induced by a (non-Weyl) band structure due to its nonzero Berry curvature, then it will

also show quantitatively the same angular, temperature, and current direction dependences.

Therefore, we emphasize that it is crucial to have full information of the band structure of

the system studied in transport. Also, the 1
E2

F

dependence of the chiral coefficient CW, which

is uniquely presented here not in other studies, is crucial because it really depends on the

details of the band dispersion and Berry curvature distribution of the Weyl cones, not just

the fact that the bands have some nonzero Berry curvature.

Supplementary Note 6

In order to calculate the Berry curvature of the band structure, we built a k · p model

whose general structure was introduced in Ref. [1]. In the absence of spin-orbit coupling,

the Hamiltonian H0 has a nodal ring in the (k2 = 0) plane that is protected by mirror

symmetry. When spin-orbit coupling is included, the degeneracy of the nodal ring is lifted

by the mass terms mi, i = 1, · · · , 6 that contribute to Hmass below. The combinations of

these mass terms can give rise to pairs of Weyl nodes off the (k2 = 0) plane.

A pair of Weyl nodes in the (k3 = 0)-plane are generated by the combination of the

masses m4 and m6, while the Weyl nodes away from the (k3 = 0)-plane stem from the

interplay of m4 and m5.
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The total Hamiltonian is given by

H = H0 +Hmass, (Supplementary Equation 5)

H0 = ǫ(k)σ0 + d1(k)σ1 + d2(k)σ2 + d3(k)σ3, (Supplementary Equation 6)

Hmass = m1(k)σ0s2 +m2(k)σ3s2 +m3(k)σ1s1 + m4(k)σ1s3 +m5(k)σ2s3

+m6(k)σ2s1, (Supplementary Equation 7)

where sµ, µ = 0, · · · , 3, are the 2 × 2 identity matrix and the three Pauli matrices acting

on the spin degree of freedom of the electrons and σµ, µ = 0, · · · , 3, are the 2 × 2 identity

matrix and the three Pauli matrices acting on an effective orbital degree of freedom.

The k2 → −k2 mirror symmetry, as well as the combination of time-reversal and C2

rotation symmetry, impose whether each term is even or odd under k2 → −k2 and under

k3 → −k3. We expand each term up to a given order in k, including only symmetry-allowed

contributions:

ε(k) = µ+ wk1 +O(k2), (Supplementary Equation 8)

d1(k) = uk2k3 +O(k3), (Supplementary Equation 9)

d2(k) = vk2 +O(k2), (Supplementary Equation 10)

d3(k) = M − ak2
1 − bk2

3 + ck1

+dk3
1 +O(k3), (Supplementary Equation 11)

m1(k) = m1 +O(k), (Supplementary Equation 12)

m2(k) = m2 +O(k), (Supplementary Equation 13)

m3(k) = m3k3 +O(k2), (Supplementary Equation 14)

m4(k) = m4 +m′

4k1 +O(k2), (Supplementary Equation 15)

m5(k) = m5k3 +O(k2), (Supplementary Equation 16)

m6(k) = m6 +O(k). (Supplementary Equation 17)

We then fitted this k · p Hamiltonian to the first-principle band structure with the goal

to reproduce the ring-shaped trivial Fermi surface and the correct location and number of

Weyl nodes. This is achieved with the parameters M = 12.23, µ = −3.504, u = −763.1,

v = −685.1, w = 34.11, a = 682.8, b = 583.0, c = 264.2, d = −147.5, m1 = 7.019,
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m2 = 1.031, m3 = 0.9078, m4 = 0.0, m′

4 = −11.07, m5 = −56.50, m6 = −4.097, all in units

of meV and the appropriate power of Å.

This effective Hamiltonian was used to compute the Berry curvature Ωi =

iǫijl〈∂kju(k)|∂klu(k)〉, where |u(k)〉 are nondegenerate Bloch states. (For the isolated degen-

eracy points in the BZ we have to consider the non-Abelian form of the Berry curvature.)

Figure 5 shows the average of Ω2
1 over a contour of equal energy E weighted with the

density of states ν(E) at this energy. While the density of states is featureless, the averaged

Berry curvature is strongly enhanced near the Weyl nodes W1 and W2. We clearly observe

two peaks in 〈νΩ2
1〉 which stem from the dominant Berry curvature near the Weyl nodes

W1 and W2 (notice the log scale). Figure 5 also shows that no other anomalous sources

of diverging Berry curvature exist in the band structure, besides the Weyl nodes. (The

actual divergence at the Weyl points is cut off due to the numerical accuracy.) This proves

that the Weyl cones really dominate the contribution to the Berry curvature, and that the

contribution from the trivial hole like bands is negligible.

Supplementary Note 6

As described in the main text, we use the following equation to fit the LMR data.

σxx(B) = 8CWB2 − CWAL

(√
B

B2

B2 +B2
c

+ γB2 B2
c

B2 +B2
c

)

+ σ0

(Supplementary Equation 18)

Here we discuss additional details regarding the fitting:

Firstly, we discuss the 3D weak anti-localization (WAL) term. The 3D WAL effect, the

CWAL term in the fitting formula, accounts for the initial steep uprise of the LMR at small

magnetic fields. In the fitting formula, we have included a critical field Bc that characterizes

the crossover from a −B2 dependence near zero field to −
√
B dependence at higher fields.

Here we describe the underlying physical reason for this crossover carefully. Bc is related to

the phase coherence length ℓφ. At low temperatures and no intervalley scattering, ℓφ → ∞,

theory predicts a −
√
B dependence of the WAL [17]. This means that one has Bc ≃ 0. In the

other limit, meaning high temperatures or in the presence of strong inter-valley scattering,

ℓφ → 0, and a −B2 dependence is theoretically expected [17]. This means that Bc is large.
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Roughly,

Bc ∼
~

eℓ2φ
. (Supplementary Equation 19)

Empirically, the temperature dependence of the phase coherence length can be written

as ℓφ ∼ T−p/2, then Bc ∼ (~/e)T p, where p is positive and determined by decoherence

mechanisms such as electron-electron interaction (p = 3/2) or electron-phonon interaction

(p = 3). Also, We expect that the intervalley scattering may correct ℓφ from these simple

power law.

In Fig. 3a of the main text, we have presented the temperature dependent LMR data for

sample a1 and their fits. Here in Supplementary Figure 6 we show the corresponding Bc as

a function of temperature. It can be seen that at low temperatures the Bc is almost zero,

which indicates that the WAL follows well the −
√
B dependence. At higher temperature, Bc

increases monotonically. We fit the Bc as a function of T , from which we extract that p ≈ 1.5,

indicating that the electron-electron interaction is the dominant decoherence mechanism.

Secondly, regarding the σ0 term in the fitting formula (Supplementary Equation 18).

We note that it contributes the positive LMR that arises from the Drude conductivity of

conventional charge carriers present in TaAs. In parallel fields, the Lorentz force is zero so

the Drude conductivity is a constant, under the assumption that the corresponding Fermi

surface is isotropic. In the case of TaAs, the Fermi surface that gives rise to the positive

LMR is the trivial hole pocket, which is quite anisotropic. Thus a weak magnetic field

dependence can also be possible. However, we note that even if there is a weak magnetic

field dependence for the Drude conductivity in parallel fields, it has to be positive because

the only source of negative LMR in the semiclassical limit is the Berry curvature. And

as we have shown clearly in the main text, in TaAs, the Berry curvature comes from the

Weyl cones, not the trivial hole pockets. In our case, we find that using a constant for the

Drude conductivity already gives satisfactory results for the fitting of the LMR data, which

is sufficient for our purpose. This also reduces free parameters in the fitting, making the

fitting more robust.

Finally, we note that except the chiral CW term, all other terms in Supplementary Equa-

tion 18 give rise to positive LMR. They are used to simulate the other effects (Drude con-

ductivity or WAL) that coexist with the chiral charge pumping. Therefore, they are not the

focus of our paper. The focus is the chiral CW term, which characterizes the chiral anomaly.
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Supplementary Note 7

The y axes of Figs. 2a-e and Figs. 3a-b are the change of the resistivity with respect to

the zero-field resistivity, ∆ρ = ρ(B)− ρ(B = 0). The zero-field resistivities are 5.65, 221.28,

7.02, 40.12, 12.59 (µOhm cm) for Figs. 2a-e, respectively; 5.65, 6.10, 12.59, 10.32, 12.44,

19.91, 31.90, 46.54, 87.07, 122.53 (µOhm cm) for temperature T = 2, 5, 10, 20, 30, 50, 75,

100, 200, 300 K in Fig. 3a, and 5.43, 12.04, 7.56, 6.13, 7.91, 9.02, 6.82, 7.02, 8.02, 5.91, 8.27

(µOhm cm) for angles 85, 75, 55, 40, 25, 15, 5, 0, -3, -5, -7 (degree) in Fig. 3b.
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