

Supplemental Figure 1. Alignment of the Amino Acid Sequences of TaTOC-A1, TaTOC-B1, TaTOC-D1, TOC1 (*Arabidopsis thaliana*, NP_200946), and OsTOC1 (*Oryza sativa*, BAD38854).

Identical amino acid residues are shaded in black, and similar amino acid residues are shaded in gray. Dots denote gaps introduced by the DNAman program. Two conserved regions, the pseudo-receiver domain at the N-terminal region and CCT (CO, COL, and TOC1) domain at the C-terminus, are underlined.

Supplemental Figure 2. Phylogenetic tree of deduced amino acid sequences of PRR in Some Plant Species.

The proteins analyzed were as follows: TaTOC-A1 (underlined) (*Triticum aestivum*), TaTOC-B1 (underlined) (Triticum aestivum), TaTOC-D1 (underlined) (Triticum aestivum), AaTOC1 (Arabis alpina, KFK27896), AetPRR1 (Aegilops tauschii, ABL09481), AlPRR2 (Arabidopsis lyrata subsp. Lyrata, XP_002868017), AlPRR3 (Arabidopsis lyrata subsp. Lyrata, XP_002866368), AlPRR7 (Arabidopsis lyrata subsp. Lyrata, XP_002873067), AlPRR9 (Arabidopsis lyrata subsp. Lyrata, XP_002880264), AtPRR2 (Arabidopsis thaliana NP_567548), AtPRR3 (Arabidopsis thaliana, BAB13744), AtPRR4 (Arabidopsis thaliana, NP 199735), AtPRR5 (Arabidopsis thaliana, BAB13743), AtPRR6 (Arabidopsis thaliana, NP_176988), AtPRR7 (Arabidopsis thaliana, BAB13742), AtPRR8 (Arabidopsis AtPRR9 thaliana, O23100), (Arabidopsis thaliana ,BAB13741); AtTOC1 NP 200946), (Arabidopsis thaliana, BrPRR3 (Brassica rapa, NP_001288859), BrPRR9 (Brassica rapa, NP_001288875), CsPRR5 (Castanea sativa, ABV53464), CsPRR7 (Castanea sativa, ABV53463), CsTOC1 (Castanea sativa, AAU20772); DITOC1 (Dimocarpus longan, AIT56195), GaPRR5 (Genlisea aurea, EPS67215), GmTOC1 (Glycine max, ABW87010), HvPpd-H1 (Hordeum vulgare, AAY42111); HvTOC1 (Hordeum vulgare, BAK01373), InPRR1 (Ipomoea nil, BAO57288), LgPRR37 (Lemna gibba, BAE72700), LgPRR59 (Lemna gibba, BAE72701), LgPRR95 (Lemna gibba, BAE72702); McTOC1 (Mesembryanthemum crystallinum, AAQ73525); MtTOC1 (Medicago truncatula, KEH33445), NaTOC1 (Nicotiana attenuate, AFA35965), OsPRR37 (Oryza sativa, BAD38855), OsPRR73 (Oryza sativa, BAD38856), OsPRR95 (Oryza sativa, BAD38857); OsTOC1 (Oryza sativa, BAD38854), PsPRR1 (Pinus sylvestris, AFV78751), PsPRR37 (Pinus sylvestris, ACU42263), PsPRR59 (Pinus sylvestris, ACU42265), PtPRR1 (Populus trichocarpa, AID51407), PtPRR5 (Populus trichocarpa, XP_002321349), PtPRR5a (Populus trichocarpa, AID51409), PtPRR5b (Populus trichocarpa, AID51410), PtPRR9a (Populus trichocarpa, AID51412), PtPRR9b (Populus trichocarpa, XP_002320232), PtPRR37 (Populus trichocarpa, AID51408), PtPRR73 (Populus trichocarpa, AID51411), PvTOC1 (Phaseolus vulgaris, AEA92684), SbPRR37 (Sorghum bicolor, AGN92441), TaPRR2 (Triticum aestivum, ABL09470), TaPRR3 (Triticum aestivum, BAL63649), TaPRR4 (Triticum aestivum, BAM31260), TaPRR5 (Triticum aestivum, ABL09464), TaPRR6 (Triticum aestivum, ABL09468), TuPRR1 (Triticum urartu, BAM93402), ZmPRR1 (Zea mays, ADU60098). The phylogenetic tree was constructed using MEGA4.0 software. The length of the branch line indicates the extent of the difference according to the scale on the upper left.

5' TCGAGGCAAGACGAAGTCCCT 3' <i>AtTOC1</i> 	Mismatch number 7
5' GTTAGGCAGGCAGGCAATGCAG 3' <i>BdPRR1</i> :	5.5
5' GTTGGGATGGAAGTTATGCAT 3' <i>GmTOC1</i> : : 3' CGGUCCCUUCUCCGUCACGUA 5' GmmiR408	9
5' GTGGGGGCAGGGGCAGGGCA 3' <i>HvTOC1</i> : : 3' CGGUCCCUUCUCCGUCACGU 5' HvmiR408	5
5'GCCAGGAACAAGGAATTGCGC3' <i>OsPRR1</i> 	6.5
5 [·] ··· ATCAAGAAACAGGCACCTCAA ···· 3' <i>ZmTOC1</i> 3 [·] ··· CGGUCCCUUCUCCGUCACGUC ···· 5' ZmmiR408	9

Supplemental Figure 3. Predication of miR408 Targets in a Number of Plant Species.

These plants include *Aarabidopsis thaliana* (At), *Brachypodium distachyon* (Bd), *Glycine max* (Gm), *Hordeum vulgare* (Hv), *Oryza sativa* (Os), and *Zea mays* (Zm).

VV			
5' ··· GCCGGGGTAGGCGGAGGGCAG	••	3'	TaTOC-A1
5' ··· GCCGGGGTAGTAGGAGGGCAG	••	3'	m <i>TaTOC-A1</i>
5' GCCGGGGTGGĠĠGAGGGCAG	••	3'	TaTOC-B1
5' GCCGGGGTGGTAGGAGGGCAG	•••	3'	m <i>TaTOC-B1</i>
VV			
5' ··· GCAGGGGCAGGGCAGGGCAG	••	3'	TaTOC-D1
5' ··· GCAGGGGCAGTAGCAGGGCAG ·	••	3'	m <i>TaTOC-D1</i>

Supplemental Figure 4. Mutation in *TaTOC-A1*, *TaTOC-B1*, and *TaTOC-D1*.

Arrowheads indicate the mutated nucleotides.

Supplemental Figure 5. Expression of *AtTOC1* in Transgenic *Arabidopsis* Overexpressing tae-miR408 (tae-miR408-OE).

LD, long days; SD, short days; WT, wild type.

Supplemental Figure 6. Identification of tae-miR408 and Phylogenetic Analysis among miR408s in Various Species.

(A) Alignment of the primary transcripte sequences of pri-tae-miR408a, pri-tae-miR408b, and pri-tae-miR408d. Identical nucleotide bases are

shaded in black, and similar ones are shaded in blue. Dots denote gaps introduced by the DNAman program.

(B)-(D) Stem-loop structure of three tae-miR408 precursors predicted using the mfold web server (http://mfold.rna.albany.edu/?q=mfold).

(E) Phylogenetic tree of tae-miR408 (double underlined) with miR408 from other plants species. The miR408 sequences from 32 species were aligned using DNAMAN software (version 7), and the phylogenetic tree was constructed using the maximum likelihood (ML) method, with 1000 bootstrap replicates.

Supplemental Figure 7. Expression of *TaTOC-A1*(A and D), *TaTOC-B1*(B and E), and *TaTOC-D1*(C and F) in Transgenic Wheat Overexpressing tae-miR408. The white and black boxes at the bottom of each graph represent light and dark periods, respectively. Data are the mean \pm s.e.m.

Supplemental Figure 8. Comparison of the Plant Heights (A and C) and Flage Leaf Angle (B and D) between the Transgenic Wheat Overexpressing tae-miR408 (TL) and Controls (CK).

Error bars indicate standard errors of the means (n=10).

cDNA identity (%)	TaTOC-A1	TaTOC-B1	TaTOC-D1
TaTOC-A1		96.0	93.8
TaTOC-B1	96.0		94.3
TaTOC-D1	93.8	94.3	

Supplemental Table 1. Comparison of cDNA Sequence Identity (%) of *TaTOC-A1*, *TaTOC-B1*, and *TaTOC-D1*

Motif Name		Motif Number		
	Moth Functions	TaTOC-A1	TaTOC-B1	TaTOC-D1
ABRE	Abscisic acid responsiveness	4	6	4
ACE	Light responsiveness	0	1	0
CAAT-box	Common cis-acting element in promoter and enhancer regions	6	3	5
EE	Essential for circadian rhythmicity	1	1	1
G-box	Light responsiveness	1	3	1
MBS	MYB binding site	1	1	1
Motif IIb	Abscisic acid responsiveness	1	1	1
Sp1	Light responsive element	7	6	7
TATA-box	Core promoter element around -30 of transcription start	0	1	0

Supplemental Table 2. Main Regulatory Motifs Found within the Promoter Sequences of the Three *TaTOC1* Genes (about 1000bp Upstream of the ATG Initiation Codon of Each Homoeolog)

Supplemental Table 3. Primers Used in This Study

Primer Name	Primer Sequence (5'-3')	Objective
ToTDN; E	GG <u>GGTACCACTAGT</u> TGCAGTATCCTTTGGTA	For RNA interference vector construction, southern
ΙάΙ ΚΙΝΙ-Γ	KpnI SpeI	blotting and In situ hybridization
TaTRNi-R	CG <u>GGATCCGAGCTC</u> GCAACTTTCTTCCGATT	For RNA interference vector construction, southern
		blotting, In situ hybridization and transgenic wheat
	Dumini Suci	detection
tae-MIR408b-F1 tae-MIR408b-R1	CT <u>GGATCC</u> GAGAGAGAAAGAGAGTTGATTTTGTGAG <i>Bam</i> HI TT <u>GGTACC</u> CTATAACAGGGGGCAGAAAATGG <i>Kpn</i> I	For overexpression vector construction and wheat transformation
TaTOC-A1F1	ATGGTGGGCGCCGGC	For the amplification of the full length TaTOC-A1
	TTCTGGTGAAGAAACCAACTCAAC	cDNA and Arabidopsis overexpression vector
Iaioc-Aiki		construction

TaTOC-B1F1	ATGGTGGGCGCCGG
TaTOC-B1R1	CTCTGGTGAAGAAACCAACTCAAC

TaTOC-D1F1 ATGGTGGGCGCCGGGGGGGG

TaTOC-D1R1 CTCTGGTGAAGAAACCAACTCAACGTC

tae-MIR408b-F2 GAGAGAAAGAGAGTTGATTTTGTGAG

tae-MIR408b-R2 CTATAACAGGGGCAGAAAATGG

pTCK303-F CTCTAACCTTGAGTACCTATC

pTCK303-D CTATGACACGGCTGTTTCGAG

TaTOC-A1F2 ACCGACAGAATCGACACTAATG

TaTOC-A1R2 GGATGGATCATCGTCTTCG

For the amplification of the full length TaTOC-B1 cDNA and Arabidopsis overexpression vector construction

For the amplification of the full length TaTOC-D1 cDNA and Arabidopsis overexpression vector construction

For overexpression vector construction, Arabidopsis transformation

For transgenic plants detection For transgenic plants detection

For TaTOC-A1 expression analysis with RT-PCR

- TaTOC-B1F2 GGTGCGACCGAGAGAATA
- TaTOC-B1R2 CTAGATCATCCGCACACCAT
- TaTOC-D1F2 ACACTGCTCAAGCTCATACG
- TaTOC-D1R2 TCATCCGCACACCACTC

For *TaTOC-B1* expression analysis with RT-PCR

For *TaTOC-D1* expression analysis with RT-PCR

Used as internal reference

- TaActin-F AGTCGAGAACGATACCAGTAGTACGA
- TaActin-R GCCATGTACGTCGCAATTCA
- TaTOC1-a GCAGCACTTGCAAAATTCAG
- TaTOC1-b GTGCTAATTATATCTGTGTTGCTTGC
- TaTOC-A1F3 CCCCCAAAACAGACCAATG
- TaTOC-A1R3 CATAGGCGTCTCAAAAGCTTC
- TaTOC-B1F3 CAATTCCCGAGGAAAGACAC
- TaTOC-B1R3 AATGATCATCCGCACACCAT

For three TaTOC1s expression analysis with qRT-PCR

For *TaTOC-A1* expression analysis with qRT-PCR

For *TaTOC-B1* expression analysis with qRT-PCR

TaTOC-D1F3 GGTATCGAGCACACCAATTCT

- TaTOC-A1F3 GCAATGATCATCCTCACTCCC
- tae-MIR408b-F3 GGATGGAGCAGAGCAAGG
- tae-MIR408b-R3 TGGCAACTCTCTCCCTCTTCTC
- TaCO1-F CAGACACCAATTCACTTCAGC
- TaCO1-R TCCACTTCCATGTCTGCAT
- TaFT1-F GTCGTTCGGGCAGGAG
- TaFT1-R TGGAAGAGTACGAGCACGA
- Tubulin2-F ATCCGTGAAGAGTACCCAGAT
- Tubulin2-R AAGAACCATGCACTCATCAGC
- AtTOC1 F TCACCATGAGCCAATGAAAA
- AtTOC1 R TTGAAACTTCTCCGCCAAAC

For *TaTOC-D1* expression analysis with qRT-PCR

For *TaemiR408* expression analysis with qRT-PCR

For *TaCO1* expression analysis with qRT-PCR

For *TaFT1* expression analysis with qRT-PCR

Used as internal reference

For *AtTOC1* expression analysis with qRT-PCR

LAD1-4	ACGATGGACTCCAGAG(G/C/T)(G/A/T)N(G/C/T)NNNC	
	GGT	
AC1	ACGATGGACTCCAGAG	
TP-0	CTTGGTAGGAGCAGTTGCAGAGGAGG	For hiTAIL-PCR
	ACGATGGACTCCAGTCCGGGAGGAGGCGAAGCACA	
11-1	TCCYGTGAGC	
TP-2	CCGGCGCCCACCATACCCAA	
AAP	GGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG	
AUAP	GGCCACGCGTCGACTAGTAC	
GSP1	CWATCTGATTACCCT	For 5' RACE
GSP2	CGAAAGGAGTGTGGTGCTATTG	
GSP3	CATCCGTCTYCTTCGCCAS	

tae-MIR408b-F4
TATCTAGAGAGAGAGAGAGAGAGAGAGAGTTGATTTGTGAGTG
For tobacco leaf co-transformation assays of the *Xba*I
tae-miR408 and *TaTOC1* genes

tae-MIR408b-R4	AT <u>CCCGGG</u> CTATAACAGGGGCAGAAAATGGC
	SmaI
TaTOC-A1F4	TA <u>TCTAGA</u> ATGGTGGGCGCCGGC
	XbaI
TaTOC-A1R4	AT <u>CCCGGG</u> TTCTGGTGAAGAAACCAACTCAAC
	SmaI
TaTOC-B1F4	TA <u>TCTAGA</u> ATGGTGGGCGCCGG
	XbaI
TaTOC-B1R4	AT <u>CCCGGG</u> CTCTGGTGAAGAAACCAACTCAAC
	SmaI
TaTOC-D1F4	TA <u>TCTAGA</u> ATGGTGGGCGCCGGCGAGG
	XbaI
TaTOC-D1R4	AT <u>CCCGGG</u> CTCTGGTGAAGAAACCAACTCAACGTC
	SmaI