
SUPPLEMENTAL APPENDIX 1

Criteria used:

1. Final infection frequency is higher than the initial infec-
tion frequency.

2. Two-thirds of the recorded infection frequency is above
the initial infection frequency.

A function introduces sample size stochasticity to the
model. The model is based on a discrete generation time
(no overlapping generations), which is applicable to labora-
tory colony cages. Two levels of stochasticity were introduced
based on:

1. The male (uninfected/infected) mated with a female.
2. Random sampling of offspring to set up the next generation.

Let N be the population size (male + female) and unstable
equilibrium computed with no maternal transmission leakage
and no viable offspring from incompatible crosses (dynamics
driven only by fecundity/fitness cost).
An unstable of equilibrium of 0.15 was suggested by data

from Xi and others14, with no maternal transmission leakage,
perfect cytoplasmic incompatibility, and fecundity/fitness cost
of 15%. Likelihood was determined via 100,000 repetitions
of the model with population size and mating stochasticity,
and no enforcing of a constant sex ratio (no sexing). Forcing
constant sex ratio does not really improve the likelihood
much (not shown here) for the population sizes considered.
The likelihood of detection (see Supplemental Table 1) can
be observed to be dependent on several factors.

1. Sample size.

a) If above unstable equilibrium, larger sample size will
increase detection rate (power, reducing false negative).

b) If below unstable equilibrium, larger sample size will
decrease detection rate (reducing false positive).

2. Positively dependent on the starting infection frequency.
3. The true unstable equilibrium and the parameters giving

rise to it.
4. Number of generations. Some simulated replicates required

more time to follow expectations based on the invasion
criteria, and/or some that appear to invade then crash.

The likelihood of observing invasion after 10 generations
under different conditions is given in Supplemental Table 2.

SUPPLEMENTAL APPENDIX 2

We define βam as the relative fitness of infected to uninfected
males. We define an effective infection frequency that is an
adjusted infection frequency taking into account the mating
isolating effects of assortative mating and sperm competition.
Under the effects of assortative mating, if pam is the effec-

tive infection frequency due to assortative mating, while pI is
the observed infection frequency, then

pam ¼ βampI
βampI þ 1� pIð Þ

This can be thought of as a weighted average method, with
the infected males being reduced or increased by the βam

parameter. In the assortative mating experiment, we only con-
sidered uninfected females. The average observed hatch rate
among uninfected female, Ham, is

Ham ¼ 1� pam þ pamHð Þ � h

where H = average hatch rate of incompatible cross (uninfected
females to infected males), and h = average absolute hatch rate
of compatible cross (assume not affected by Wolbachia).
1 – pam is simply the hatch rate due to matings with

uninfected males, while pamH is the additional observation
due to incomplete cytoplasmic incompatibility. We assumed
that the overall compatible hatch rate is not perfect, h < 1,
hence the extra multiplier to restrict the model.
Thus, we can substitute pam:

Ham ¼ 1� pI þ βampIHð Þ � h
βampI þ 1þ pIð Þ

We can then formulate a linear equation by shifting the
terms around:

Ham

h
� 1

� �
1� pIð Þ ¼ βam � pIH � pI

Ham

h

� �
þ 0

with the LHS of the equation as the Y-term and the multiplier
to βam as the X-term. This model has a Y-intercept of zero.



SUPPLEMENTAL FIGURE 1. Probability of observing X ≥ x invasions under H0: p̂ = 0.15 (circles) or H1: p̂ = 0.03 (squares) with an initial invasion
frequency of p0 = 0.1 across population sizes of N: 200 (solid line), 400 (dashed line), 600 (dotted line) and 800 (dot-dash line). Naturally, the proba-
bility of X being greater than or equal to x increases under H1 or decreases under H0 with increasing values of N. We chose N = 400, the lowest
sample size with adequate power, 80% and Type I error, α < 0.05 (see Supplemental Table 2 for simulated probability values).

SUPPLEMENTAL TABLE 2
Likelihood of observing invasion after 10 generations at starting infection frequencies, p0 = 0.1 and population sizes, N

N

Pr(X ≥ x) if p̂ = 0.15 Pr(X ≥ x) if p̂ = 0.03

X = 1 X = 2 X = 3 X = 4 X = 5 X = 1 X = 2 X = 3 X = 4 X = 5

200 0.5901 0.1899 0.0336 0.0031 0.0001 0.9842 0.8819 0.6179 0.2770 0.0569
400 0.4821 0.1179 0.0155 0.0010 0.0000 0.9961 0.9564 0.7953 0.4679 0.1352
600 0.3980 0.0764 0.0077 0.0004 0.0000 0.9988 0.9817 0.8849 0.6102 0.2208
800 0.3255 0.0492 0.0039 0.0002 0.0000 0.9996 0.9921 0.9354 0.7198 0.3107

X = number of invasions observed in five replicate populations of size N each generation and starting Wolbachia infection frequency, p0 = 0.1. Values in bold represent the likelihood of false
positives that are below 5% (based on H0: p̂ = 0.15). For example, for N = 400, there is a 1.55% chance of observing at least three invasions in five replicated population of 400 individuals with
equal sex ratio and initial Wolbachia infection frequency, p0 = 0.1, if the unstable equilibrium is truly 0.15 (due to fecundity/fitness cost of 15%). Values in italic represent the power of detection
around 80% and above (based on H1: p̂ = 0.03). Probabilities are calculated using binomial sampling based on single trial probabilities in Supplemental Table 1. The unstable equilibrium, p̂ at
0.15 was based on Xi and others14, while p̂ = 0.03 was based on our data collected during the “Quiescent egg viability” experiment.

SUPPLEMENTAL TABLE 1
Probability of seeing an invasion in a single replicate population of

constant population size, N with varying unstable equilibrium
N pinvasion (if p̂ = 0.15) pinvasion (if p̂ = 0.03)

200 0.1634 0.5636
400 0.1233 0.6702
600 0.0965 0.7393
800 0.0757 0.7915

Starting infection frequency, p0 = 0.1.



SUPPLEMENTAL TABLE 3
Cox regressions for “adult survival in groups” for females sorted by line then block

Line Block* β† eβ‡ eβ lower 95% CI eβ upper 95% CI z Pr(>|z|)

wAlbB 1 0.341 ± 0.417 1.41 0.62 3.18 0.82 0.414
2 0.773 ± 0.416 2.17 0.96 4.89 1.86 0.063
3 2.145 ± 0.162 8.54 6.22 11.73 13.27 < 0.001

wMel 1 0.688 ± 0.401 1.99 0.91 4.37 1.71 0.087
2 1.328 ± 0.398 3.77 1.73 8.23 3.34 < 0.001
3 0.969 ± 0.153 2.64 1.95 3.56 6.34 < 0.001

wMelPop 1 0.444 ± 0.441 1.56 0.66 3.70 1.01 0.314
2 3.074 ± 0.371 21.63 10.45 44.75 8.29 < 0.001
3 3.085 ± 0.240 21.87 13.66 35.01 12.85 < 0.001

95% CI = 95% confidence interval.
*Block 1 = 0–20 days, block 2 = 21–40 days, block 3 = > 40 days.
†Survival curve slope ± standard error.
‡Hazard ratio.

SUPPLEMENTAL TABLE 4
Pairwise comparisons within blocks of time for females in the “adult survival in groups” experiment using general linear hypothesis tests
Block Null hypothesis Estimate SE z Pr(>|z|)*

1 (0–20 days) wAlbB − CNS = 0 0.341 0.417 0.82 0.845
wMel − CNS = 0 0.688 0.401 1.71 0.314

wMelPop − CNS = 0 0.444 0.441 1.01 0.743
wMel − wAlbB = 0 0.348 0.335 1.04 0.726

wMelPop − wAlbB = 0 0.104 0.382 0.27 0.993
wMelPop − wMel = 0 −0.244 0.365 −0.67 0.909

2 (21–40 days) wAlbB − CNS = 0 0.773 0.416 1.86 0.233
wMel − CNS = 0 1.328 0.398 3.34 0.004

wMelPop − CNS = 0 3.074 0.371 8.29 < 0.001
wMel − wAlbB = 0 0.555 0.285 1.95 0.197

wMelPop − wAlbB = 0 2.301 0.245 9.38 < 0.001
wMelPop − wMel = 0 1.746 0.214 8.16 < 0.001

3 (> 40 days) wAlbB − CNS = 0 2.145 0.162 13.27 < 0.001
wMel − CNS = 0 0.969 0.153 6.34 < 0.001

wMelPop − CNS = 0 3.085 0.240 12.85 < 0.001
wMel − wAlbB = 0 −1.176 0.137 −8.56 < 0.001

wMelPop − wAlbB = 0 0.940 0.202 4.65 < 0.001
wMelPop − wMel = 0 2.116 0.224 9.47 < 0.001

SE = standard error.
*Significant z values are shown in bold.


