$\label{eq:Supplemental} Supplemental\ Table\ 1$ Included publications that compared Sm prevalence by KK and POC-CCA | Study | Study location
(time of data collection) | Study population: age and sample size | Sample collection and methods | Relationship between EPG and CCA band intensity | |---|--|--|--|---| | Adriko and others ⁹ | Five primary schools in Bugiri District, shoreline of Lake Victoria, southeast Uganda | 500 schoolchildren | Three stools, two KK slides each. Prevalence for one and two stools is also reported One urine Prevalence is reported for three settings: low-, moderate-, and highendemic areas | N/A | | Ashton and others 2011 ²⁴ | South Sudan
(June–July 2010) | 373 children aged
5–16 years | One stool, two KK slides
each
One urine | N/A | | Colley and others ¹⁴ | Cameroon,
Cote d'Ivoire,
Ethiopia, Kenya,
Uganda (2010) | 4,305 children aged
9–12 years | Three stools, two KK slides each. Prevalence for one stool is also reported Overall prevalence is reported as well as separately for each country | N/A | | Coulibaly and others 2013 ²⁵ (high-risk communities) Coulibaly and others 2013 ²⁷ (before and after treatment) | Two villages in Azaguie' District, south Cote d'Ivoire (June–September 2011) Two villages in Azaguie' District, south Cote d'Ivoire (August–November 2011) | 209 + 158 preschool-
aged children
(< 6 years) | Two stools, two slides
each
Two urines | N/A | | | | 242 preschool-aged
children
(< 6 years) | Two stools, two slides each | Data show a correlation
between the color
intensity of CCA
(trace negative)
test bands and
EPG values | | | | | Two urines with a scoring scheme to determine final CCA result | Excluded from graph
because it focuses on
preschoolers, and CCA
reported in intensity
comparison is trace
negative result | | Coulibaly and
others 2012 ²⁶
(efficacy and
safety of PZQ)
Coulibaly and others ¹¹
(accuracy of
urine CCA) | Two villages in Azaguie' District, south Cote d'Ivoire (June–November 2011) Azaguie' District, south Cote d'Ivoire (October/November 2010) | 160 preschool-aged
children
(< 6 years) | At least one stool sample with duplicate slides One urine | N/A | | | | 146 children aged
8–12 years | Three stools, three slides each Three urines Prevalence is reported for 3 settings, two endemic for Sm (low and moderate) and third co-endemic for Sm and Sh | N/A | | Dawson and others ²² | Walukuba and Piida,
Buliisa District, on
the shoreline of Lake
Albert, Uganda
(May/June 2011) | 82 preschool-aged
children | Two stools, two slides each | The box plot shows a significant positive association between EPG and the band intensity of the POC-CCA test | | | | | One urine | Excluded from graph because it focuses on preschoolers | | Erko and others 2013 ²⁸ | Jiga and Harbu
towns, Ethiopia
(2010–2011) | 620 children aged
8–12 years | Three stools, Two slides
each. Prevalence is
reported for single,
double, and six KK | CCA band color was intense in all children who had moderate and heavy intensity of infection. The odds ratio of strong intensity of the urine-CCA cassette test band color with an increase in EPG was statistically significant | | | | | Three urines. Prevalence is reported for single and triple CCA | Excluded from the graph
because no visual graphic
was reported and no
estimates could be extracted | (continued) ## Supplemental Table 1 Continued | | Study location | Continued Study population: age | Sample collection | Relationship between EPG | |--|--|--|--|--| | Study | (time of data collection) | and sample size | and methods | and CCA band intensity | | Lamberton and others 2014 ²⁹ | Mayuge District,
Uganda (2004–2006) | 76 children aged
6–12 years | Three stools, Two slides each | Trace is considered 1+. Used median estimates from baseline box plot in graph. Strong positive correlations were seen between the CCA band strengths and KK infection intensity categories | | Lodh and others ²⁰ | Western Zambia | 100 participants
aged 18–50 years | One urine One stool, two slides One urine | Included in graph
N/A | | Mwinzi and
others ¹⁴ | Western Kenya
(January 2013
to April 2014) | 73 schoolchildren
aged > 6 years | Stool samples were collected over 3 days (one stool, two slides per day) and prevalence is reported for each day and for all 3 days combined | There was positive association between intensity of infection by KK (EPG) and band intensity by POC-CCA: Spearman's $\rho = 0.601$ ($P < 0.001$) | | | | | Urine samples were
collected over 5 days
and prevalence is reported
for each day and for
all 5 days combined | Included in graph | | Shane and others ¹⁵ | Usoma, western Kenya
(September–
December 2007) | 423 children aged
1–15 years | Three stools, two slides each | The average EPG found in each of the individuals was compared with band strength to determine if the band intensity of the CCA assays correlated with intensity of infection, and intensity was positively associated with intensity of infection $(P = 0.0001)$ | | Sousa-Figueiredo
and others ¹⁶ | Six lakeshore villages
in Uganda (October/
November 2009) | 333 preschool-
aged children
(< 6 years) | One urine One stool, two slides One urine Prevalence is reported separately for low-, moderate-, and high-transmission | Included in graph
N/A | | Sousa-Figueiredo
and others ²¹ | July 2007 in the Lake
Albert region of
Uganda
January/February 2009
in the Lake Victoria
region of Uganda | 125 preschool
children and
their mothers | settings Two stools, two slides each One urine Prevalence is reported separately for mothers and children from | N/A | | Standley and
others 2010 ³⁰
(performance
of CCA) | 11 shoreline schools
from eastern Lake
Victoria in Tanzania
and Kenya (January/
February 2009) | 171 children aged
6–17 years | two settings One stool, two slides | For all the children surveyed, there was a very significant positive relationship between fecal EPG and CCA band intensity. Every additional 100 eggs led to a 6% increase in the likelihood of stepping up to the next intensity category of the CCA test band | | Standley and others 2010 ³¹ (epidemiology and control) | Sesse Islands,
Uganda
(January 2010) | 905 school-aged
children | One urine One stool, two slides | Included in graph The box plot shows an overall positive increasing association between Sm EPG and the band intensity of the POC-CCA test with some outliers | | | | | One urine | Included in graph | (continued) ## Supplemental Table 1 Continued | Study | Study location
(time of data collection) | Study population: age and sample size | Sample collection and methods | Relationship between EPG and CCA band intensity | | | | |--|---|---|---|--|--|--|--| | Stothard
and others ²³ | Bugoigo on Lake Albert
(April 2009) | 242 children aged
5 months to
5 years | Two stools, two slides each | Data from this study show a
strong correlation between
the Sm EPG and intensity
of CCA test bands | | | | | | | | Two urines, one CCA on most children | Excluded from the graph
because it focuses on
preschoolers | | | | | Tchuente and others 2012 ³² | Cameroon (December 2010 to January 2011) | 138 children
aged 8–12 years | Three KK, three slides each. Prevalence is reported for one and three KK Three urines. Prevalence is reported for one and three CCA | N/A | | | | CCA = circulating cathodic antigen; EPG = eggs per gram; KK = Kato-Katz; N/A = not applicable; POC = point-of-care; PZQ = praziquantel; Sh = Schistosoma haematobium; Sm = Schistosoma mansoni.