

Figure S1. SDS-PAGE analysis of *P. aeruginosa* outer membrane proteins (OMPs) of PAO1 and PAOMS lineages evolved in the presence of meropenem. From left to right: Molecular Weight Marker, PAO1, PAO1 OprD mutant (PAOD1) and the 3 of PAO1 and PAOMS evolved lineages.

Figure S2. Representation of the deleted regions in PAO1.1-MER and PAO1.3-MER. Inverted repeats flankling the deteleted regions in PAO1.1-MER (ATCCAG) and PAO1.3-MER (GAGCCAGGGATGC) are indicated. Template PAO1 genome was obtained from <u>http://www.pseudomonas.com</u>.

PAO1.3 MER

Figure S3. Pyomelanin hyperproduction. MH agar plate showing the pyomelanin hyperproduction phenotype of PAO1.1-MER and PAO1.3-MER. PAO1 is used as negative control and a $\Delta hmgA$ PAO1 derivative as positive control.

Primer	Sequence $(5' \rightarrow 3')$	PCR product size (bp)	Use	Source
oprD-F	CGCCGACAAGAAGAACTAGC	1413	oprD amplification and	[1]
oprD-R	GTCGATTACAGGATCGACAG		sequencing	[-]
PA1918-F	ACAAGACTCATACGATCGTAC	1000	Characterization of MER	This work
PA1918-Rint	GCGGTAGTAGTCCACCATC	1000	mutants deletion	THIS WOLK
PA1997-F	GGTTATGCTTCCTGCATGTC	1201	Characterization of MER	This work
PA1997-Rint	CCTTGCATTGCAGTTCGCC	1501	mutants deletion	THIS WOLK
PA2212-F	CGTACGCCGACCAGGAAC	772	Characterization of MER	This work
PA2212-Rint	GTTGTCGCCGTTGTGCGG	112	mutants deletion	THIS WOLK
PA2220-F	GATCAGCTCCGCTGGTGAC	836	Characterization of MER	This work
PA2220-Rint	ACACGGACGTTCACGTGTC		mutants deletion	
hmgA-F	GGGCCTTGAGGATATCGG	1505	hmgA amplification and	[2]
hmgA-R	AGGCGACCCAGCTACGAGTG	1365	sequencing	[2]
ampD-F	GTACGCCTGCTGGACGATG	010	Amplification and sequencing	[2]
ampD-R	GAGGGCAGATCCTCGACCAG	910	of AmpC regulator ampD	[3]
ampR-F	GTCGACCCAGTGCCTTCAGG	1.400	Amplification and sequencing	[2]
ampR-R	CTCGAGAGCGAGATCGTTGC	1400	of AmpC regulator <i>ampR</i>	[3]
dacB-F	CGACCATTCGGCGATATGAC		Amplification and sequencing	[4]
dacB-R	CGCGTAATCCGAAGATCCATC	1721	of AmpC regulator <i>dacB</i>	
nalB-F	CAGCGTGAAGGCGCTGCAC		Amplification and sequencing	[5]
nalB-R	GAGCTGCTGCTCTCCGTCG	790	of mexAB-oprM regulator mexR	
nalC-F	TCAACCCTAACGAGAAACGCT		Amplification and sequencing	
nalC-R	TCCACCTCACCGAACTGC	1150	of <i>mexAB-oprM</i> regulator <i>nalC</i>	[6]
nalD-F	GCGGCTAAAATCGGTACACT		Amplification and sequencing	[7]
nalD-R	ACGTCCAGGTGGATCTTGG	1100	of mexAB-onrM regulator nalD	
nfrB-F	GCTCCTGTCGCTCTTCCG		Amplification and sequencing	[8]
nfxB-R	CTGTCGAGGCACTTTGTCGC	957	of merCD-onrI regulator nfrB	
mayT F	CTGTATCCGCCCATGCCTG		Amplification and sequencing	
mexT P	GACGCCTCGTGCGCGTAG	1126	of marEE-onrN regulator marT	This work
mex S F	TGACAGGCATAGCCATTATC		Amplification and sequencing	
mexS P	GGTCAACGATCTGTGGATC	1209	of marFE-oprN regulator marS	This work
myaT F	CLACTCAGCACAGACAAGGT		Amplification and sequencing	
myaT P	GCAGAGGAGCCGATACAATC	440	of marEE onrN regulator muaT	This work
mva1-K			Amplification and sequencing	
mexZ-P		1000	of marYV onrM regulator mar7	[9]
			Amplification and acquancing	
PA5471-R	GGCCACCTCCTCGATTACCT	1600	of <i>mexXY-oprM</i> regulator PA5471	[10]
gyrA1	TTATGCCATGAGCGAGCTGGGCAACGACT	264	gyrA amplification and	F1 13
gyrA2	AACCGTTGACCAGCAGGTTGGGAATCTT	364	sequencing	[11]
gyrB3	AGCTCGCAGACCAAGGACAAG		gvrB amplification and	[11]
gyrB4	GGGCTGGGCGATGTAGATGTA	600	sequencing	
parC1	ATGAGCGAACTGGGGCTGGAT		<i>parC</i> amplification and	[11]
parC2	ATGGCGGCGAAGGACTTGGGA	208	sequencing	
parE1	CGGCGTTCGTCTCGGGCGTGGTGAAGGA		<i>parE</i> amplification and	[11]
parE2	TCGAGGGCGTAGTAGATGTCCTTGCCGA	592	sequencing	
rnsLpsu-F	GCTGCAAAACTGCCCGCAACG		Control house Keeping gene RT-PCR	[11]
		250		
rpsL _{RNA} -K	AUUUAUUIUIUUAUUUAAUU			
ampC _{RNA} -F	GGGCTGGCCTCGAAAGAGGAC	246	ampC expression RT- PCR	[12]
ampC _{RNA} -R	GCACCGAGTCGGGGAACTGCA			
mexB _{RN} ⁴ -F	CAAGGGCGTCGGTGACTTCCAG		mexB expression RT- PCR	[11]
mexBR	ΑΓΓΤΩΩΩΑΑΓΓΩΤΟΩΩΑΤΤΩΛ	273		
IIICAD _{RNA} -IX	ACCIOUGACCUICUUUAIIUA			

Table S1. Oligonucleotides used in this work.

mexD _{RNA} -F	GGAGTTCGGCCAGGTAGTGCTG	236	mexD expression RT-PCR	[11]
mexD _{RNA} -R	ACTGCATGTCCTCGGGGAAGAA			
mexF _{RNA} -F	CGCCTGGTCACCGAGGAAGAGT	- 254	<i>mexF</i> expression RT-PCR	[11]
mexF _{RNA} -R	TAGTCCATGGCTTGCGGGAAGC			
mexY _{RNA} -F	TGGAAGTGCAGAACCGCCTG	270	mexY expression RT-PCR	[11]
mexY _{RNA} -R	AGGTCAGCTTGGCCGGGTC			

[1] Gutiérrez O, Juan C, Cercenado E, Navarro F, Bouza E, Coll P, et al. Molecular epidemiology and mechanisms of carbapenem resistance in *Pseudomonas aeruginosa* isolates from Spanish hospitals. Antimicrob Agents Chemother. 2007; 51(12):4329–35.

[2] Rodríguez-Rojas A, Mena A, Martín S, Borrell N, Oliver A, Blázquez J. Inactivation of the *hmgA* gene of *Pseudomonas aeruginosa* leads to pyomelanin hyperproduction, stress resistance and increased persistence in chronic lung infection. Microbiology. 2009; 155(4):1050-7.

[3] Juan C, Maciá MD, Gutiérrez O, Vidal C, Pérez JL, Oliver A. Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in *Pseudomonas aeruginosa* clinical strains. Antimicrob Agents Chemother. 2005; 49(11):4733-8.

[4] Moya B, Dötsch A, Juan C, Blázquez J, Zamorano L, Haussler S, et al. β -Lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein. PLoS Pathog; 2009; 5(3):e1000353.

[5] Cabot G, Ocampo-Sosa AA, Domínguez MA, Gago JF, Juan C, Tubau F, et al. Genetic Markers of Widespread Extensively Drug-Resistant *Pseudomonas aeruginosa* High-Risk Clones. Antimicrob Agents Chemoter. 2012; 56(12):6349-57.

[6] Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C, Plésiat P. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob Agents Chemother. 2004; 48(5):1797–802.

[7] Sobel ML, Hocquet D, Cao L, Plésiat P, Poole K. Mutations in PA3574 (*nalD*) lead to increased MexAB-OprM expression and multidrug resistance in laboratory and clinical isolates of *Pseudomonas aeruginosa*. Antimicrob Agents Chemother. 2005; 49(5):1782–6

[8] Mulet X, Macià MD, Mena A, Juan C, Pérez JL, Oliver A. Azithromycin in *Pseudomonas aeruginosa* Biofilms: Bactericidal Activity and Selection of *nfxB* Mutants. Antimicrob Agents Chemoter. 2009. 53(4):1552-60.

[9] Sobel ML, McKay GA, Poole K. Contribution of the MexXY multidrug transporter to aminoglycoside resistance in *Pseudomonas aeruginosa* clinical isolates. Antimicrob Agents Chemother. 2003; 47(10):3202–7.

[10] Morita Y, Sobel ML, Poole K. Antibiotic Inducibility of the MexXY Multidrug Efflux System of *Pseudomonas aeruginosa*: Involvement of the Antibiotic-Inducible PA5471 Gene Product. Journal of Bacteriology. 2006; 188(5):1847-55.

[11] Oh H, Stenhoff S, Jalal S, Wretlind B. Role of efflux pumps and mutations in genes for topoisomerases II and IV in fluoroquinolone-resistant *Pseudomonas aeruginosa* strains. Microb Drug Resist. 2003; 9(4):323–328.

[12] Juan C, Moya B, Perez JL, Oliver A. Stepwise upregulation of the *Pseudomonas aeruginosa* chromosomal cephalosporinase conferring high level beta-lactam resistance involves three AmpD homologues. Antimicrob Agents Chemother. 2006; 50(5):1780–7.