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1 Analogy with scattering in inhomogeneous media

Detailed derivation of equations 2. Consider the propagation of a wave through an semi-infinite

slab where position and orientation of scattering centers are randomly distributed. The intensity of

the incoming beam in a particular direction at a position x of the slab is reduced due to multiple
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scattering. Therefore, it is difficult to assign the observed scattered intensity to a particular scat-

tering center. One way to overcome this difficulty is to assume that all existing scattering centers

participate in the scattering of the incoming beam, hence the scattering effect of the medium is not

anymore localized on a single scatterer but is now delocalized over the whole medium 1.

In the same manner, consider a cell population. The set of potential replication origins (position

and time of firing) are not identical from one cell to another. Therefore, similar to the scattered

intensity of the incoming beam, the observation of firing of n replication origins at a time t does

not represent the firing of the same potential replication origins in all cells but corresponds to the

firing of a subset of replication origins present in the cell population. In that sense, one cannot

assign the firing probability to a particular potential origin (localized) but one must delocalize it

over a subset of potential origins.

As an example, let consider a scalar wave (a firing process in the case of replication), we aim

at calculating the scattered intensity (observed number of fired origins) at a position x (at an in-

stant t) and by averaging over the whole volume to get the average intensity scattered by the

medium (whole genome averaged firing probability). Suppose we have strong scatterers (fired

replication origins), in the limit of point scatterers, the scalar wave evolves in a potential V (r) =

−
∑N

i=1 u δ (x−Xi), where−u is the bare scattering strength (intrinsic firing strength) and Xi are

the positions of the scatterers randomly distributed in the sample (positions of potential origins). In

the bulk of the sample, far from boundaries, one can only detect the intensity of diffuse-scattered

beam whose amplitude depends on the realization of disorder (location and orientation of scatter-

ers). It is impossible to calculate in an accurate manner all scattering interactions in the sample.
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However, under some approximations, one can reduce the number of interactions to consider, and

calculate in a satisfactory manner the intensity of the scattered beam. To define these approxima-

tions in relation with replication process, we explicitely take into account the following experimen-

tal evidences: i) during replication process an origin cannot fire more than once during a single S

phase2, and ii) the number of fired origins is smaller than the number of potential origins3. The

first observation can be interpreted as the fact that a scatterer is only visited once (first order Born

approximation4). The second observation can be considered as the fact that the density of strong

scatterers is small and leads to the hypothesis that the intrinsic scattering strength of a scatterer

can be replaced by an effective (screened) scattering strength that takes into account all possible

scattering paths between scatterers (Ladder approximation5). Under these hypotheses, the diffuse

intensity at a point x can be written as:

I (x) = nσsc

∫
d3x′ |G (x− x′)|2 |ψin (x′)|2 , (Sup.1)

where n is the density of scatters, σsc is the scattering cross-section, G (x− x′) is the dressed

Green’s function and ψin (x) is the incoming wave.

The Green’s function of the random medium G (x− x′) (also called the dressed propagator), can

be obtained by solving the Dyson equation6

|G (x− x′)|2 = G0 +G0ΣG0 +G0ΣG0ΣG0 + · · · , (Sup.2)

where G0 is the bare propagator, that is to say, the propagator in the medium without scatterer, and

Σ is the self-energy describing the renormalization of single scattering center due to the interaction

with the surrounding many-scatterers system.

Having introduced all necessary entities to the calculation of a diffuse intensity, let us now discuss
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the analogy with DNA replication. As mentioned earlier, we are dealing with DNA replication

process in a cell population. Eq. (Sup.1) now represents the total number I (t) of fired origins at

instant t in a cell and per genome length. As replication process is independent from one cell to an

other, we assume that |ψ (t)|2 = 1
M
δ (t), where M is the number of cells and δ (t) represents the

fact that all cells in the volume are in the S phase. As there is not really an extra-cellular incoming

signal that induces the replication process and that could be quantified, we set the scattering cross-

section in Eq. (Sup.1) to σsc = 1. Under these assumptions, Eq. (Sup.1), reduces to

I (t) =
n

M
|G (t)|2 , (Sup.3)

where n = Ototal
L

, Ototal is the number of fired origins at the end of S phase (strong scatterers)

and L is the length of the genome. The amplitude of the dressed Green’s function |G (t)|2 now

represents the propagation of an origin from a not fired state (inactive state) to a fired state (active

state). Therefore, the amplitude of the Green’s function per cell ( |G(t)|2
M

) is defined over the total

number of accessible states (i.e m0 + Ototal). If there is no strong replication origins, in other

words, if the number of accessible states in inactive state is equal to the number of states in active

state (Ototal = m0), then the amplitude of the dressed Green’s function that propagates an origin

from an inactive to an active state is equal to 1. By analogy, this situation corresponds to a medium

without scatterer, hence G0 = 1. Therefore, following Dyson’s Eq. (Sup.2), the amplitude of the

dressed Green’s function is |G (t)|2 = 1 + Σ + Σ2 + · · · , where by analogy Σ represents the ability

of a potential origin to fire. As previously discussed, the dressed Green’s function is defined over

the total number of states in the system. Along our definition of G0, Ototal corresponds to the

number of strong firing replication origins and the other (m0−Ototal) replication origins represent
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the medium. Therefore, a potential origin is either a strong firing replication origin or a replication

origin from the medium. As the firing ability ψ of a potential origin is the same for a strong

firing origin and an origin from the medium, we express the self-energy as Σ (t) = Cψ (t), where

C = 2m0

m0+Ototal
. Using Eqs. (Sup.2) and (Sup.3), after integration over the whole genome, we obtain

the proportion ρ (t) = O(t)
m0

of origin firing per cell at time t as:

ρ (t) =
Ototal

2m0

Ototal∑
ν=0

(Cψ (t))ν − 1, (Sup.4)

where the factor 1
2

appears because in our analogy each firing event has been counted twice. In

order to take into account all possible firing configurations, we expand the upper limit of the

summation to infinity and approximate ρ to

ρ (t) ≈ Ototal
2m0

( ∞∑
ν=0

Cνψ (t)ν − 1

)
≈ Ototal

2m0

(
1

1− Cψ(t)
− 1

)
. (Sup.5)

2 Detailed derivation of Eq.(3)

To derive explicitly Eq. (3), we first differentiate Eq. (Sup.5):

dρ (t)

dt
=
b2

2
C
dψ (t)

dt

1

(1− Cψ (t))2
, (Sup.6)

where b =
√

Ototal
m0

. Then, remembering that ψ (t) = O(t)
m0

represents the firing probability of an

isolated origin, we use Eq. (1) to derive the following evolution equation:

dψ (t)

dt
= k′ (t)

(
b2 − ψ (t)

)
(1− ψ (t)) , (Sup.7)

where k′ (t) = m0k (t). To get a more compact form for the evolution equation of origin firing

probability, we use the following change of variable φ (t) = 1+ 2m0

Ototal
ρ (t) = 1

1−ψ(t)
a

, where a = 1
C

.
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From Eqs. (Sup.6) and (Sup.7), we obtain :

dφ

dt
=
k′ (t)

a

[
a2 −

(
a2 − b2

)
φ2 (t)

]
, (Sup.8)

that corresponds to Eq. (3).

3 Is it necessary to consider the origin firing process as delocalised?

Historically the KJMA theory was developed by assuming that origins fire independently of each

other, and that they only interact through traveling replication forks (passive replication)7. This the-

oretical framework was later modified to incorporate firing correlation among replication origins8;

however, this a posteriori modification required an a priori knowledge of the nature and the range

of correlations. As in this methodology the firing probability could be assigned to a single replica-

tion origin, it could be considered as a localized theory or a state theory (as was first mentioned by

Kolmogrove himself9). The advantage of such a model is that after having defined in an explicit

manner the correlation pattern among origins, one could extract from experimental data the local

firing probability10. In our approach, Eq. (Sup.7) uses the same hypothesis as the original KJMA

theory i.e. it represents the evolution equation for the firing probability in the case where the firing

of a particular origin does not modify the firing probability of other origins. However, Eq. (Sup.8)

represents the evolution equation for the collective firing of n replication origins at a time t and

does not assume any hypothesis on their connectivity. Therefore, the firing probability ρ (t) de-

fined by Eq. (Sup.4) is distributed over n replication origins and in that sense it is delocalized. The

advantage of such an approach is to allow us to extract the global temporal profile of probability

of origin firing without any hypothesis on the interaction among replication origins. Let us note

that, to recover the local probability ψ (x, t) of origin firing, it would be necessary to assume a
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particular configuration for the spatial distribution of replication origin firing.

Therefore, by representing the evolution of firing process as a bimolecular reaction (Eq. (1)), we

have the possibility to verify mathematically if indeed the replication origins fire independently of

each other or if their firing is correlated. One way to answer to this question is to verify which of

the two evolution equations (Eqs. (Sup.7) and (Sup.8)) is valid under the experimental conditions.

Using, as initial conditions, the fact that the probability of origin firing at the start of S phase is

ψ (t = 0) = ρ (t = 0) = 0, we solve analytically Eqs. (Sup.7) and (Sup.8) and find that:

ψ (t) = 2b2
tanh

(
(b2−1)k0

2df

(
1
dw

+ 1
2

) tdf
(

1
dw

+ 1
2

))

(b2 − 1) + (b2 + 1) tanh

(
(b2−1)k0

2df

(
1
dw

+ 1
2

) tdf
(

1
dw

+ 1
2

)) , (Sup.9)

and

ρ (t) = 2b4
tanh

(
(1−b2)k0

2df

(
1
dw

+ 1
2

) tdf
(

1
dw

+ 1
2

))

1− b4 + (1− b2)2 tanh

(
(1−b2)k0

2df

(
1
dw

+ 1
2

) tdf
(

1
dw

+ 1
2

)) . (Sup.10)

Note that by using the expression of ψ (t) (Eq. (Sup.9)) in Eq. (Sup.5), we obtain after some

elementary algebra the same expression of ρ (t) (Eq. (Sup.10)) as the one obtained by solving

Eq. (Sup.8). As measured experimentally, at the end of S phase (t = tend) all Ototal origins

have fired. Therefore, the probability of origin firing at the end of S phase is ψ (t = tend) =

ρ (t = tend) = Ototal
m0

= b2. Thus at t = tend, Eqs. (Sup.9) and (Sup.10) respectively reduce to:

lim
x→−1

tanh−1 (x) = −∞ =

(
b2 − 1

)
k0

2df

(
1
dw

+ 1
2

) tdf( 1
dw

+ 1
2

)
end , (Sup.11)

and

tanh−1
(

1− b4

2b2 − (1− b2)2

)
=

(
1− b2

)
k0

2df

(
1
dw

+ 1
2

) tdf( 1
dw

+ 1
2

)
end . (Sup.12)

By remembering that tend, df and dw are measurable and therefore finite quantities, a close inspec-

tion of expressions (Sup.11) and (Sup.12) shows that while the value of k0 is finite in Eq. (Sup.12),
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this is not the case for Eq. (Sup.11) where k0 should be equal to infinity, meaning that the firing of

replication origins is highly efficient which is contradictory to experimental observations11. This is

the demonstration that expression (Sup.9) for the probability of origin firing does not match with

experimental observations, and more generally that the evolution Eq. (Sup.7) does not describe

correctly the process of origin firing. Therefore, along the line defined in this work, to describe

correctly the replication origin firing process one needs to delocalize this process over the whole

potential replication origins distributed along the genome.

As the physical nature of a phenomenon is independent of the picture that is used to describe it,

the results obtained here should also be valid for any picture that attempts to describe the repli-

cation process. Indeed, as discussed in previous sections, in the simplest form of KJMA model,

an initiation event neither impedes nor favors origin initiation at another locus (localization of ini-

tiation). However, despite this hypothesis, Baker et al 10, 12 have shown that the propagation of

replication forks from fired replication origins creates an apparent correlation between firing time

and efficiency of two distant fired replication origins due to passive replication. In that sense, in

the KJMA model, the propagation of replication forks extends the effect of origin initiation at a

particular locus to other distant loci thereby giving to this model a non-localized character. But,

in contrast to our non-local modeling of DNA replication based on some analogy with scattering

in inhomogeneous media, the KJMA model is based on a state theory where to understand the

structure of local (I (x, t)) and/or whole genome averaged (I (t)) initiation function, it is necessary

to assume a particular mechanism for the existence of correlations between the firing of replication

origins8.
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Along the same lines of the approach we have used here to study the replication process, Gauthier

and Bechhoefer 13 managed to reproduce the genome averaged rate of initiation I (t) in early Xeno-

pus embryos by assuming (i) that during the initial stage of S phase the firing process is reaction

limited, while at the end of S phase it is diffusion limited and (ii) because of the fractal nature of the

chromatin, the initiator factor undergoes a sub-diffusive dynamics. Indeed, the fact that the authors

have assumed that the search process is influenced by the geometry of the chromatin amounts to

introduce a memory in the dynamic of firing process. Thus the firing process at a particular locus

will necessary depend on the other sites visited by a particular initiator factor consistent with a

delocalized picture of firing process14, 15.

4 How sensitive is the model to the variation of parameter values?

To address this question we calculated Facs, fDNA (t)), I (t) andNf (t) profiles for both S.cerevisiae

and human Hela cells by fixing all other variables to values used in the body of the article and only

changing the value of one of the parameters (Figures S1-S10). While the all four profiles are sensi-

tive to the values of the replication fork speed (v), the duration of S phase (tend) and the parameters

b, only I (t) and Nf (t) profiles are sensitive also to changes in the chromatin fractal dimension df

and the dynamic dimension dw.
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Figure S1: The open circles are experimental data and the solid lines are the calculated profiles.

S.cerevisiae (data from Ma et al.16): (a) Facs profile, (b) fDNA (t)), (c) I (t) and (d) Nf (t) for

different values of the replication fork speed: v = 0.5 kb.min−1 (red), 1.68 kb.min−1 (black) and

2.5 kb.min−1 (green).
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Figure S2: The open circles are experimental data and the solid lines are the calculated profiles.

S.cerevisiae (data from Ma et al.16): (a) Facs profile, (b) fDNA (t)), (c) I (t) and (d) Nf (t) for

different values of the chromatin fractal dimension: df = 2 (red), 3 (black) and 2.5 (green).
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Figure S3: The open circles are experimental data and the solid lines are the calculated profiles.

S.cerevisiae (data from Ma et al.16): (a) Facs profile, (b) fDNA (t)), (c) I (t) and (d) Nf (t) for

different values of the dynamics fractal dimension: dw = 1.5 (red), 2 (black) and 2.5 (green).
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Figure S4: The open circles are experimental data and the solid lines are the calculated profiles.

S.cerevisiae (data from Ma et al.16): (a) Facs profile, (b) fDNA (t)), (c) I (t) and (d) Nf (t) for

different values of b2 = Ototal
m0

: 0.43 (red), 0.52 (black) and 0.64 (green).
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Figure S5: The open circles are experimental data and the solid lines are the calculated profiles.

S.cerevisiae (data from Ma et al.16): (a) Facs profile, (b) fDNA (t)), (c) I (t) and (d) Nf (t) for

different values of S phase duration: tend = 29 min (red), 42 min (black) and 60 min (green).
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Figure S6: The open circles are experimental data and the solid lines are the calculated profiles.

Hela (data from Guilbaud et al.17): (a) Facs profile, (b) I (t) and (c) Nf (t) for different values

of the replication fork speed: v = 0.8 kb.min−1 (red), 1.1 kb.min−1 (black) and 1.3 kb.min−1

(green).
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Figure S7: The open circles are experimental data and the solid lines are the calculated profiles.

Hela (data from Guilbaud et al.17): (a) Facs profile, (b) I (t) and (c) Nf (t) for different values of

the chromatin fractal dimension: df = 2 (red), 2.6 (black) and 3 (green).
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Figure S8: The open circles are experimental data and the solid lines are the calculated profiles.

Hela (data from Guilbaud et al.17): (a) Facs profile, (b) I (t) and (c) Nf (t) for different values of

the dynamics fractal dimension: dw = 2 (red), 2.6 (black) and 3 (green).
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Figure S9: The open circles are experimental data and the solid lines are the calculated profiles.

Hela (data from Guilbaud et al.17): (a) Facs profile, (b) I (t) and (c) Nf (t) for different values of

b2 = Ototal
m0

: 0.42 (red), 0.54 (black) and 0.58 (green).
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Figure S10: The open circles are experimental data and the solid lines are the calculated profiles.

Hela (data from Guilbaud et al.17): (a) Facs profile, (b) I (t) and (c) Nf (t) for different values of

S phase duration: tend = 360 min (red), 480 min (black) and 600 min (green).
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