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Supplementary Figures and Legends 

 

 

Figure S1. Schematic of training routes. The 6 training routes from three starting locations to 
the grape dispenser.  The circles represent the car starting location in the room. The arrows 
denote the location of the grape dispenser. The bold and dashed lines represent two routes per 
starting location.  

 

 
 
Figure S2.  An example of decoded translational and rotational velocity commands during 
passive navigation. (A) For Monkey K (R = 0.71 and 0.40 for translational and rotational 
velocity commands) and (B) Monkey M (R = 0.53 and 0.35 for translational and rotational 
velocity commands).  Prediction was evaluated by 5-fold cross validation. 



 
 
Figure S3. Tuning depth analysis. (A) The timing of peak tuning in both velocity (translation 
and rotation) and position (2D plane) were shifted earlier during BMI navigation than in passive 
navigation (Wilcoxon signed rank test, p<0.01 for both monkeys).  Each dot represents one 
neuron under a navigation mode, and the cross indicates the median of all neurons.  (B) The 
tuning depth (R) decreased when shifted from passive navigation to BMI navigation (Wilcoxon 
signed rank test, p<0.01 for both monkeys).  This result was expected as the decoder used during 
BMI navigation was trained during passive navigation.  The crosses indicate the median of all 
neurons, and the medians are also plotted in (C). The error bars represent the upper and lower 
quartile of the median.  While the neurons were better tuned to position during the passive 
training, they were better tuned to velocity during brain control (ANOVA, interaction p=0.0675 
for Monkey K, and p<0.01 for Monkey M). 
 
 
 



 
 
 
Figure S4. Better tuned neurons had more consistent tuning diagrams for Monkey K. 
Supplement to Fig. 2E, which shows that a neuron’s tuning diagrams between passive and BMI 
navigation were better correlated if the neuron is better tuned for Monkey K, but not for Monkey 
M.  This figure shows the same result, but with a group of neurons that were selected by L1-
regularized regression (lasso).  Lasso selected a set of neurons that best decode the translational 
and rotational velocity commands.  (A) Consistent with Fig 2E., Monkey K showed that the best 
decoding neuron set has high correlations in tuning diagram between passive and BMI 
navigation; the correlation drops when including less informative neurons (Mann-Kendall Test, 
p<0.01).  However, such trend was not observed in Monkey M. (B) The corresponding decoding 
performance of (a) relative to the full model as a function of number of neurons. 
 
 
 

 
 
 
Figure S5.  Schematic of decoder output. The decoder was trained from neural activity tuned 
to velocity in wheel chair coordinates. As an example a regular decoder output would move the 
wheelchair forward and right but when inverted, given the same neuronal activities it would now 
move backward and left. 



 
 

 
 
 
Figure S6. The distribution of head orientation as the function of trial time.  The x-axis is 
the head angle in room coordinates, where zero corresponds to the head pointing to the grape. 
The y-axis is the normalized trial time, which normalizes the trial time from zero (the beginning 
of a trial) to one (the end of a trial).  The left panel is the distribution for Monkey K, and the right 
figure is for Monkey M. 
 

 
 

Figure S7. The distribution of the relative orientation between head and wheelchair as the 
function of trial time.  The x-axis is the angle in room coordinates, where zero corresponds to 
the wheelchair pointing to the same direction as the head. The y-axis is the normalized trial time, 
which normalizes the trial time from zero (the beginning of a trial) to one (the end of a trial).  
The left panel is the distribution for Monkey K, and the right figure is for Monkey M. 

 



 
 
 
Figure S8. Standard deviations of the normalized firing rates during navigation and 
reaching. Each dot represents the standard deviation of the normalized firing rate of a neuron in 
a session. The solid line is the regression line, and the Pearson correlation is shown in the right 
end of the line (all p<0.05).  
 
 
 
 
 



 

 

Figure S9.  Overview of the BMI navigation system.  The driving experiment was composed 
of three systems.  The experiment control system controls the experiment flow, decodes 
monkey’s neural signals, tracks the pose of the wheelchair and delivers the grape reward.  The 
wireless recording system receives the monkey’s spiking activities from the monkey’s head 
stage, and sends the activities to the experiment control system.  The modified wheelchair system 
executes the (decoded) wheelchair movement commands from the experiment control system. 

 

 



 

 
Figure S10. Screenshot of spike voltage traces from four different channels as displayed on 
the wireless client interface. (A) Raster plot in bottom panel depicts neuronal spiking activity, 
each row pertains to a single neuron, and each dot is an individual spike, recorded during a 
session (128 channels displayed) from monkey M. (B) Screenshot of the wireless client with four 
channels alongside their corresponding PCA clusters and spike templates. Each channel can 
record a maximum of two neurons. 
 
 
 
 
 
 
 



 
 
 
Figure S11. Neuron-dropping curves. Neuron dropping curves are shown separately for 
decoded translational and rotational velocity commands. 
 
 
 
 
Supplementary Movie Legend 
 
 
Movie S1. Experiment at a glance 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Methods 
 
Wireless Recording System 

Briefly, the wireless recording system comprised the following: digitizing headstages, a 

wireless transceiver, a wireless-to-wired bridge, and client software. Four headstages were 

attached to the transceiver module for a total of 128 channels per transceiver unit on which spike 

sorting could be performed. The bridge received incoming radio packets and converted the signal 

to an Ethernet interface that collected in the client computer which could be visualized with the 

custom designed software client (Fig S10). We recorded from 128 channels in Monkey K and 

256 channels in Monkey M, yielding 140 and 144 neurons from Monkey K (79 neurons from 

M1, 35 from S1, and 26 from Premotor) and Monkey M (72 neurons from M1, and 72 from S1).  

The number of neurons we acquired from a session was 147.0±10.2 for Monkey K and 

157.1±23.9 for Monkey M on average.  

Robotic Wheelchair 

Our robotic wheelchair was a modified, commercially available mid-wheel drive model 

(Sunfire General) manufactured by Drive Medical. It was powered by two 12volt, 36Ah batteries 

connected in series to obtain 24VDC. The motors were 450 watt units and were coupled to each 

drive wheel through a 1:21 ratio transmission, controlled individually to result in directional and 

speed control. The electromagnetic brakes were removed since braking was obtained with a two 

channel motor controller added to the unit. The stock VR2 70A motor controller and joystick 

controls were also completely removed. The powered wheel chair weighed approximately 200Kg 

and provided a stable low center of gravity platform with a cruising range of 38.8Km rolling on 

12 inch diameter drive wheels.  



A Roboteq VDC2450 dual channel motor controller served as the interface between an 

onboard Raspberry Pi (RP) and the wheelchair motors. The RP received the computed motor 

commands through User Datagram Protocol (UDP) from the experiment control system, and the 

RP sent the commands to the Roboteq controller via serial data bus connection. As a safety 

feature, the Roboteq was programmed to stop the robotic wheelchair when the communication 

failed (i.e., the robotic wheelchair did not receive any motor commands for 1 s), or hit obstacles 

(i.e. the wheels failed to turn as current limit was set to 50 Amps). An emergency manual power 

disconnect was prominently placed on the vehicle that would disable the power to the wheels 

should a malfunction occur that requires a complete manual shut down. A secondary 2.4GHz 

wireless control system also interfaced to the Roboteq controller and was used as a remote 

manual wireless control to assist in maneuvering the vehicle between experiments when it was 

not receiving commands from the experiment control system.  

Grape Dispenser 

Black Corinth Champagne wine grapes were selected to be used as a solid fruit reward 

because of their very small size and consistency. Long duration experiments involving hundreds 

of reward transactions can be conducted without the animal losing appetite or interest. The 

grapes were delivered using an in house designed grape dispenser. 

A pneumatic dispenser system was designed and built to allow computer control of this 

reward. The main mechanical parts of the dispenser were a rotating platter disc and stationary 

mount plate with a single drop chute. The parts were designed using SolidWorks 3D Cad and 

were CNC milled from solid blocks of aluminum and have an anodized coating for corrosion 

resistance. Each dispenser consists of 50 chambers of 13mm diameter, 13mm high oriented on a 

340cm diameter rotating platter into which the grapes were loaded.  



A pneumatic double acting cylinder (Robart model 166) was used to ratchet advance the 

platter one chamber at a time around an axis exposing the drop chute that directs the grape to a 

pedestal, presenting the reward. A secondary pneumatic cylinder (Robart model 165) was 

mounted vertically over the drop chute and was time delay activated to push out any grapes that 

may stick in the mechanism over the course of the experiments.  

The air cylinders were actuated with 100 psi air through directional control valves (Ingersol 

Rand model P261SS-012-D-M) and equipped with pneumatic speed controls and regulated to 

permit the pneumatic actions to be tuned for silence and smooth operation. Optoisolators 

(PVG612) were used to interface the 24volt control pneumatic valve to the experiment control 

system via a National Instruments data acquisitions unit (NIDAQ). The Optoisolators were 

mounted onto a custom designed printed circuit board which we use universally for interfacing to 

various powered actuators in the lab. 

Tuning Depth 

To obtain the Tuning Depth that characterized the representation of velocity by each neuron, 

the following multiple linear regression was performed 

 

where 𝑛(𝑡) is the spike count at time 𝑡; 𝜏 is the lag of time bins (each bin was 100 ms); 𝑉𝑡(𝑡) 

and 𝑉𝑟(𝑡) are the translational and rotational velocity command at time 𝑡, 𝛼(𝜏) and  are 

regression coefficients  is the intercept; and 𝜖(𝑡) is the residual error.  Once the regression model 

was fitted, we calculated the goodness-of-fit (𝑅2), and the Tuning Depth was the square root of 

𝑅2.  Because the 𝜏 ranged from 1 s before to 1 s after the spike count measurement, it allowed the 

Tuning Depth to capture any tuning before or after that time.   



We also investigated the tuning in finer temporal resolution (i.e., at each time lag).  We 

applied the equation above; however, instead of summing over all the time lag 𝜏, each 𝜏 was 

considered separately to obtain Tuning Depth for each 𝜏.  Therefore, we could learn when the 

neuron was best tuned to the velocity commands. 

This equation could also be used to calculate whether a neuron was tuned to other behavioral 

variables by simply replacing 𝑉𝑡(𝑡) and 𝑉𝑟(𝑡) by other kinematics measure, such as acceleration. 

Neuron dropping curves of the tuning depths were computed for both monkeys across all 

sessions (Fig S11). 

Behavioral Improvement 

The performance on each trial was characterized by trial duration and the length of the 

trajectory from the starting location to the reward location. For each session, the medians of trial 

duration and trajectory length were obtained to represent the behavioral performance of the 

session.  Next, Mann-Kendall Trend Test was performed on these medians for all the sessions to 

see whether a trend was present. 

Comparison between Decoders across Days 

To compare decoding across different experimental days, we applied a decoder trained on 

day A to neuronal data recorded on day B, and vice versa, and measured the change in decoding 

performance in passive navigation trials.  More specifically, to compare two decoders A and B 

trained on passive navigation of sessions A and B, respectively, we started with identifying 

neurons that were found in both sessions.  Next, we normalized the firing rate of each neuron by 

subtracting its mean and dividing by its standard deviation.  Then, decoder A was trained on 

session A, and decoder B was trained on session B.   Decoder A was then applied to session A 

and B, and decoder B was applied to both sessions.  This way, for each session, we had two 



predictions of velocity during passive navigation: the one obtained using the same day’s decoder 

and the one obtained by a different day’s decoder. The comparison of these two predictions, 

quantified as Pearson correlation, was used as a measure of the decoders’ similarity.  

Inverted Decoder  

After the last session, we ran an additional session to see whether the monkeys learned to 

utilize the directional properties of the decoder.  The hypothesis was that if the monkeys utilized 

BMI directional commands, their performance would have been significantly impaired after the 

decoder output was inverted. In this inversion procedure, the absolute values of the translational 

and rotational velocity commands were kept the same, whereas their signs were reversed: 

forward movement was turned into backward movement, backward into forward, leftward into 

rightward, and rightward into leftward.  In this control experiment, the monkeys went through 30 

trials of passive navigation as usual.  Then, the monkey controlled the robotic wheelchair the 

regular way for the first half of BMI navigations (~45 trials).  However, during the second half 

of BMI navigation (~45 trials), the decoders were inverted. 

Offline Wiener Filter Distance Decoding 

For each mode (brain-control, passive navigation), Wiener filters were trained and tested 

using each mode's neural ensemble and kinematics data to decode distance, through five rounds 

of 2-fold cross-validation, for each session. The R-of-prediction for all five rounds were 

averaged to obtain the R value for each session. To test the generalization of the filters, for each 

session we applied all Wiener filters (five per session) trained in one regime to the other's data, 

and averaged the resulting R-of-predictions to obtain the session's R-value. 
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