## Identification and characterization of Wor4, a new transcriptional regulator of whiteopaque switching

Matthew B. Lohse<sup>\*,1</sup> and Alexander D. Johnson<sup>\*,†,2</sup>

\*Department of Microbiology and Immunology, 600 16<sup>th</sup> Street, University of California, San Francisco, San Francisco, CA 94158, USA

<sup>†</sup>Department of Biochemistry and Biophysics, 600 16<sup>th</sup> Street, University of California, San Francisco, San Francisco, CA 94158, USA

<sup>1</sup>Present address: BioSynesis Inc., San Francisco, CA, USA

<sup>2</sup>Address correspondence to: Alexander D. Johnson (ajohnson@cgl.ucsf.edu)

## **Supplemental Figures**



Figure S1: Single cell morphology of *wor4* and *rfg1* deletions. (a) Typical white and opaque cells for the *wor4* heterozygous deletion as well as the *wor4* and *rfg1* homozygous deletions as well as the matching wild type strains. (b) Typical cellular morphology for strains with the p*MET3* ectopic expression system driving *WOR1* or an empty control in the wild type and *wor4* deletion backgrounds on inducing or repressing media. (c) Opaque colonies from the WOR1 ectopic expression assay in (b) were restreaked to repressing media plates and the resulting colonies were then resuspended in water, diluted, and plated on repressing media and allowed to grow.

Images were taken of typical cells from one white and three opaque looking p*MET3-WOR1 wor4/wor4* colonies as well as opaque colonies of the control strains. Scale bars are 10µm.



Figure S2: Wor4 localizes to the nucleus in both white and opaque cells. (a) Visualization of Wor4-GFP and Htb1-mCherry fusion proteins in both white and opaque cells. Merged images (DIC, GFP, mCherry), GFP fluorescence, and mCherry fluorescence are shown. Scale bar is  $5\mu$ m. (b) Western blot of white and opaque strains either containing (Wor4/Wor4-13x myc) or lacking (Wor4/Wor4) c-terminally 13x myc tagged Wor4. Wor4 in green,  $\alpha$ -tubulin loading control in red.



Figure S3: Wor4 belongs to the C2H2 Zinc Finger family of proteins and is found across the fungal domain. (a) Scale model of Wor4, the black box represents the 47aa (amino acids 175-221) region identified by HHpred as belonging to the C2H2 Zinc Finger family. ELM identified a similar, although smaller, region (amino acids 186-212) as belonging to the same family. (b) Phylogenetic tree of 23 fungal species, species with a Wor4 homolog are in black and species lacking a Wor4 homolog are in grey. Branch lengths are not to scale.

# Supplemental Tables

Table S1: Oligonucleotides

| Category                          | Name        | Descript<br>ion           | Oligonucleotide sequence                                          |  |
|-----------------------------------|-------------|---------------------------|-------------------------------------------------------------------|--|
| pMBL180<br>construct<br>ion       | MBL12<br>2  | mCherr<br>y 5'<br>HindIII | gttacaaagcttATG GTT TCT AAG GGT GAA GAA GAT                       |  |
| pMBL180<br>construct<br>ion       | MBL12<br>1  | mCherr<br>y 3' Pstl       | ctcggactgcagTTAC TTG TAC AAT TCA TCC ATA CCA CC                   |  |
| pMBL180<br>construct<br>ion       | MBL35<br>4  | SAT1 5'<br>Pstl           | Gttaca ctgcag GAG TGA AAT TCT GGA AAT CTG GAA ATC                 |  |
| pMBL180<br>construct<br>ion       | MBL35<br>5  | SAT1 3'<br>HindIII        | ctcgga ggatcc GCA GGA CCA CCT TTG ATT GTA AAT AG                  |  |
|                                   |             |                           |                                                                   |  |
| pADH76<br>Construc<br>tion        | AHO6<br>96  | GFP 5'<br>Aval            | aaaactcgagcggatccccgggttaattaacggtatgtctaaaggtgaagaattattcactggtg |  |
| pADH76<br>Construc<br>tion        | AHO6<br>98  | GFP 3'<br>Aval            | cttcctcgagTTATTTGTACAATTCATCCATACCATG                             |  |
|                                   |             |                           |                                                                   |  |
| pADH57<br>construct<br>ion        | AHO4<br>07  | TDH3 5'<br>Xbal           | tgggtatctagatgctcctcgtcgacaacgac                                  |  |
| pADH57<br>construct<br>ion        | AHO4<br>08  | TDH3 3'<br>BamHl          | CCCGGGGGATCCTAATTTGATTGTAAAGTTTGTTGATGTTAATTG                     |  |
|                                   |             |                           |                                                                   |  |
| WOR4<br>Ectopic<br>Expressio<br>n | MLP78<br>0  | Wor4 5'<br>BamHI          | Gttaca GGATCC ATG TCG AGT GAT AAA CCT GAA CAA G                   |  |
| WOR4<br>Ectopic<br>Expressio<br>n | MLP78<br>1  | Wor4 3'<br>Xmal           | CTC GGA CCC GGG TTA AAT GCC TGG TTG GGT TG                        |  |
| WOR4<br>Ectopic<br>Expressio<br>n | MLP11<br>37 | Wor4 3'<br>Pstl           | CTC GGA CTG CAG TTA AAT GCC TGG TTG GGT TG                        |  |
|                                   |             |                           |                                                                   |  |

used in this study.

| RFG1<br>Ectopic<br>Expressio<br>n                                                  | MLP77<br>7                                     | Rfg1 5'<br>BamHI                      | Gttaca GGATCC ATG TCT ACT GCT ATC TAC TAT TCA ACT C   |  |
|------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------|-------------------------------------------------------|--|
| RFG1<br>Ectopic<br>Expressio<br>n                                                  | MLP77<br>8                                     | Rfg1 3'<br>Xmal                       | CTC GGA CCC GGG TTA TTG TGG AGG TTG TTG TTG ATG<br>AT |  |
|                                                                                    |                                                |                                       |                                                       |  |
| WOR4<br>Deletion                                                                   | NHO3<br>20                                     | WOR4<br>5'<br>External                | TTGGGCTGATCTATACTTCTGGGTA                             |  |
| WOR4<br>Deletion                                                                   | NHO3<br>21                                     | WOR4<br>5'<br>Internal                | CACGGCGCGCCTAGCAGCGGCCTCAAGCTGCAAAAATAGTT<br>TCTCTC   |  |
| WOR4<br>Deletion                                                                   | NHO3<br>22                                     | WOR4<br>3'<br>Internal                | GTCAGCGGCCGCATCCCTGCGAAATGAGGATTTGAATGATC<br>CTCTGTTG |  |
| WOR4<br>Deletion                                                                   | NHO3<br>23                                     | WOR4<br>3'<br>External                | TCAGCACTATCCATATCTTCAGCCA                             |  |
| WOR4<br>Deletion                                                                   | NHO3<br>24                                     | WOR4<br>5' Check                      | GAAGGAATTGAGCAATAGGACAAAGATTTG                        |  |
| WOR4<br>Deletion                                                                   | NHO3<br>25                                     | WOR4<br>3' Check                      | AGCGATGAATCAACATCACCAACTTG                            |  |
| WOR4<br>Deletion                                                                   | NHO3<br>26                                     | WOR4<br>5' ORF<br>Check<br>Set 1      | ATGCCAATTACCAACCTCAAGCTC                              |  |
| WOR4<br>Deletion                                                                   | WOR4 NHO3 3' ORF<br>Deletion 27 Check<br>Set 1 |                                       | CCATACCAATAGTTTCCAGCAGT                               |  |
| WOR4 MLP10 5' ORF<br>Deletion 51 Check Set 2 TAA CCA AAA AGC ATG GTC ACA GAA AAT ( |                                                | TAA CCA AAA AGC ATG GTC ACA GAA AAT C |                                                       |  |
| WOR4<br>Deletion                                                                   | MLP10<br>52                                    | WOR4<br>3' ORF<br>Check<br>Set 2      | CAA CGT CAT TGA TTC CTA AGA GAG AC                    |  |
| WOR4<br>Deletion                                                                   | MLp10<br>53                                    | WOR4<br>5' ORF<br>Check<br>Set 3      | CCT AGA TCC AAA GGA TTC AAA AAA CGC                   |  |
| WOR4<br>Deletion                                                                   | MLp10<br>54                                    | WOR4<br>3' ORF                        | CAG GAA ACG AAC AAG GAT ATT TTC TCT C                 |  |

|                  |            | Check<br>Set 3                      |                                                                                                                        |  |  |
|------------------|------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
|                  |            |                                     |                                                                                                                        |  |  |
| RFG1             | NHO3       | RFG1 5'                             | GGTGACTCCGATTTTCCGAACTAA                                                                                               |  |  |
| Deletion         | 47         | External                            |                                                                                                                        |  |  |
| RFG1             | NHO3       | RFG1 5'                             | CACGGCGCGCCTAGCAGCGGTGGTGTGATGGTTTGCAAATAAAT                                                                           |  |  |
| Deletion         | 48         | Internal                            |                                                                                                                        |  |  |
| RFG1             | NHO3       | RFG1 3'                             | GTCAGCGGCCGCATCCCTGCGTAGCTTGCTTTCTCTACAGAAAAGAGAAAT                                                                    |  |  |
| Deletion         | 49         | Internal                            |                                                                                                                        |  |  |
| RFG1             | NHO3       | RFG1 3'                             | AAGGTGGCCGTGTGAGAAAGTTTA                                                                                               |  |  |
| Deletion         | 50         | External                            |                                                                                                                        |  |  |
| RFG1             | NHO3       | RFG1 5'                             | CACACCTGCACACCTACATTTG                                                                                                 |  |  |
| Deletion         | 51         | Check                               |                                                                                                                        |  |  |
| RFG1             | NHO3       | RFG1 3'                             | TTGGTTTAGGACCTGGGCGT                                                                                                   |  |  |
| Deletion         | 52         | Check                               |                                                                                                                        |  |  |
| RFG1<br>Deletion | NHO3<br>53 | RFG1 5'<br>ORF<br>Check<br>Set      | TTGGTGGTGGTATTGATGGTAACTTT                                                                                             |  |  |
| RFG1<br>Deletion | NH354      | RFG1 3'<br>ORF<br>Check<br>Set      | ACGAGAAGTTAATCCACCACTGAGACT                                                                                            |  |  |
|                  |            |                                     |                                                                                                                        |  |  |
| WOR4<br>Tagging  | MLP87<br>4 | WOR4-<br>13x Myc<br>and -<br>GFP 5' | Cttaggaatcaatgacgttgattcaagaaaccaaattgacgataacaaaccaacc                                                                |  |  |
| WOR4<br>Tagging  | MLP87<br>5 | WOR4-<br>13x Myc<br>and -<br>GFP 3' | TTA ATT TTC TAA AAT AAA TCT ATA TGA ATA CAA CAG<br>AGG ATC ATT CAA ATC CTC ATT TCA TTT A<br>GGCGGCCGCTCTAGAACTAGTGGATC |  |  |
| WOR4             | mLp89      | WOR4                                | Atgattacactgctggaaactattggtatg                                                                                         |  |  |
| Tagging          | 3          | 5' check                            |                                                                                                                        |  |  |
| WOR4             | MLP88      | WOR4                                | GTG GTA CGT GAC AAT GAG GTT GGG                                                                                        |  |  |
| Tagging          | 0          | 3' check                            |                                                                                                                        |  |  |
| WOR4             | MLP87      | myc 5'                              | CCGTTAATTAACCCGGGGGATC                                                                                                 |  |  |
| Tagging          | 6          | check                               |                                                                                                                        |  |  |
| WOR4             | MLP87      | myc 3'                              | Ggaacttcagatccactagttctagagc                                                                                           |  |  |
| Tagging          | 7          | in check                            |                                                                                                                        |  |  |

| WOR4<br>Tagging                | MLP87<br>8  | myc 3'<br>flipped<br>check | TCACTAGTGAATTCGCGCTCGAG                                                                                                  |  |
|--------------------------------|-------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| WOR4<br>Tagging                | MBL20<br>9  | GFP 5'<br>check            | GGT TGG CCA TGG AAC TGG CA                                                                                               |  |
| WOR4<br>Tagging                | MBL38<br>2  | GFP 3'<br>flipped<br>check | GGT GAT GGT CCA GTC TTG TTA CCA GAC                                                                                      |  |
|                                |             |                            |                                                                                                                          |  |
| HTB1<br>and<br>HTB2<br>Tagging | MLP11<br>94 | HTB1-<br>mCherr<br>y 5'    | gccgtttccgaaggtaccagagccgtcacaaaatactcatctgcttctagt<br>ggtAGAAGAatcCCAGGTttaattaac GTT TCT AAG GGT GAA GAA<br>GAT A      |  |
| HTB1<br>and<br>HTB2<br>Tagging | MLP11<br>95 | HTB1-<br>mCherr<br>y 3'    | AAA AAA AAA GTG GGC AAC TAA AAA TAC AAT TGG GAG<br>ACA ATA CAA GAT CCA TCA CAT CTA GCA GGA CCA CCT<br>TTG ATT GTA AAT AG |  |
| HTB1<br>and<br>HTB2<br>Tagging | MLP11<br>92 | HTB2-<br>mCherr<br>y 5'    | gctgtttctgaaggtactagagctgttaccaaatactcttctgcttctaat<br>ggtAGAAGAatcCCAGGTttaattaac GTT TCT AAG GGT GAA GAA GAT A         |  |
| HTB1<br>and<br>HTB2<br>Tagging | MLP11<br>93 | HTB2-<br>mCherr<br>y 3'    | AAC AAT AAT TTG GAG AAA TAA ACC ATT CAT GAC AAA<br>CCT CTC TCT CTC TTT CTT TTT TTA GCA GGA CCA CCT<br>TTG ATT GTA AAT AG |  |
| HTB1<br>and<br>HTB2<br>Tagging | mLP11<br>98 | HTB1 5'<br>check           | TCT CCT TCT CTC TCT TGT CAC TTC TTC TTC CTC                                                                              |  |
| HTB1<br>and<br>HTB2<br>Tagging | MLP11<br>99 | HTB1 3'<br>check           | CCA AGA GGT CCC TGA AAT TCA GAA GTT TCT TG                                                                               |  |
| HTB1<br>and<br>HTB2<br>Tagging | MLp11<br>96 | HTB2 5'<br>check           | CAA TAA CAA CAA GAG ATT CAC GTG ACA CAC AAA                                                                              |  |
| HTB1<br>and                    | MLP11<br>97 | HTB2 3<br>check            | GGA GAT AGA AAA GAA TTG GGT CCA ACA CCA                                                                                  |  |

| HTB2                           |             |                         |                                         |
|--------------------------------|-------------|-------------------------|-----------------------------------------|
| Tagging                        |             |                         |                                         |
| HTB1<br>and<br>HTB2<br>Tagging | MLP12<br>03 | mCherr<br>y 5'<br>check | TTG TGG AGA CAA AAT ATC CCA GGC GAA TG  |
| HTB1<br>and<br>HTB2<br>Tagging | MLP12<br>04 | mCherr<br>y 3'<br>Check | TTG ACC TCT TCA CGT ATA AAA CTA GAC CTC |
|                                |             |                         |                                         |
| qPCR                           | MLP11<br>86 | Wor1 5'                 | TGGGTATGGTAACCACCTT                     |
| qPCR                           | MLP11<br>87 | Wor1 3'                 | TGATACTACCTGTACCAGTCGCAA                |
| qPCR                           | MLP11<br>90 | Dyn1<br>control<br>5'   | CATCCAACACTTCCAACCAATTACATTA            |
| qPCR                           | MLP11<br>91 | Dyn1<br>control<br>3'   | TAATTCTTGTTCAAAAGCCAAAGATTCG            |

Table S1: Oligonucleotides used in this study.

| Description                | Name    | Reference  |
|----------------------------|---------|------------|
| <i>LEU2</i> Knock Out      | pSN40   | 1          |
| HIS1 Knock Out             | pSN52   | 1          |
| Arg MTL Knock Out Cassette | pJD1    | 2          |
| pMET3-blank-SAT1           | pADH33  | 3          |
| pTDH3-blank-SAT1           | pADH57  | This Study |
| p <i>MET3-WOR1-SAT1</i>    | pADH35  | 4          |
| p <i>MET3-WOR4-SAT1</i>    | pMBL640 | This Study |
| pMET3-RFG1-SAT1            | pMBL639 | This Study |
| pTDH3-WOR4-SAT1            | pMBL707 | This Study |
| C-terminal CaGFP Source    | pADH76  | This Study |
| C-terminal 13x Myc Source  | pADH34  | 5          |
| C-terminal mCherry Source  | pMBL180 | This Study |

Table S2: Plasmids used in this study.

#### References

Noble, S. M., and A. D. Johnson, 2005 Strains and strategies for large-scale gene deletion studies of the

1 diploid human fungal pathogen *Candida albicans*. Eukaryot. Cell 4: 298–309.

Lin, C. H., S. Kabrawala, E. P. Fox, C. J. Nobile, A. D. Johnson et al., 2013 Genetic control of conventional

<sup>2</sup> and pheromone-stimulated biofilm formation in *Candida albicans*. PLoS Pathog. 9: e1003305.

Lohse, M. B., A. D. Hernday, P. M. Fordyce, L. Noiman, T. R. Sorrells et al., 2013 Identification and

3 characterization of a previously undescribed family of sequence-specific DNA-binding domains. Proc. Natl. Acad. Sci. U. S. A. 110: 7660–7665.

Hernday, A. D., M. B. Lohse, P. M. Fordyce, C. J. Nobile, J. D. DeRisi et al., 2013 Structure of the Transcriptional

4 Network Controlling White-Opaque Switching in Candida albicans. Mol. Microbiol. 90: 22–35.

Hernday, A. D., S. M. Noble, Q. M. Mitrovich, and A. D.
Johnson, 2010 Genetics and molecular biology in *Candida albicans*. Methods Enzymol. 470: 737–758.

Table S2: Plasmids used in this study.

Table S3: Strains used in this study.

| Description                                | Number                     | Genotype                                                                                                                                                       | Reference  |
|--------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Starting Strains                           |                            |                                                                                                                                                                |            |
| a/α -His -Leu -Arg Strain                  | SNY152                     | a/alpha leu2Δ/leu2Δ his1Δ/his1Δ<br>URA3/ura3Δ::imm <sup>434</sup> IRO1/iro1Δ::imm <sup>434</sup><br>arg1::hisG/arg1::hisG                                      | 1          |
| a/a -His -Leu Strain                       | RZY47                      | a/a leu2∆/leu2∆ his1∆/his1∆<br>URA3/ura3∆::imm434 IRO1/iro1∆::imm434                                                                                           | 2          |
| Controls                                   |                            |                                                                                                                                                                |            |
| Wild Type, White                           | WTwhite <i>,</i><br>AHY304 | a/∆alpha C.m.LEU2/leu2∆ C.d.HIS1/his1∆<br>URA3/ura3∆::imm <sup>434</sup> IRO1/iro1∆::imm <sup>434</sup><br>arg1::hisG/arg1::hisG ∆MTLalpha ::ARG1              | 3          |
| Wild Type, Opaque                          | WTopaque,<br>AHY336        | a/Δalpha C.m.LEU2/leu2Δ C.d.HIS1/his1Δ<br>URA3/ura3Δ::imm <sup>434</sup> IRO1/iro1Δ::imm <sup>434</sup><br>arg1::hisG/arg1::hisG ΔMTLalpha ::ARG1              | 3          |
| Wild Type, White                           | AHY135                     | a/a C.m.LEU2/leu2∆ C.d.HIS1/his1∆<br>URA3/ura3∆::imm <sup>434</sup> IRO1/iro1∆::imm <sup>434</sup>                                                             | 3          |
| Wild Type, Opaque                          | AHY136                     | a/a C.m.LEU2/leu2ΔC.d.HIS1/his1Δ<br>URA3/ura3Δ::imm <sup>434</sup> IRO1/iro1Δ::imm <sup>434</sup>                                                              | 3          |
| Ectopic Expression<br>Strains              |                            |                                                                                                                                                                |            |
| Wild Type, White,<br>p <i>MET3</i> -Blank  | AHY214                     | a/a C.m.LEU2/leu2∆ C.d.HIS1/his1∆<br>URA3/ura3∆::imm <sup>434</sup> IRO1/iro1∆::imm <sup>434</sup><br>p <i>MET3-</i> blank; SAT1; RP10                         | 3          |
| Wild Type, Opaque,<br>p <i>MET3</i> -Blank | AHY375,<br>MLY1166         | a/a C.m.LEU2/leu2∆ C.d.HIS1/his1∆<br>URA3/ura3∆::imm <sup>434</sup> IRO1/iro1∆::imm <sup>434</sup><br>p <i>MET3-</i> blank; SAT1; RP10                         | This study |
| Wild Type, White,<br>p <i>MET3-WOR1</i>    | AHY204                     | <i>a/a C.m.LEU2/leu2</i> ∆ C.d.HIS1/his1∆<br>URA3/ura3∆::imm <sup>434</sup> IRO1/iro1∆::imm <sup>434</sup><br>p <i>MET3-WOR1</i> ; SAT1; RP10                  | 3          |
| Wild Type, Opaque,<br>p <i>MET3-WOR1</i>   | MLY1165                    | <i>a/a C.m.LEU2/leu2</i> ∆ C.d.HIS1/his1∆<br>URA3/ura3∆::imm <sup>434</sup> IRO1/iro1∆::imm <sup>434</sup><br>p <i>MET3-WOR1</i> ; SAT1; RP10                  | This Study |
| Wild Type, White, p <i>MET3-WOR4</i>       | MLY1214                    | a/a C.m.LEU2/leu2∆ C.d.HIS1/his1∆<br>URA3/ura3∆::imm <sup>434</sup> IRO1/iro1∆::imm <sup>434</sup><br>p <i>MET3-WOR4</i> ; SAT1; RP10                          | This Study |
| Wild Type, Opaque, p <i>MET3-WOR4</i>      | MLY1230                    | a/a C.m.LEU2/leu2 $\Delta$ C.d.HIS1/his1 $\Delta$<br>URA3/ura3 $\Delta$ ::imm <sup>434</sup> IRO1/iro1 $\Delta$ ::imm <sup>434</sup><br>pMET3-WOR4; SAT1; RP10 | This Study |

| Wild Type, White,<br>pMET3-RFG1a/a C<br>URAS<br>pME                                           |                                                                                                                                                                                                 | a/a C.m.LEU2/leu2∆ C.d.HIS1/his1∆<br>URA3/ura3∆::imm <sup>434</sup> IRO1/iro1∆::imm <sup>434</sup><br>p <i>MET3-RFG1</i> ; SAT1; RP10                                                                                             | This Study |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Wild Type, Opaque,<br>p <i>MET3-RFG1</i>                                                      | MLY1241                                                                                                                                                                                         | a/a C.m.LEU2/leu2 $\Delta$ C.d.HIS1/his1 $\Delta$<br>URA3/ura3 $\Delta$ ::imm <sup>434</sup> IRO1/iro1 $\Delta$ ::imm <sup>434</sup><br>p <i>MET3-RFG1</i> ; SAT1; RP10                                                           | This Study |
| <i>wor4/wor4</i> , White,<br>p <i>MET3</i> -Blank                                             | MLY1372,<br>MLY1379                                                                                                                                                                             | a/Δalpha leu2Δ/leu2Δ his1Δ/his1Δ<br>URA3/ura3Δ::imm <sup>434</sup> IRO1/iro1Δ::imm <sup>434</sup><br>arg1::hisG/arg1::hisG<br>wor4Δ::C.m.LEU2/wor4Δ::C.d.HIS1 ΔMTLalpha<br>::ARG1 pMET3-blank; SAT1; RP10                         | This Study |
| wor4/wor4, White,<br>pMET3-WOR1                                                               | MLY1373,<br>MLY1380                                                                                                                                                                             | a/Δalpha leu2Δ/leu2Δ his1Δ/his1Δ<br>URA3/ura3Δ::imm <sup>434</sup> IRO1/iro1Δ::imm <sup>434</sup><br>arg1::hisG/arg1::hisG<br>wor4Δ::C.m.LEU2/wor4Δ::C.d.HIS1 ΔMTLalpha<br>::ARG1 pMET3-WOR1; SAT1; RP10                          | This Study |
| Wild Type, White,<br>pMET3-Blank<br>MLY1365<br>MLY1365<br><i>arg1::hisG/ar</i><br>pMET3-blank |                                                                                                                                                                                                 | a/Δalpha C.m.LEU2/leu2Δ C.d.HIS1/his1Δ<br>URA3/ura3Δ::imm <sup>434</sup> IRO1/iro1Δ::imm <sup>434</sup><br>arg1::hisG/arg1::hisG ΔMTLalpha ::ARG1<br>pMET3-blank; SAT1; RP10                                                      | This Study |
| Wild Type, White,<br>p <i>MET3-WOR1</i>                                                       | MLY1366                                                                                                                                                                                         | a/Δalpha C.m.LEU2/leu2Δ C.d.HIS1/his1Δ<br>URA3/ura3Δ::imm <sup>434</sup> IRO1/iro1Δ::imm <sup>434</sup><br>arg1::hisG/arg1::hisG ΔMTLalpha ::ARG1<br>pMET3-WOR1; SAT1; RP10                                                       | This Study |
| <i>wor1/wor1</i> , White,<br>p <i>MET3</i> -Blank                                             | MLY1393                                                                                                                                                                                         | a/a leu2 $\Delta$ /leu2 $\Delta$ his1 $\Delta$ /his1 $\Delta$<br>URA3/ura3 $\Delta$ ::imm <sup>434</sup> IRO1/iro1 $\Delta$ ::imm <sup>434</sup><br>wor1 $\Delta$ ::C.m.LEU2/wor1 $\Delta$ ::C.d.HIS1 pMET3-<br>blank; SAT1; RP10 | This Study |
| <i>wor1/wor1</i> , White,<br>p <i>MET3-WOR1</i>                                               | MLY1394                                                                                                                                                                                         | a/a leu2Δ/leu2Δ his1Δ/his1Δ<br>URA3/ura3Δ::imm <sup>434</sup> IRO1/iro1Δ::imm <sup>434</sup><br>wor1Δ::C.m.LEU2/wor1Δ::C.d.HIS1 pMET3-<br>WOR1; SAT1; RP10                                                                        | This Study |
| <i>wor1/wor1</i> , White, pMET3-WOR4                                                          | wor1/wor1, White,<br>MLY1395 MLY1395 a/a leu2Δ/leu2Δ his1Δ/his1Δ<br>URA3/ura3Δ::imm <sup>434</sup> IRO1/iro1Δ::imm <sup>434</sup><br>wor1Δ::C.m.LEU2/wor1Δ::C.d.HIS1 pMET3-<br>WOR4: SAT1: RP10 |                                                                                                                                                                                                                                   | This Study |
| Wild Type, p <i>TDH3-WOR4</i>                                                                 | MLY1420                                                                                                                                                                                         | a/a C.m.LEU2/leu2 $\Delta$ C.d.HIS1/his1 $\Delta$<br>URA3/ura3 $\Delta$ ::imm <sup>434</sup> IRO1/iro1 $\Delta$ ::imm <sup>434</sup><br>pTDH3-WOR4; SAT1; RP10                                                                    | This Study |
| Deletion Strains                                                                              |                                                                                                                                                                                                 |                                                                                                                                                                                                                                   |            |

| wor1/wor1, White RZY219 a/a leu2 $\Delta$ /leu2 $\Delta$ his1 $\Delta$ /his.<br>wor1/wor1, White RZY219 URA3/ura3 $\Delta$ ::imm <sup>434</sup> IRO1,<br>wor1 $\Delta$ ::C.m.LEU2/wor1 $\Delta$ :: |                                                                                                                                                                                                                                               | a/a leu2_/leu2_/ his1_/his1_/<br>URA3/ura3_4::imm <sup>434</sup> IRO1/iro1_4::imm <sup>434</sup><br>wor1_4::C.m.LEU2/wor1_4::C.d.HIS1                                             | 2          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| <i>WOR4/wor4,</i> White                                                                                                                                                                            | MLY1135                                                                                                                                                                                                                                       | a/a leu2 <u>//leu2</u> /his1 <u>/</u> /his1 <u>/</u><br>URA3/ura3 <u>/</u> ::imm <sup>434</sup> IRO1/iro1 <u>/</u> ::imm <sup>434</sup><br>WOR4/wor4 <u>/</u> ::C.d.HIS1          | This Study |
| WOR4/wor4, Opaque                                                                                                                                                                                  | a/a leu2∆/leu2∆ his1∆/his1∆<br>WOR4/wor4, Opaque MLY1137 URA3/ura3∆::imm <sup>434</sup> IRO1/iro1∆::imm <sup>434</sup><br>WOR4/wor4∆::C.d.HIS1                                                                                                |                                                                                                                                                                                   | This Study |
| <i>wor4/wor4,</i> White                                                                                                                                                                            | MLY1355A,<br>MLY1355B                                                                                                                                                                                                                         | a/Δalpha leu2Δ/leu2Δ his1Δ/his1Δ<br>URA3/ura3Δ::imm <sup>434</sup> IRO1/iro1Δ::imm <sup>434</sup><br>arg1::hisG/arg1::hisG<br>wor4Δ::C.m.LEU2/wor4Δ::C.d.HIS1 ΔMTLalpha<br>::ARG1 | This Study |
| <i>rfg1/rfg1</i> , White                                                                                                                                                                           | MLY1136                                                                                                                                                                                                                                       | a/a leu2 <u>//leu2</u> /his1 <u>/</u> /his1 <u>/</u><br>URA3/ura3_1::imm <sup>434</sup> IRO1/iro1_1::imm <sup>434</sup><br>rfg1_1::C.m.LEU2/rfg1_1::C.d.HIS1                      | This Study |
| <i>rfg1/rfg1</i> , Opaque                                                                                                                                                                          | MLY1138                                                                                                                                                                                                                                       | a/a leu2A/leu2A his1A/his1A<br>URA3/ura3A::imm <sup>434</sup> IRO1/iro1A::imm <sup>434</sup><br>rfg1A::C.m.LEU2/rfg1A::C.d.HIS1                                                   | This Study |
| Taggod Strains                                                                                                                                                                                     |                                                                                                                                                                                                                                               |                                                                                                                                                                                   |            |
| Wor4-GFP, White                                                                                                                                                                                    | MLY1295                                                                                                                                                                                                                                       | a/a C.m.LEU2/leu2∆ C.d.HIS1/his1∆<br>URA3/ura3∆::imm <sup>434</sup> IRO1/iro1∆::imm <sup>434</sup><br>WOR4/WOR4-GFP                                                               | This Study |
| Wor4-GFP, Opaque                                                                                                                                                                                   | MLY1304                                                                                                                                                                                                                                       | a/a C.m.LEU2/leu2∆ C.d.HIS1/his1∆<br>URA3/ura3∆::imm <sup>434</sup> IRO1/iro1∆::imm <sup>434</sup><br>WOR4/WOR4-GFP                                                               | This Study |
| Wor4-13x myc, White                                                                                                                                                                                | MLY1286                                                                                                                                                                                                                                       | a/a C.m.LEU2/leu2∆ C.d.HIS1/his1∆<br>URA3/ura3∆::imm <sup>434</sup> IRO1/iro1∆::imm <sup>434</sup><br>WOR4/WOR4-13x myc                                                           | This Study |
| Wor4-13x myc, Opaque                                                                                                                                                                               | MLY1298                                                                                                                                                                                                                                       | a/a C.m.LEU2/leu2Δ C.d.HIS1/his1Δ<br>URA3/ura3Δ::imm <sup>434</sup> IRO1/iro1Δ::imm <sup>434</sup><br>WOR4/WOR4-13x myc                                                           | This Study |
| Microscon Chro                                                                                                                                                                                     |                                                                                                                                                                                                                                               |                                                                                                                                                                                   |            |
| HTB1-mCherry, Wor4-<br>GFP, White                                                                                                                                                                  | Microscopy Strains       a/a C.m.LEU2/leu2 \Delta C.d.HIS1/his1 \Delta         HTB1-mCherry, Wor4-       MLY1460       uRA3/ura3 \Delta::imm^{434} IRO1/iro1 \Delta::imm^{434}         GFP, White       WOR4/WOR4-GFP HTB1/HTB1-mCherry::SAT1 |                                                                                                                                                                                   | This Study |
| HTB1-mCherry, Wor4-<br>GFP, Opaque                                                                                                                                                                 | MLY1467                                                                                                                                                                                                                                       | a/a C.m.LEU2/leu2∆ C.d.HIS1/his1∆<br>URA3/ura3∆::imm <sup>434</sup> IRO1/iro1∆::imm <sup>434</sup><br>WOR4/WOR4-GFP HTB1/HTB1-mCherry::SAT1                                       | This Study |

| HTB2-mCherry, Wor4-<br>GFP, White  | MLY1462 | a/a C.m.LEU2/leu2Δ C.d.HIS1/his1Δ<br>URA3/ura3Δ::imm <sup>434</sup> IRO1/iro1Δ::imm <sup>434</sup><br>WOR4/WOR4-GFP HTB2/HTB2-mCherry::SAT1                                   | This Study |
|------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| HTB2-mCherry, Wor4-<br>GFP, Opaque | MLY1469 | a/a C.m.LEU2/leu2 <u>/</u> C.d.HIS1/his1 <u>/</u><br>URA3/ura3 <u>/</u> ::imm <sup>434</sup> IRO1/iro1 <u>/</u> ::imm <sup>434</sup><br>WOR4/WOR4-GFP HTB2/HTB2-mCherry::SAT1 | This Study |

References

| 1 | Noble, S. M., and A. D. Johnson, 2005 Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen <i>Candida albic</i> ans. Eukaryot. Cell 4: 298–309.                                                                          |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Zordan, R. E., D. J. Galgoczy, and A. D. Johnson, 2006<br>Epigenetic properties of white-opaque switching in <i>Candida</i><br><i>albicans</i> are based on a self-sustaining transcriptional<br>feedback loop. Proc. Natl. Acad. Sci. U. S. A. 103: 12807–<br>12812. |
| 3 | Hernday, A. D., M. B. Lohse, P. M. Fordyce, C. J. Nobile, J. D.<br>DeRisi et al., 2013 Structure of the Transcriptional Network<br>Controlling White-Opaque Switching in <i>Candida albicans</i> . Mol.<br>Microbiol. 90: 22–35.                                      |

Table S3: Strains used in this study.

Table S4: Ectopic expression of *WOR4* does not induce white-to-opaque switching in a *wor1* deletion strain. White-to-Opaque

#### Switching

|                                         |                 | Switching<br>Frequency |     |       |
|-----------------------------------------|-----------------|------------------------|-----|-------|
| Strain                                  | Media Condition | (%)                    | n   | Notes |
| Wild Type, p <i>MET</i> 3-Blank         | Repressing      | <0.48                  | 208 | 1     |
| Wild Type, p <i>MET</i> 3-Blank         | Inducing        | <0.26                  | 378 | 1     |
| Wild Type, pMET3-WOR1                   | Repressing      | <0.48                  | 208 | 2     |
| Wild Type, p <i>MET</i> 3-WOR1          | Inducing        | 96.98                  | 430 | 2     |
| Wild Type, p <i>MET</i> 3-WOR4          | Repressing      | <0.48                  | 210 |       |
| Wild Type, pMET3-WOR4                   | Inducing        | 20.71                  | 449 |       |
| <i>wor1/wor1</i> , p <i>MET3</i> -Blank | Repressing      | <0.46                  | 219 |       |
| <i>wor1/wor1</i> , p <i>MET3</i> -Blank | Inducing        | <0.23                  | 432 |       |
| wor1/wor1, pMET3-WOR1                   | Repressing      | <0.49                  | 205 |       |
| wor1/wor1, pMET3-WOR1                   | Inducing        | 100.00                 | 383 |       |
| wor1/wor1, pMET3-WOR4                   | Repressing      | <0.37                  | 272 |       |
| wor1/wor1, pMET3-WOR4                   | Inducing        | <0.18                  | 546 |       |

Notes

- 1 Negative Control
- 2 Positive Control

Table S4: Ectopic expression of WOR4 does not induce white-to-opaque switching in a wor1

deletion strain. Switching frequency and number of colonies scored for ectopic expression of

WOR1 and WOR4 in the wor1 deletion background are indicated.

|             | Observed   | Number of | Percent of |  |
|-------------|------------|-----------|------------|--|
| Class       | Binding    | Regions   | Wor4 sites |  |
| Single TR   | Wor4 alone | 2         | 22.22      |  |
| Two TR      | Ahr1       | 1         | 11.11      |  |
| Two TR      | Czf1       | 1         | 11.11      |  |
| Two TR      | Efg1       | 3         | 33.33      |  |
| Three TR    | Ahr1+Czf1  | 1         | 11.11      |  |
| Three TR    | Ahr1+Efg1  | 1         | 11.11      |  |
|             |            |           |            |  |
| Total       |            | 9         | 100.00     |  |
|             |            |           |            |  |
| With Ahr1   |            | 3         | 33.33      |  |
| With Czf1   |            | 2         | 22.22      |  |
| With Efg1   |            | 4         | 44.44      |  |
| Two or More |            | 7         | 77.78      |  |
| Three or    |            |           |            |  |
| More        |            | 2         | 22.22      |  |

Table S5: Breakdown of overlap between Wor4 binding and binding of other core regulators in white cells.

Table S5: Breakdown of overlap between Wor4 binding and binding of other core regulators in white cells. Instances of specific binding combinations, overall overlap with specific regulators, and the number of sites with at least a given number of regulators bound are indicated. Only binding events with Wor4 present are considered. Binding of Ahr1, Czf1, and Efg1 have been previously reported (Hernday *et al.* 2013).

| Ŭ             |                               |         | Percent |
|---------------|-------------------------------|---------|---------|
|               |                               | Number  | of      |
|               |                               | of      | Wor4    |
| Class         | Observed Binding              | Regions | sites   |
| Single TR     | Wor4 alone                    | 4       | 2.92    |
| Two TR        | Wor1                          | 8       | 5.84    |
| Two TR        | Wor2                          | 3       | 2.19    |
| Two TR        | Wor3                          | 1       | 0.73    |
| Three TR      | Ahr1+Wor2                     | 1       | 0.73    |
| Three TR      | Efg1+Wor1                     | 1       | 0.73    |
| Three TR      | Efg1+Wor2                     | 1       | 0.73    |
| Three TR      | Wor1+Wor2                     | 6       | 4.38    |
| Four TR       | Ahr1+Wor1+Wor2                | 2       | 1.46    |
| Four TR       | Czf1+Wor2+Wor3                | 1       | 0.73    |
| Four TR       | Efg1+Wor1+Wor2                | 27      | 19.71   |
| Five TR       | Ahr1+Efg1+Wor1+Wor2           | 12      | 8.76    |
| Five TR       | Ahr1+Wor1+Wor2+Wor3           | 2       | 1.46    |
| Five TR       | Czf1+Efg1+Wor1+Wor2           | 7       | 5.11    |
| Five TR       | Efg1+Wor1+Wor2+Wor3           | 17      | 12.41   |
| Six TR        | Ahr1+Czf1+Efg1+Wor1+Wor2      | 3       | 2.19    |
| Six TR        | Ahr1+Efg1+Wor1+Wor2+Wor3      | 14      | 10.22   |
| Six TR        | Czf1+Efg1+Wor1+Wor2+Wor3      | 5       | 3.65    |
| Seven TR      | Ahr1+Czf1+Efg1+Wor1+Wor2+Wor3 | 22      | 16.06   |
|               |                               |         |         |
| Total         |                               | 137     | 100.00  |
|               |                               |         |         |
| With Ahr1     |                               | 56      | 40.88   |
| With Czf1     |                               | 38      | 27.74   |
| With Efg1     |                               | 109     | 79.56   |
| With Wor1     |                               | 126     | 91.97   |
| With Wor2     |                               | 123     | 89.78   |
| With Wor3     |                               | 62      | 45.26   |
| Two or More   |                               | 133     | 97.08   |
|               |                               |         |         |
| Three or More |                               | 121     | 88.32   |
| Four or More  |                               | 112     | 81.75   |
| Five or More  |                               | 82      | 59.85   |
| Six or More   |                               | 44      | 32.12   |
|               |                               |         |         |
| Seven or More |                               | 22      | 16.06   |

Table S6: Breakdown of overlap between Wor4 binding and binding of other core regulators in opaque cells.

Table S6: Breakdown of overlap between Wor4 binding and binding of other core regulators in opaque cells. Instances of specific binding combinations, overall overlap with specific regulators, and the number of sites with at least a given number of regulators bound are indicated. Only binding events with Wor4 present are considered. Binding of Ahr1, Czf1, Efg1, Wor1, Wor2, and Wor3 have been previously reported (Zordan *et al.* 2007; Hernday *et al.* 2013; Lohse *et al.* 2013).

#### **Supplemental File Captions**

File S1: Genomic location and median fold enrichment of Wor4-GFP peaks in white and opaque cells.

File S2: MochiView image plots of 12kb regions centered on the Wor4 binding sites in white and opaque cells. Plots produced using the SnapShot Function in MochiView v1.46 (Homann and Johnson 2010).

File S3: Compilation of microarray, RNA-seq, ChIP-seq, and ChIP-chip data presented in this study and from previous studies. From left to right in the Excel spreadsheet, columns are as follows. (A) Orf19 number designation based on the Candida Genome Database (CGD). (B) Gene name, where applicable. (C) Whether the gene is a transcriptional regulator, based on Homann et al. (Homann et al. 2009), a "1" represents yes. (D) Maximum Czf1 enrichment in the upstream region for the gene in a white cell, values are on a log2 scale (Hernday et al. 2013). (E) Maximum Efg1 enrichment in the upstream region for the gene in a white cell; values are on a log2 scale (Hernday et al. 2013). (F) Maximum Ahr1 enrichment in the upstream region for the gene in a white cell; values are on a log2 scale (Hernday et al. 2013). (G) Maximum Wor4 enrichment in the upstream region for the gene in a white cell; values are MACS2 fold enrichment. (H) Maximum Worl enrichment in the upstream region for the gene in an opaque cell (Zordan et al. 2007); values are on a log2 scale. (I) Maximum Wor2 enrichment in the upstream region for the gene in an opaque cell; values are on a log2 scale (Hernday et al. 2013). (J) Maximum Czf1 enrichment in the upstream region for the gene in an opaque cell; values are on a log2 scale (Hernday et al. 2013). (K) Maximum Efg1 enrichment in the upstream region for the gene in an opaque cell; values are on a log2 scale (Hernday et al. 2013). (L) Maximum Wor3 enrichment in the upstream region for the gene in an opaque cell; values are on a log2 scale (Lohse et al. 2013). (M) Maximum Ahr1 enrichment in the upstream region for the gene in an opaque cell; values are on a log2 scale (Hernday et al. 2013). (N) Maximum Wor4 enrichment in the upstream region for the gene in an opaque cell; values are MACS2 fold enrichment. (O) Previously published RNA-seq of opaque versus white cells (Tuch et al. 2010); values are on a log2 scale. (P) Previously published microarray analysis of opaque versus white cells (Lohse et al. 2013); values are on a log2 scale. (Q) Microarray analysis of a white czfl deletion strain versus wild-type white cells; values are on a log2 scale (Hernday et al. 2013). (R) Microarray analysis of a white efg1 deletion strain versus wild-type white cells; values are on a log2 scale (Hernday et al. 2013). (S) Microarray analysis of a white wor3 deletion strain versus wild-type white cells; values are on a log2 scale (Lohse et al. 2013). (T) Microarray analysis of a white ahrl deletion strain versus wild-type white cells; values are on a log2 scale (Hernday et al. 2013). (U) Microarray analysis of an opaque wor2 deletion strain with ectopically expressed Wor1 versus wildtype opaque cells with ectopically expressed Wor1; values are on a log2 scale (Hernday et al. 2013). (V) Microarray analysis of an opaque czfl deletion strain versus wildtype opaque cells; values are on a log2 scale (Hernday et al. 2013). (W) Microarray analysis of an opaque *efg1* deletion strain versus wildtype opaque cells; values are on a log2 scale (Hernday *et* al. 2013). (X) Microarray analysis of an opaque wor3 deletion strain versus wildtype opaque cells; values are on a log2 scale (Hernday et al. 2013; Lohse et al. 2013). (Y) Microarray analysis of an opaque *ahr1* deletion strain versus wildtype opaque cells; values are on a log2 scale (Hernday et al. 2013).

### **Supplemental Literature Cited**

- Hernday, A. D., M. B. Lohse, P. M. Fordyce, C. J. Nobile, J. D. DeRisi *et al.*, 2013 Structure of the transcriptional network controlling white-opaque switching in *Candida albicans*. Mol. Microbiol. 90: 22–35.
- Homann, O. R., J. Dea, S. M. Noble, and A. D. Johnson, 2009 A phenotypic profile of the *Candida albicans* regulatory network. PLoS Genet. 5: e1000783.
- Homann, O. R., and A. D. Johnson, 2010 MochiView: versatile software for genome browsing and DNA motif analysis. BMC Biol. 8: 49.
- Lohse, M. B., A. D. Hernday, P. M. Fordyce, L. Noiman, T. R. Sorrells *et al.*, 2013 Identification and characterization of a previously undescribed family of sequence-specific DNA-binding domains. Proc. Natl. Acad. Sci. U. S. A. 110: 7660–7665.
- Tuch, B. B., Q. M. Mitrovich, O. R. Homann, A. D. Hernday, C. K. Monighetti *et al.*, 2010 The transcriptomes of two heritable cell types illuminate the circuit governing their differentiation. PLoS Genet. 6: e1001070.
- Zordan, R., M. Miller, D. Galgoczy, B. Tuch, and A. Johnson, 2007 Interlocking transcriptional feedback loops control white-opaque switching in *Candida albicans*. PLoS Biol. 5: e256.