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Supplemental Figures 

 

Figure S1. Overview of regions of interest (ROIs). For the bilateral ROI analyses, voxels were 

selected that functionally overlapped with anatomical masks: (A) the bilateral hippocampus (MNI: x=-

21, y=-18, z=-19), (B) the bilateral SN/VTA (MNI: x=3, y=-23, z=-20), (D) the bilateral nucleus 

accumbens (MNI: x=9, y=10, z=-6), (E) the bilateral ventromedial prefrontal cortex (MNI: x=3, y=51, z=-
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7), and (F) for bilateral V1 (MNI: x=-3, y=-90, z=6). ROI clusters are shown for coronal, sagittal, and 

transverse slices on the average, normalized anatomical image in our group of participants. (C) The 

SN/VTA ROI is also shown on a magnetization transfer image (Bunzeck and Düzel, 2006). On these 

images, the SN/VTA complex is visible as a white band. Depicted are a coronal and a transverse slice 

(top) and the same slices overlaid with the SN/VTA ROI (bottom) for the same MNI coordinates as in 

(B). 
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Figure S2 (related to Figure 3). Thresholded hippocampal reactivation analyses are in line with 

reactivation findings reported in the main text. (A) Instead of counting the number of all time points 

that were classified for high-reward context as in the main analyses reported in main text, we used a 

threshold (i.e. counting only events above 1SD within each condition) to separately identify 

hippocampal reactivation events associated with high- and low-reward contexts. Hippocampal 

reactivation events revealed significantly increased reactivation of high- compared to low-reward 

contexts during the post-learning rest, but not during the pre-learning rest period. (B) Using this 

threshold, a ‘preferential high-reward reactivation index’ (i.e. [(High reward: Post – Pre) – (Low reward: 

Post – Pre)]) positively correlated with the HR>LR object-context memory advantage. Follow-up 

analyses for high- and low-reward reactivation separately showed that only the increase in classifier 

predictions of high-reward contexts from pre- to post-learning rest was significantly correlated the 

HR>LR object-context memory advantage (C), but the pre- to post-learning change in reactivation for 

low-reward contexts was not significantly correlated with the HR>LR object-context memory advantage 

(D). 
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Table S1. Whole-brain analyses during reward-motivated learning task. For whole-brain, voxel-

based analyses, we used 3DClustSim (Cox, 1996) to determine a cluster correction of p<0.05 for the 

whole brain (p<0.001 and k=45 voxels using a whole-brain mask based on the subjects’ mean 

anatomical image). MNI coordinates for the peak voxels of significant clusters (p<0.05), along with their 

t values and voxel cluster size (3mm isotropic) (SMEs = subsequent memory effects; L = left 

hemisphere; R = right hemisphere). 

Region Cluster size t(18) MNI coordinates 

    

Object-context memory SMEs (independent of reward) 
 

L inferior frontal gyrus and insula  1116 7.72 -39  24  -18 

L inferior temporal gyrus 276 7.39 -51  -48  -15 

L superior medial gyrus 134 6.69 -3  27  48 

R inferior frontal gyrus 322 6.28 51  36  18 

R inferior frontal gyrus and insula 118 5.66 30  36  -18 

R supramarginal and postcentral gyrus 88 5.25 60  -24  48 

R inferior temporal gyrus 134 5.17 48  -57  -15 

Recollection SMEs (independent of reward) 
 

L inferior frontal gyrus 696 7.87 -33  30  -18 

L hippocampus (cluster encompassing 
surrounding MTL cortex and amygdala)  

233 7.61 -30  -15  -18 

L inferior temporal and inferior occipital gyrus 289 7.16 -54  -45  -12 

R inferior frontal gyrus 304 6.45 48  36  15 

L superior medial gyrus 95 6.25 -9  39  42 

R inferior temporal gyrus 119 5.19 57  -60  -3 

R postcentral gyrus 46 4.37 57  -3  33 

The interactions SME x Reward did not reveal any significant clusters surviving our cluster 

threshold.  
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Cue-related activation (High > Low reward) 
 

L/R middle cingulate cortex 345 7.54 3  15  36 

L/R striatum 854 6.69 -12  15  -12 

R hippocampus (cluster encompassing 
surrounding MTL cortex) 

343 6.68 39  -12  -24 

R insula 194 5.88 33  12  6 

R precentral gyrus 112 5.78 39  -9  45 

L thalamus 60 5.73 -24  -12  15 

L/R precuneus 300 5.56 3  -54  48 

R precentral gyrus 80 5.46 -45  -9  45 

R middle occipital gyrus 55 5.30 30  -75  21 

L cerebellum/ fusiform gyrus 153 5.20 -36  -57  -24 

L superior occipital gyrus 82 5.08 -21  -63  27 

L superior temporal gyrus 45 4.77 -63  -27  15 

 

A Low > High reward contrast did not reveal any significant clusters surviving our cluster 

threshold. 
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Table S2. MVPA analyses: Encoding classification and reactivation analyses based on voxel 

patterns in further ROIs and across the whole brain. At the top panel, we show encoding 

classification results based on a 4-way classifier to distinguish between the four specific scene contexts 

(chance level = 25%). In the middle panel, we show encoding classification results based on a 2-way 

classifier to distinguish between high- and low-reward contexts (chance level = 50%). At the bottom 

panel, we show reactivation analyses based on a 2-way classifier to distinguish between reward 

contexts during pre- and post-learning rest periods. Means (SE) of encoding classification or 

reactivation ‘classification’ are shown along with their t and one-tailed p values of one-sample t-tests 

testing for significant differences from chance performance (chance level = 244 timepoints). NAcc, 

nucleus accumbens; vmPFC, ventromedial prefrontal cortex. 

Region Classification  t(18) p 

    

Encoding-task classification (chance level = 25%) 
 

NAcc  26.0% (±0.2) 4.14 <0.001 

vmPFC 26.3% (±0.5) 2.36  0.015 

V1  42.5% (±1.1) 16.28 <0.001 

1000 most 
discriminative whole-
brain voxels 

48.5% (±1.5) 15.15 <0.001 

 
 

   

Reward-context classification (chance = 50%) 
 

NAcc 51.3% (±0.4) 3.22 0.004 

vmPFC 52.2% (±0.7) 2.72 0.007 

V1  73.8% (±1.1) 19.54 <0.001 

1000 most 
discriminative whole-
brain voxels 

78.7% (±1.5) 18.83 <0.001 
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High-reward ‘classification’ (chance level = 244 timepoints) 
 

 
NAcc 

Pre-learning rest 245.3 (±1.6) 0.81 0.215 

Post-learning rest 242.3 (±1.5) -1.13 0.137 

 
vmPFC 

   

Pre-learning rest 244.5 (±1.7) 0.31 0.379 

Post-learning rest 244.7 (±1.8) 0.41 0.342 

 

 
V1  

   

Pre-learning rest 246.1 (±1.9) 1.11 0.141 

Post-learning rest 244.9 (±1.3) 0.69 0.249 

 
 
1000 most discriminative whole-brain voxels 

Pre-learning rest 246.8 (±1.8) 1.51 0.074 

Post-learning rest 242.6 (±1.3) -1.06 0.152 
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Table S3. Resting-state functional connectivity: whole-brain analyses and further ROI analyses. 

At the top, whole-brain RSFC analyses with the hippocampal ROI as seed region. Using the same 

whole-brain cluster correction as for the analyses shown in Table S1, we did not find any significant 

clusters. An exploratory analysis shows MNI coordinates for the peak voxels of significant clusters 

surviving a liberal statistical threshold (p<0.005 uncorrected, k=10 voxels), along with their t values and 

voxel cluster size (3mm isotropic) (L = left hemisphere; R = right hemisphere). In the middle and at the 

bottom panel, ROI RSFC analyses with the hippocampal ROI as seed (middle panel) and the SN/VTA 

ROI as seed (bottom panel). Averaged Pearson’s r (SE) indexing RSFC are shown for pre- and post-

learning rest periods along with their t and one-tailed p values of paired-sample t-tests testing for 

significant RSFC changes. In addition, Pearson’s r along with one-tailed p values are shown testing the 

correlations between RSFC change and the HR>LR object-context memory advantage. 

 

R inferior frontal gyrus 26 3.05 48  24  0 

 

Region Cluster size t(18) MNI coordinates 

    

Whole-brain RSFC changes with hippocampal ROI as seed region (post-learning > 
pre-learning rest period) 
 

L/R anterior cingulate cortex 74 4.20 -3  30  24 

R insula 22 3.86 33  9  -6 

L insula 30 3.69 -36  12  -6 

thalamus 10 3.67 -9  -12  0 
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RSFC between hippocampal ROI and further ROIs  

 
ROIs                                  Pre-learning        Post-learning    

NAcc-hippocampus             r=0.177  
                                               (±0.037)  
 
Correlation between RSFC change and 
HR>LR object-context memory advantage:  

r=0.232 
(±0.042) 

 

 

t(18)=1.23 

 

r=0.146 

p=0.117 

 

p=0.275 

 

vmPFC-hippocampus          r=0.390  
                                               (±0.031)  
 
Correlation between RSFC change and 
HR>LR object-context memory advantage:  
 

r=0.365 
(±0.062) 

 

t(18)=-0.16 

 

r=-0.008 

p=0.437 

 

p=0.487 

V1-hippocampus                  r=-0.077  
                                               (±0.043)  
 
Correlation between RSFC change and 
HR>LR object-context memory advantage:  

r=-0.065 
(±0.055) 

 

t(18)=0.20 

 

r=-0.123 

p=0.423 

 

p=0.308 

RSFC between SN/VTA ROI and further ROIs 

 
ROIs                                  Pre-learning        Post-learning    

NAcc-SN/VTA                        r=0.229  
                                               (±0.037)  
 
Correlation between RSFC change and 
HR>LR object-context memory advantage:  

r=0.237 
(±0.039) 

 

t(18)=0.20 

 

r=0.287 

p=0.424 

 

p=0.117 

 

vmPFC- SN/VTA                    r=0.234 
                                               (±0.043)  
 
Correlation between RSFC change and 
HR>LR object-context memory advantage:  

r=0.196 
(±0.043) 

 

 

t(18)=-0.94 

 

r=-0.076 

p=0.179 

 

p=0.379 

V1- SN/VTA                            r=-0.004  
                                               (±0.025)  
 
Correlation between RSFC change and 
HR>LR object-context memory advantage:  

r=0.031 
(±0.046) 

 

t(18)=0.78 

 

r=-0.056 

p=0.224 

 

p=0.410 
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Supplemental fMRI analyses 

 

Reward context enhances cue-related activation in the SN/VTA and hippocampus 

during learning 

To better characterize whether encoding-related activity in our paradigm is consistent 

with previous findings on reward anticipation, we analyzed activity elicited by reward cues, 

and tested whether activation in the bilateral SN/VTA and hippocampus ROIs was increased 

in high compared to low reward contexts. Paralleling findings of previous studies on reward 

anticipation (Adcock et al., 2006; Knutson et al., 2001; Murty and Adcock, 2014), we found 

that activity in both the bilateral SN/VTA (t(18)=2.69, p=0.007) and bilateral hippocampus ROIs 

(t(18)=3.03, p=0.004) was increased during processing of high reward cues relative to low 

reward cues. Additional whole-brain, voxel based analyses revealed a widespread network of 

enhanced activation for high- compared to low-reward cues (Table S1).  

 

Thresholded analyses on hippocampal reactivations are in line with reactivation 

findings reported in the main text 

One limitation of the analysis reported in the main text is that voxel patterns at every 

single time point were classified as corresponding to high- or low-reward contexts, regardless 

of the strength of evidence. Given that we would not expect reactivation events to occur at 

every time point, we therefore ran a further complementary analysis in which we used a more 

stringent threshold for identifying reactivation of a study context, based on the strength of the 

prediction from the pattern classifier. Specifically, we defined “reactivation events” as only 

occurring at time points in which the classifier evidence was more than one standard deviation 

(SD) above the condition-specific mean classifier evidence (i.e. 1 SD above the low-reward 

mean and 1 SD above the high-reward mean). The 1 SD threshold was chosen because it 

allowed us to identify enough reactivation events to analyze reactivation for high- and low-

reward contexts and to investigate whether there was increased reactivation of high- 
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compared low-reward contexts during post-learning rest (using a one-tailed paired-sample t-

test). In line with our previous analyses, we found that, during post-learning rest, the 

frequency of reactivation events was significantly higher for high-reward than for low-reward 

contexts (39.6 SE=±0.75 vs. 37.3 SE=±0.65, respectively; t(18)=1.99, p=0.031; Figure S2A). In 

contrast, we did not observe a significant between-condition difference in the frequency of 

“reactivation events” during pre-learning rest (38.3 SE=±0.70 vs. 38.8 SE=±0.62, respectively; 

t(18)=-0.54, p>0.05; Figure S2A), which rules out the possibility that the post-learning effect 

was driven by biases in the classifier. We next investigated the relationship between 

preferential reactivation of high-reward contexts and the HR>LR object-context memory 

advantage. Similar to the analyses in the main text, we first computed a “preferential 

reactivation index”. Here, this preferential reactivation index relates differences between 

reactivation of high- and low-reward contexts to individual differences, while controlling for 

overall classifier prediction biases. Specifically, we computed the change in reactivation from 

pre- to post-learning rest separately for high- and low-reward contexts, and then computed the 

difference between the number of reactivations for high- and low-reward contexts (i.e. (High 

reward: Post- – Pre-learning rest) – (Low reward: Post- – Pre-learning rest).  In line with the 

findings reported in the main text, we observed a significant positive correlation between the 

preferential reactivation index and the HR>LR object-context memory advantage (Pearson’s 

r=0.553, p=0.007; Figure S2B). Follow-up analyses suggested that this positive relationship 

between hippocampal reactivations and object-context memory advantage was driven by 

reactivation of high-reward contexts. That is, the increase in classifier predictions of high-

reward contexts from pre- to post-learning rest was significantly correlated with the HR>LR 

object-context memory advantage (Pearson’s r=0.669; p=0.001; Figure S2C). In contrast, the 

pre- to post-learning change in hippocampal reactivation of low reward contexts was not 

significantly correlated with HR>LR object-context memory advantage (Pearson’s r=-0.080; 

p>0.05; Figure S2D).  The latter two correlation coefficients significantly differed (z=2.46, 
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p=0.014) suggesting a selective relationship between high-reward reactivation and the later 

HR>LR object-context memory advantage.  

 

Hippocampal encoding activity and changes in SN/VTA-hippocampal RSFC uniquely 
contribute to HR>LR recollection advantage 

In the main text, we showed that the HR>LR object-context memory advantage was 

associated with increases in SN/VTA-hippocampal RSFC and hippocampal reactivations, and 

could not be explained by hippocampal encoding-related activity. Because we also found a 

HR>LR recollection advantage, we ran a complementary hierarchical regression analysis 

testing how individual differences in learning and post-learning effects contributed to the 

HR>LR recollection advantage (using the same analysis approach as reported in the main text 

testing for HR>LR object-context memory advantage). In the first step, we tested the extent to 

which these individual differences could be accounted for by hippocampal encoding-related 

activity alone (i.e. the Reward x SME interaction; SME: Recollected vs. Forgotten). This 

encoding-only model explained 28.6% of the variance in HR>LR recollection advantages 

(F(1,17)=6.82; p=0.018), indicating that hippocampal encoding-related activity was significantly 

related to the HR>LR recollection advantage. In the next step, we added individual pre-to-post 

learning changes in SN/VTA-hippocampal RSFC to the model. This encoding + RSFC model 

explained 80.5% of the variance in contributing to the HR>LR recollection advantage, which is 

significantly higher than what was explained by the encoding-only model (F(1,16)=42.53; 

p<0.001). Finally, we added individual differences in the high-reward reactivation index to the 

model. This encoding + RSFC + reactivations model explained 81.1% of the variance, which 

is not significantly higher than what was explained by the encoding + RSFC model 

(F(1,15)=0.46; p=0.508). Examination of the three-predictor model showed that hippocampal 

encoding (related to later recollection) and SN/VTA-hippocampal RSFC changes significantly 

predicted the HR>LR recollection advantage (t(15)=5.21 and t(15)=6.42, respectively; 

p’s<0.001), but hippocampal reactivations did not significantly contribute to the overall model 
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(t(15)=0.68, p=0.254). Consistent with the findings explaining the HR>LR object-context 

memory advantage (reported in the main text), the findings demonstrate that the relationship 

between later HR>LR recollection advantage and post-learning dynamics (here, specific to 

SN/VTA-hippocampal RSFC changes) could not be explained by hippocampal encoding-

related activity.  

In addition, adding overall recollection (independent of reward) as a fourth predictor to 

the three-predictor model did not significantly change the overall model fit compared to the 

three-predictor model (F(1,14)=0.27; p=0.613). Most importantly, in this four-predictor model 

(encoding + RSFC + reactivations + overall memory model), both the hippocampal encoding 

activity and the SN/VTA-hippocampal RSFC changes still remained significant predictors of 

the HR>LR recollection advantage (t(14)=4.68 and t(14)=5.80, respectively; p’s≤0.001). 
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Supplemental Experimental Procedures 

 

Participants 

Twenty healthy young adults took part in the experiment. One participant was 

excluded from the analyses due to excessive movement artifacts in the fMRI data. Results are 

based on the remaining nineteen participants (10 female and 9 male participants). 

Participants’ mean age was 23.7 years (range: 18-32). Eighteen participants were right-

handed and one participant was left-handed. Importantly, inclusion or exclusion of the data 

from the left-handed participant did not alter any main interpretations of our findings.  They 

were compensated with $40 for their total time in the laboratory and an additional reward 

based on performance during the encoding phase (average: $23.60; range: $20.40-$25.45). 

All participants had normal or corrected-to-normal vision and were native English speakers. 

The UC Davis Institutional Review Board approved the experiment. 

 

Material 

Object stimuli were obtained from a publicly available database 

(http://cvcl.mit.edu/MM/uniqueObjects.html) (Brady et al., 2008). The 320 objects were used 

for the encoding phase. They were split into four sets of 80 objects each for the four encoding 

judgments. The four item sets were counterbalanced across the high and low reward 

conditions with the restriction that the “basketball” and “floating” judgments were always used 

together for either high or low reward. The “laptop” and “juggling” judgment were always 

paired together for the other reward condition. In half of the participants, two item sets (A and 

B) were used for the “basketball” and “floating” judgments and the other two item sets (C and 

D) were used for the “laptop” and “juggling” judgments. This was vice versa in the other half of 

participants: that is, items sets C and D for “basketball” and “floating” judgments and item sets 

A and B for judgments “laptop” and “juggling”. Independent of the counterbalancing, yes/no 
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responses were roughly equalized in each set. If it was ambiguous about whether a ‘yes’ or 

‘no’ response would be correct, both responses were rewarded (unknown to the participant). 

An additional item set containing 120 objects was used as distractors during the test phase. 

 

Behavioral analyses 

For behavioral performance during the learning phase, we used two-tailed paired-

sample t-tests to statistically compare accuracy and reaction times for semantic judgments 

between high and low reward conditions. To statistically assess whether memory for objects 

improved for the high compared to the low reward condition, we performed one-tailed paired-

sample t-tests. Based on dual-process models of recognition memory (Yonelinas, 2002), we 

estimated recognition based on recollection and familiarity. For recollection, we computed Hits 

– False Alarms for the ‘remember’ responses. For familiarity, we used ‘confident old and 

‘unconfident old’ (i.e. 5 and 4) responses and corrected for recollection by computing: [(54(old 

item)/1-R(old item)) - (54(new item)/1-R(new item))]. The findings did not change significantly 

if familiarity estimation was restricted to ‘confident old’ responses. For memory accuracy for 

object-context associations, we computed Hits (i.e. correct object-context association) – False 

Alarms (i.e. incorrect object-context association).  

 

FMRI acquisition 

We used a 3T Siemens Skyra scanner with a 32-channel phased array head coil to 

acquire anatomical and functional MRI images. A multiband Echo-Planar Imaging sequence 

was used to acquire whole brain T2*-weighted images (TR=1.22 s, TE=24ms; 38 slices per 

volume; multiband factor=2; voxel size=3 mm isotropic). In addition, a T1-weighted MP-RAGE 

with whole brain coverage was acquired. Inside the head coil, the participant’s head was 

padded to restrict excessive motion. Stimuli were displayed on a mirror attached to the head 

coil above the participant’s eyes. During the scanning, the participant’s eyes were monitored 

by the experimenter via an eye tracker that was set up to ensure that the participant attended 
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to all stimuli and to not close the eyes during the rest periods. The encoding phase contained 

10 scanning runs with 215 scans each and the rest phases were acquired in one run each 

containing 492 scans. 

 

FMRI preprocessing 

The functional and anatomical images were preprocessed and analyzed using the 

SPM8 software (The Wellcome Trust Centre for Neuroimaging, London, UK). The functional 

images were first realigned and then coregistered to the anatomical images. Anatomical 

images were segmented into grey and white matter images and imported into DARTEL to 

create a template anatomical image that was specific to the participants in this study. We then 

used DARTEL to normalize functional and anatomical images into MNI space. For all ROI 

analyses using RSFC and MVPA, we used unsmoothed functional images. The ART repair 

toolbox (http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html) was used 

to identify individual scans that showed abrupt motion or signal fluctuations. Details of specific 

preprocessing steps are described in the individual Methods section for RSFC and MVPA 

analyses (see Methods in main text). Note that we corrected for slow and abrupt head 

movements in all analyses, but we were not able to correct for artifacts driven by cardio-

respiratory effects. 

 

Regions-of-interest approach 

Given the established roles of the hippocampus in binding item and context 

information (Diana et al. 2007; Eichenbaum et al. 2007), in coordinating memory reactivation 

(Sutherland & McNaughton 2000; Carr et al. 2011; Káli & Dayan 2004), and of the SN/VTA in 

signaling reward and salience (Haber & Knutson 2010; Shohamy & Adcock 2010), we 

reasoned that reward-motivated learning might lead to enhanced interactions between these 

regions during offline post-learning rest periods. Therefore, we focused our main analyses on 

two main regions of interest (ROIs): the hippocampus and the SN/VTA.  
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As in our previous work (Gruber et al. 2014), we used a hippocampal ROI including 

voxels that have been reliably implicated in reward processing. Using the NeuroSynth tool 

(neurosynth.org) (Yarkoni et al. 2011), we performed a term-based search on “reward” that 

included 329 studies (retrieved: July 2nd 2013) and generated a reverse inference mask (i.e. 

probability of the term “reward” given the observed activation). We then inclusively masked 

this functional “reward” mask and an anatomical hippocampus mask from the SPM Anatomy 

Toolbox (Amunts et al. 2005). Figure S1A shows the resulting bilateral hippocampal ROI that 

indicate the overlap between the functional “reward” mask and the anatomical mask. 

Furthermore, the bilateral SN/VTA ROI was defined by identifying voxels that showed 

significant functional connectivity with the hippocampal ROI (i.e. seed region) during pre-

learning rest. In order to have a sensitive measure, we selected clusters within the SN/VTA 

ROIs that survived whole-brain correction (FWE p<0.05). As for the hippocampus ROI, we 

then inclusively masked this functional mask within the SN/VTA with an anatomical ROI. For 

the bilateral SN/VTA ROI (Figure S1B-C), the anatomical mask was derived from a 

probabilistic mask based on magnetization transfer images (Guitart-Masip et al. 2011) 

containing the whole SN/VTA complex.  

Because the nucleus accumbens (NAcc) and the ventromedial prefrontal cortex 

(vmPFC) are known to play an important role in reward processing and might also support 

reactivation and processes associated with consolidation (Frankland and Bontempi 2005; 

Kahn and Shohamy, 2013; Preston and Eichenbaum 2013), we additionally investigated how 

bilateral NAcc (Figure S1D) and vmPFC ROIs (Figure S1E) might support reactivation of 

reward contexts. For both NAcc and vmPFC ROIs, we used again the intersection between 

the functional “reward” mask (derived from neurosynth.org; as for the hippocampal ROI) and 

an anatomical mask (for further details regarding the NAcc ROI, cf. Gruber et al., 2014). For 

the vmPFC ROI, we ensured that the ROI did not extend posteriorly into the anterior cingulate 

cortex. In addition, we added a bilateral V1 ROI (Figure S1F) that was based on an 

anatomical, probabilistic mask from the SPM Anatomy Toolbox. 
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Whole-brain MVPA analyses 

Additional analyses were performed to test how voxels across the whole brain would 

be sensitive to precise encoding contexts or general reward contexts. We therefore used a 

whole-brain approach that has been used previously to investigate post-learning reactivation 

(cf. Deuker et al., 2013). Instead of training a classifier on all voxels within a specific ROI, we 

ran an ANOVA as a feature selection step to determine the 1000 most predictive voxels 

across the brain dissociating between the precise encoding contexts (4-way classifier) and 

between the reward contexts (2-way classifier). All other MVPA analyses steps were identical 

to the analyses in the ROIs. Results of this whole-brain approach are summarized in Table S3 

and S5. 
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