Supporting Information

for

Scope and limitations of the dual-gold-catalysed hydrophenoxylation of alkynes

Adrián Gómez-Suárez¹, Yoshihiro Oonishi^{1,2}, Anthony R. Martin^{1,3} and Steven P. Nolan^{*4,5}

Address: ¹EaStCHEM School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, U.K, ²Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, ³Institut de Chimie de Nice, UMR 7272, Université de Nice Sophia Antipolis, CNRS, Parc Valrose, 06108 Nice cedex 2, France, ⁴Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia and ⁵Universiteit Gent, Department of Inorganic and Physical Chemistry, Krijgslaan 281, S-3, B-9000 Ghent, Belgium.

Email: Steven P. Nolan - stevenpnolan@gmail.com

*Corresponding author

Experimental procedures and characterisation data for all the compounds

Table of Contents

1. General considerations	S3
2. Synthesis & characterization of vinyl ether derivatives (6)	S3
3. References	S11
4. NMR Spectra	S12

1. General considerations

Unless otherwise stated, all solvents and reagents were used as purchased and all reactions were performed under air. Deuterated solvents (CD_2Cl_2 , $CDCl_3$) were filtered through basic alumina in order to remove traces of HCl. NMR spectra were recorded on 500, 400 and 300 MHz spectrometers at room temperature in CD_2Cl_2 or $CDCl_3$. Chemical shifts (δ) are reported in ppm, relative to the solvent residual peak CD_2Cl_2 (5.32 ppm for ¹H and 54.00 ppm for ¹³C) and $CDCl_3$ (7.26 ppm for ¹H and 77.16 ppm for ¹³C). Data for ¹H NMR are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, br = broad signal, m = multiplet), coupling constants (*J*) in Hz and integration. Flash chromatography was performed on silica gel 60 Å pore diameter and 40–63 µm particle size. Elemental analysis was carried out by the analytical services of London Metropolitan University. High-resolution mass spectrometry was performed by the EPSRC National Mass Spectrometry Service Centre (NMSSC) (Grove Building Extn., Swansea University, Singleton Park, Swansea, SA2 8PP, U.K.). [{Au(IPr)}₂(µ-OH)][BF₄] was synthesized following the reported methodologies [1]:

2. Synthesis & characterization of vinyl ether derivatives (6)

General procedure

As described in reference [2], $\{Au(NHC)\}_2(\mu$ -OH)][BF₄] (0.5–1.0 mol %) was added to a solution of alkyne (0.5 mmol) and phenol (0.55 mmol, 1.1 equiv) in toluene (1 mL). The reaction mixture was stirred at 80 or 110 °C. After the reaction was completed, the solvent was concentrated in vacuum. The residue was purified by flash column chromatography on silica gel to give the corresponding product.

(Z)-4-((1,2-Diphenylvinyl)oxy)benzonitrile (3aa)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (**1a**) (89.0 mg, 0.50 mmol), 4-hydroxybenzonitrile (**2a**) (65.5 mg, 0.55 mmol) and $[{Au(IPr)}_2(\mu$ -OH)][BF₄] (6.5 mg, 5 µmol, 1.0 mol %) in toluene (1 mL) at 110 °C for 24 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 95/5) to give **6aa** (74 mg, 50%, average of two

runs) as a white solid.

¹H NMR (CDCl₃, 500 MHz): δ 7.58-7.55 (m, 4H), 7.54-7.51 (m, 2H), 7.38-7.28 (m, 5H), 7.25-7.22 (m, 1H), 7.11-7.07 (m, 2H), 6.75 (s, 1H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 159.94, 148.60, 135.02, 134.36, 134.05, 129.11, 129.03, 128.99, 128.78, 128.03, 125.79, 118.95, 117.43, 117.04, 105.72; HRMS (NIS) calcd for $C_{21}H_{16}NO$ [(M+H)+] 298.1226, found 298.1233.

(Z)-1-(4-((1,2-Diphenylvinyl)oxy)phenyl)ethanone (3ab)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (**1a**) (89.0 mg, 0.50 mmol), 4-hydroxyacetophenone (**2b**) (74.8 mg, 0.55 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (3.2 mg, 2.5 μ mol, 0.5 mol %) in toluene (1 mL) at 80 °C for 14 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 95/5) to give **3ab** (140 mg, 90%, average of two runs) as a white solid.

¹**H NMR** (CDCl₃, 500 MHz): δ 7.88-7.86 (m, 2H), 7.61-7.58 (m, 4H), 7.36-7.28 (m, 5H), 7.24-7.21 (m, 1H), 7.09-7.06 (m, 2H), 6.74 (s, 1H), 2.51 (s, 3H).; ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 196.75, 160.51, 149.03, 135.46, 134.34, 131.69, 130.85, 129.11, 128.89, 128.84, 128.73, 127.83, 125.89, 117.18, 116.12, 26.49; HRMS (NIS) calcd for $C_{22}H_{19}O_2$ [(M+H)⁺] 315.1380, found 315.1385.

(Z)-Methyl 4-[(1,2-diphenylvinyl)oxy]benzoate (3ac)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (**1a**) (89.0 mg, 0.50 mmol), methyl 4-hydroxybenzoate (**2c**) (83.7 mg, 0.55 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (3.2 mg, 2.5 μ mol, 0.5 mol %) in toluene (1 mL) at 80 °C for 3 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 9/1) to

give **3ac** (140 mg, 85%, average of two runs) as a white solid. ¹**H NMR** (CDCl₃, 400 MHz) δ 7.97-7.88 (m, 2H), 7.64-7.53 (m, 4H), 7.39-7.17 (m, 6H), 7.09-6.99 (m, 2H), 6.72 (s, 1H), 3.85 (s, 3H); ¹³**C**{¹**H**} **NMR** (CDCl₃, 101 MHz) δ 166.7, 160.4, 149.1, 135.5, 134.4, 131.9, 129.1, 128.9, 128.8, 128.7, 127.8, 125.9, 124.2, 117.1, 116.1, 52.1; **HRMS** (NIS) calcd for C₂₂H₁₉O₃ [(M+H)⁺] 331.1329, found 331.1327.

(Z)-4-((1,2-Diphenylvinyl)oxy)benzaldehyde (3ad)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (**1a**) (89.0 mg, 0.50 mmol), phenol (**2d**) (67.0 mg, 0.50 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (3.2 mg, 2.5 μ mol, 0.5 mol %) in toluene (1 mL) at 80 °C for 6 h, was purified by column chromatography on silica gel (CH₂Cl₂), to give **3ad** (142 mg, 94%, average of two runs) as a

colourless solid.

¹**H NMR** (CD₂Cl₂, 300 MHz) δ 9.83 (s, 1H), 7.78-7.76 (m, 2H), 7.62-7.59 (m, 4H), 7.36-7.15 (m, 8H), 6.80 (s, 1H); ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 151.6, 150.4, 136.5, 135.3, 129.4, 129.1, 129.0, 127.9, 126.6, 117.6, 117.2; **HRMS** (APCI) calcd for $C_{21}H_{17}O_2$ [(M+H)⁺] 301.1223, found 301.1222.

(Z)-5-((1,2-Diphenylvinyl)oxy)benzo[d][1,3]dioxole (3ae)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (**1a**) (89.0 mg, 0.50 mmol), sesamol (**2e**) (70.0 mg, 0.50 mmol) and $[Au(IPr)]_2(\mu-OH)][BF_4]$ (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 1 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 95/5) to give **3ae** (150 mg, 94%, average of two runs)

as a white solid.

¹**H NMR** (400 MHz; CDCl₃): δ 7.69-7.67 (m, 2H), 7.62-7.60 (m, 2H), 7.37-7.23 (m, 6H), 6.65 (d, J = 8.5 Hz, 1H + d, J = 2.5 Hz, 1H + s, 1H), 6.49 (dd, J = 8.5, 2.5 Hz, 1H), 5.88 (s, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 151.46, 150.08, 148.47, 142.66, 136.07, 134.85, 129.03, 128.66, 128.52, 127.52, 126.23, 116.82, 108.30, 108.23, 101.40, 99.18. HRMS (APCI) calcd. for C₂₁H₁₇O₃ [(M+H)⁺] 317.1172, found 317.1170.

(Z)-2-((1,2-Diphenylvinyl)oxy)naphthalene (3af)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (**1a**) (89.0 mg, 0.50 mmol), naphthol (**2f**) (79.3 mg, 0.55 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 3 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 95/5) to give **3af** (158 mg, 98%, average of two

runs) as a white solid.

¹**H NMR** (CDCl₃, 300 MHz) δ 7.82-7.72 (m, 2H), 7.71-7.57 (m, 5H), 7.43-7.14 (m, 10H), 6.75 (s, 1H); ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 154.3, 149.7, 135.9, 134.8, 134.5, 130.0, 129.7, 129.1, 128.7, 128.7, 128.6, 127.8, 127.6, 127.1, 126.5, 126.1, 124.3, 118.3, 117.1, 111.1; HRMS (APCI) calcd for $C_{24}H_{19}O$ [(M+H)⁺] 323.1430, found 323.1430.

(Z)-[1-(3,5-Dimethylphenoxy)ethene-1,2-diyl]dibenzene (3ai)

NOESY

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (**1a**) (89.0 mg, 0.50 mmol), 3,5-dimethylphenol (**2i**) (67.0 mg, 0.55 mmol) and $[{Au(IPr)}_2(\mu$ -OH)][BF₄] (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 2 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 95/5) to give **3ai** (142 mg, 94%, average of two runs) as a white solid.

¹**H** NMR (CDCl₃, 400 MHz) δ 7.68-7.62 (m, 2H), 7.62-7.57 (m, 2H), 7.37-7.15 (m, 6H), 6.65 (brs, 2H), 6.64 (s, 1H), 6.59 (brs, 1H), 2.21 (s, 6H); ¹³C{¹H} NMR (CDCl₃, 101 MHz) δ 156.4, 149.8, 139.5, 139.5,

136.3, 135.0, 129.1, 128.6, 128.4, 127.4, 126.1, 124.0, 116.7, 114.1, 21.5; **HRMS** (APCI) calcd for $C_{22}H_{20}O$ [M⁺] 300.1509, found 300.1507.

(Z)-(1-(4-Chloro-3,5-dimethylphenoxy)ethene-1,2-diyl)dibenzene (3aj)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne **1a** (89.0 mg, 0.50 mmol), phenol (**2j**) (86.0 mg, 0.50 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 6 h, was purified by column chromatography on silica gel (pentane/EtOAc = 95/5), to give **3aj** (164 mg, 98%, average of two runs) as a colourless solid.

¹**H** NMR (CDCl₃, 300 MHz) δ 7.64 (ddd, J = 14.4, 7.7, 1.5 Hz, 4H), 7.38-7.22 (m, 6H), 6.80 (s, 2H), 6.69 (s, 1H), 2.30 (s, 6H); ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 154.2, 149.5, 137.6, 135.9, 134.8, 129.1, 128.7, 128.7, 128.6, 127.6, 126.1, 117.0, 116.2, 21.1; **HRMS** (APCI) calcd for C₂₂H₂₀OCl [(M+H)⁺] 335.1197, found 335.1195.

(Z)-[1-(2-Chloro-4-fluorophenoxy)ethene-1,2-diyl]dibenzene (3ak)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (**1a**) (89.0 mg, 0.50 mmol), 2-chloro-4-fluorophenol (**2k**) (81.0 mg, 0.55 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (6.5 mg, 5 μ mol, 1.0 mol %) in toluene (1 mL) at 110 °C for 6 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 95/5) to give **3ak** (143 mg, 88%, average of two runs)

as a white solid whose NMR data were consistent to those reported in the literature [3]. ¹H NMR (CDCl₃, 300 MHz) δ 7.70-7.61 (m, 2H), 7.61-7.54 (m, 2H), 7.39-7.13 (m, 7H), 6.77 (dd, *J* = 9.1, 5.0 Hz, 1H), 6.73-6.64 (m, 2H); ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 157.3 (d, *J*_{C-F} = 243 Hz), 149.7, 148.1 (d, *J*_{C-F} = 2.8 Hz), 135.2, 134.4, 129.0, 128.88, 128.87, 128.7, 127.8, 126.0, 123.4 (d, *J*_{C-F} = 11 Hz), 117.8 (d, *J*_{C-F} = 26 Hz), 117.2, 116.6 (d, *J*_{C-F} = 8.6 Hz), 114.5 (d, *J*_{C-F} = 23 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ -120.3.

(Z)-[1-(2-Chlorophenoxy)ethene-1,2-diyl]dibenzene (3al)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (**1a**) (89.0 mg, 0.50 mmol), 2-chlorophenol (**2l**) (70.7 mg, 0.55 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (6.5 mg, 5 μ mol, 1.0 mol %) in toluene (1 mL) at 110 °C for 3 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 95/5) to give **3al** (141 mg, 92%, average of two runs) as a colourless liquid whose NMR data were consistent to those reported in the literature [3].

^{NOESY} ¹H NMR (CDCl₃, 300 MHz) δ 7.72-7.65 (m, 2H), 7.65-7.57 (m, 2H), 7.43 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.39-7.18 (m, 6H), 6.99 (dt, *J* = 7.7, 1.7 Hz, 1H), 6.93-6.79 (m, 2H), 6.72 (s, 1H); ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 151.7, 149.5, 135.4, 134.5, 130.6, 129.1, 128.8, 128.7, 127.8, 127.7, 125.9, 123.0, 122.9, 117.1, 116.3.

(Z)-[1-(2-Allylphenoxy)ethene-1,2-diyl]dibenzene (3am)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (**1a**) (89.0 mg, 0.50 mmol), 2-allylphenol (**2m**) (74.0 mg, 0.55 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (6.5 mg, 5 μ mol, 1.0 mol %) in toluene (1 mL) at 110 °C for 3 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 95/5) to give **3am** (144 mg, 92%, average of two runs) as a white solid.

NOESY ¹H NMR (CDCl₃, 300 MHz): δ 7.66-7.59 (m, 2H), 7.58-7.51 (m, 2H), 7.39-7.15 (m, 7H), 7.02-6.84 (m, 2H), 6.73 (dd, J = 7.8, 1.6 Hz, 1H), 6.67 (s, 1H), 6.25-6.06 (m, 1H), 5.25-5.09 (m, 2H), 3.69 (ddd, J = 6.5, 1.6, 1.6 Hz, 2H); 1³C{¹H} NMR (CDCl₃, 101 MHz) δ 153.8, 149.7, 137.0, 136.1, 134.9, 130.6, 129.0, 128.7, 128.6, 128.5, 128.4, 127.51, 127.45, 126.0, 122.0, 116.9, 116.1, 114.5, 34.3; HRMS (APCI) calcd for C₂₃H₂₁O [(M+H)⁺] 313.1587, found 313.1588.

(Z)-(1-(2,4-Di-*tert*-butylphenoxy)ethene-1,2-diyl)dibenzene (3an)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (**1a**) (89.0 mg, 0.50 mmol), 2,4-di-*tert*-butylphenol (**2o**) (103.2 mg, 0.50 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (6.5 mg, 5 μ mol, 1.0 mol %) in toluene (1 mL) at 80 °C for 14 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 95/5) to give **3an** (160 mg, 83%, average of two runs) as an off-white solid.

¹**H NMR** (CDCl₃, 300 MHz): δ 7.62 - 7.58 (m, 2H), 7.57 - 7.53 (m, 2H), 7.40 (d, J = 2.5 Hz, 1H), 7.35 - 7.21 (m, 5H), 7.20 - 7.15 (m, 1H), 6.93 (dd, J = 8.5, 2.5 Hz, 1H), 6.69 (d, J = 8.7 Hz, 1H), 6.67 (s, 1H), 1.58 (s, 9H), 1.26 (s, 9H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃): δ 152.77, 149.60, 143.77, 136.60, 136.35, 134.95, 129.04, 128.61, 128.42, 128.30, 127.35, 126.43, 124.51, 123.79, 117.49, 114.69, 35.40, 34.44, 31.72, 30.63. **HRMS** (APCI) calcd for C₂₈H₃₃O [(M+H)⁺] 385.2526, found 385.2519.

(Z)-2-((1,2-Diphenylvinyl)oxy)phenol (3ap)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (**1a**) (89.0 mg, 0.50 mmol), catechol (**2p**) (55.1 mg, 0.50 mmol) and $[Au(IPr)]_2(\mu$ -OH)][BF₄] (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 6 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 95/5) to give **3ap** (100 mg, 70%, average of two runs) as a colourless liquid,

whose NMR data were consistent to those reported in the literature [4]. ¹H NMR (300 MHz; CDCl₃): δ 7.60-7.57 (m, 2H), 7.54-7.50 (m, 2H), 7.36-7.28 (m, 5H), 7.27-7.21 (m, 1H), 7.03 (dd, *J* = 8.0, 1.5 Hz, 1H), 6.88 (td, *J* = 7.7, 1.5 Hz, 1H), 6.75 (dd, *J* = 8.1, 1.5 Hz, 1H), 6.71 (s, 1H), 6.64 (ddd, *J* = 8.1, 7.4, 1.6 Hz, 1H), 5.87 (s, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 149.27, 145.79, 143.16, 135.25, 134.45, 128.91, 128.84, 128.77, 127.81, 125.79, 123.22, 120.62, 117.44, 115.78, 115.08.

1,2-Bis(((Z)-1,2-diphenylvinyl)oxy)benzene (4ap)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (**1a**) (178.0 mg, 1 mmol), catechol (**2p**) (55.1 mg, 0.50 mmol) and $[Au(IPr)]_2(\mu$ -OH)][BF₄] (3.2 mg, 0.25 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 18 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 95/5) to give **4ap** (256 mg, 55%, average of two runs) as a colourless liquid, whose NMR data were consistent to those reported in the literature [4].

¹H NMR (400 MHz; CDCl₃): δ 7.82-7.77 (m, 8H), 7.42-7.33 (m, 10H), 7.32-7.27 (m, 2H), 6.90-6.86 (dt, J = 6.0, 3.6 Hz, 2H), 6.76 (s, 2H), 6.69 (dt, J = 6.4, 3.3 Hz, 2H). ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 150.00, 145.53, 136.01, 135.01, 129.19, 128.78, 128.71, 128.66, 127.59, 126.16, 122.60, 117.04, 116.33, 77.48, 77.16, 76.84.

1,3-Bis[(Z)-1,2-diphenylvinyloxy]benzene (4aq)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from diphenylacetylene (**1a**) (89.0 mg, 0.50 mmol), resorcinol (**2q**) (28.0 mg, 0.25 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (3.2 mg, 2.5 μ mol, 1.0 mol %) in toluene (1 mL) at 80 °C for 6 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 95/5) to give **4aq** (198 mg, 84%, average of two runs) as a white solid, whose NMR data were consistent to those reported in the literature [4].

¹**H NMR** (CDCl₃, 300 MHz) δ 7.61-7.53 (m, 4H), 7.52-7.43 (m, 4H), 7.34-7.16 (m, 12H), 7.02 (t, J = 8.2 Hz, 1H), 6.74 (t, J = 2.3 Hz, 1H), 6.60 (brs, 3H), 6.58 (d, J = 2.3 Hz, 1H); ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 157.7, 149.7, 135.9, 134.7,

130.4, 129.0, 128.6, 128.6, 128.4, 127.4, 126.1, 116.7, 110.2, 105.6.

1,4-Bis(((Z)-1,2-diphenylvinyl)oxy)benzene (4ar)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne **1a** (89.0 mg, 0.50 mmol), hydroquinone (**2r**) (28.0 mg, 0.25 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (3.2 mg, 2.5 μ mol, 0.5 mol %) in toluene (1 mL) at 80 °C for 1 h, was purified by trituration in pentane after evaporation of the volatiles, to give **4ar** (212 mg, 95%, average of two runs) as a colourless solid, whose NMR data were consistent to those reported in the literature [4].

¹H NMR (CD₂Cl₂, 500 MHz) δ 7.62-7.60 (m, 2H), 7.56-7.54 (m, 2H), 7.33-7.26 (m, 5H), 7.22-7.18 (m, 1H), 6.88 (s, 2H), 6.61 (s, 1H); ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 151.6, 150.7, 136.5, 135.3, 129.4, 129.1, 129.0, 127.9, 126.6, 117.6,

117.2.

1,4-Bis(((Z)-1,2-diphenylvinyl)oxy)-2,5-dichlorobenzene (4as)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne (**1a**) (89.0 mg, 0.50 mmol), hydroquinone **2s** (45.0 mg, 0.25 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 16 h, was purified by trituration in pentane after evaporation of the volatiles, to give **4as** (64 mg, 47%, average of two runs) as an off-white solid.

¹**H NMR** (CD₂Cl₂, 400 MHz): δ 7.61-7.54 (m, 8H), 7.36-7.23 (m, 12H), 6.91 (s, 2H), 6.72 (s, 2H); **HRMS** (APCI) calcd for $C_{34}H_{26}O_2Cl_2$ [(M+H)⁺] 534.1148, found 534.1140.

(Z)-4,4'-(1-Phenoxyethene-1,2-diyl)bis(methoxybenzene) (3bt)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne (**1b**) (119.2 mg, 0.50 mmol), phenol (**2t**) (52.0 mg, 0.55 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (6.5 mg, 5 μ mol, 1.0 mol %) in toluene (1 mL) at 110 °C for 14 h, was purified by column chromatography on silica gel (pentane/EtOAc = 95/5) to give **2bt** (148 mg, 89%, average of two runs) as a off-white solid.

¹**H NMR** (300 MHz; CDCl₃): δ 7.57 (d, *J* = 8.8 Hz, 2H), 7.51 (d, *J* = 8.8 Hz, 2H), 7.26-7.18 (m, 2H), 7.03 (d, *J* = 7.8 Hz, 2H), 6.94 (t, *J* = 7.3 Hz, 1H), 6.82 (dd, *J* = 9.0, 2.6 Hz, 4H), 6.53 (s, 1H), 3.65 (s, 6H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃): δ 159.60, 158.68, 156.54, 147.82, 130.16, 129.72, 128.72, 127.85, 127.19, 121.92, 116.26, 114.66, 114.06, 114.03, 55.32, 55.28. **HRMS** (APCI) calcd for C₂₂H₂₁O₃ [M⁺] 333.1485, found 333.1482.

(Z)-4,4'-(1-Phenoxyethene-1,2-diyl)bis(chlorobenzene) (3ct)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne **1c** (123.5 mg, 0.50 mmol), phenol (**2t**) (52.0 mg, 0.55 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (6.5 mg, 5 μ mol, 1.0 mol %) in toluene (1 mL) at 110 °C for 14 h, was purified by column chromatography on silica gel (pentane/EtOAc = 9/1) to give **3ct** (140 mg, 82%, average of two runs) as a off-white solid.

¹H NMR (300 MHz; CDCl₃): δ 7.58-7.54 (m, 2H), 7.52-7.48 (m, 2H), 7.30-7.21 (m, 6H), 6.99-6.95 (m, 3H), 6.58 (s, 1H). ¹³C{¹H} NMR (126 MHz, CDCl₃): 155.93, 149.23, 134.54, 134.32, 133.24, 133.06, 130.29, 129.93, 129.01, 128.87, 127.45, 122.57, 116.32, 115.99. HRMS (APCI) calcd for $C_{20}H_{15}Cl_2O$ [M⁺] 341.0494, found 341.0491.

(Z)-[(1,4-Dimethoxybut-2-en-2-yl)oxy]benzene (3dt)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne **1d** [5] (114.0 mg, 1.00 mmol), phenol (**2t**) (47.0 mg, 0.50 mmol) and $[{Au(IPr)}_2(\mu - OH)][BF_4]$ (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 2 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 10/1) to give **3dt** (89 mg, 85%, average of two runs) as a colourless liquid.

NOESY ¹H NMR (CDCl₃, 300 MHz) δ 7.34-7.23 (m, 2H), 7.08-6.93 (m, 3H), 5.51 (tt, J = 6.4, 0.9 Hz, 1H), 4.02 (dt, J = 6.4, 0.9 Hz, 2H), 3.91 (dt, J = 0.9 Hz, 2H), 3.35 (s, 3H), 3.31 (s, 3H); ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 156.3, 149.9, 129.7, 122.5, 116.5, 114.9, 70.6, 66.4, 58.4, 58.2; HRMS (APCI) calcd for C₁₂H₁₆O₃ [M⁺] 208.1094, found 208.1093.

(Z)-2,2'-(1-Phenoxyethene-1,2-diyl)dithiophene (3et)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne **1e** [6] (95.0 mg, 0.50 mmol), phenol (**2t**) (52.0 mg, 0.55 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (6.5 mg, 5 μ mol, 1.0 mol %) in toluene (1 mL) at 110 °C for 1 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 9/1) to give **3et** (91 mg, 64%, average of two runs) as a off-white solid.

¹**H** NMR (CDCl₃, 400 MHz) δ 7.31-7.24 (m, 2H), 7.23-7.20 (m, 1H), 7.19 (ddd, J = 5.0, 1.0, 1.0 Hz, 1H), 7.17-7.13 (m, 1H), 7.10-7.07 (m, 3H), 7.04-6.95 (m, 3H), 6.94-6.90 (m, 1H); ¹³C{¹H} NMR (CDCl₃, 101 MHz) δ 156.0, 142.8, 139.1, 137.0, 129.8, 127.9, 127.7, 127.0, 126.6, 125.6, 125.4, 122.6, 116.0, 110.6; HRMS (APCI) calcd for C₁₆H₁₃OS₂ [(M+H)⁺] 285.0402, found 285.0397.

(Z)-2,2'-(1-Phenoxyethene-1,2-diyl)bis(chlorobenzene) (3ft)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne **1f** (123.0 mg, 0.50 mmol), phenol (**2t**) (47.0 mg, 0.50 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (3.2 mg, 2.5 μ mol, 0.5 mol %) in toluene (1 mL) at 80 °C for 6 h, was purified by column chromatography on silica gel (pentane), to give **3ft** (148 mg, 87%, average of two runs) as a colourless oil.

¹H NMR ($\dot{C}DCl_3$, 300 MHz) δ 8.18-8.15 (m, 1H), 7.66-7.62 (m, 1H), 7.50-7.47 (m, 1H), 7.44-7.41 (m, 1H), 7.33-7.10 (m, 6H), 7.17-7.13 (m, 2H), 7.05-7.00 (m, 1H), 6.93 (s, 1H); ¹³C{¹H} NMR ($CDCl_3$, 75 MHz) δ 155.7, 148.7, 136.1, 134.9, 133.6, 132.9, 132.6, 131.1, 130.6, 130.0, 129.8, 129.5, 128.5, 126.8, 126.5, 122.8, 117.6, 116.2; HRMS (ESI) calcd for C₂₀H₁₅OCl₂ [(M+H)⁺] 341.0494, found 341.0495.

(Z)-(2-Phenoxybut-1-en-1-yl)benzene and (Z)-(1-phenoxybut-1-en-1-yl)benzene (3it /3it' = 1/0.23)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from **1i** (65.0 mg, 0.50 mmol), phenol (**2t**) (52.0 mg, 0.55 mmol) and $[Au(IPr)]_2(\mu$ -OH)][BF₄] (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 6 h, was purified by column chromatography

on silica gel (pentane/EtOAc = 95/5) to give the inseparable mixture of **3it** and **3it**' (**3it** /**3it**' = 1/0.23, 90 mg, 80%, average of two runs) as a colourless liquid.

¹**H NMR** (400 MHz; CDCl₃): δ 7.54-7.52 (m, 2H), 7.51-7.48 (m, 0.6H), 7.33-7.21 (m, 6H), 7.17-7.13 (m, 1H), 7.06 (t, J = 1.1 Hz, 0.32H), 7.04-7.01 (m, 3H), 6.98-6.95 (m, 0.5H), 6.93-6.91 (m, 0.15H), 5.94 (s, 1H), 5.87 (t, J = 7.3 Hz, 0.23H), 2.31 (qd, J = 7.4, 0.8 Hz, 2H), 2.23 (quintet, J = 7.5 Hz, 0.48H), 1.14 (t, J = 7.4 Hz, 3H), 1.04 (t, J = 7.5 Hz, 0.74H). ¹³C{¹H} NMR (126 MHz; CDCl₃): δ 157.61, 155.53, 154.39, 148.36, 135.56, 135.22, 129.73, 129.62, 128.54, 128.45, 128.38, 127.92, 126.68, 125.32, 122.44, 121.43, 119.87, 117.32, 115.48, 114.06, 26.41, 19.47, 13.97, 11.96. HRMS (APCI) calcd. for C₁₆H₁₇O [(M+H)⁺] 225.1274, found 225.1271.

(Z)-1-Methoxy-4-((1-phenylprop-1-en-2-yl)oxy)benzene and (Z)-1-methoxy-4-((1-phenylprop -1-en-1-yl)oxy)benzene (3iu / 3iu = 1/0.22)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from **1j** (58.0 mg, 0.50 mmol), phenol **2u** (68.3 mg, 0.55 mmol) and $[Au(IPr)]_2(\mu$ -OH)][BF₄] (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 6 h, was purified by column

chromatography on silica gel (*n*-hexane/EtOAc = 95/5) to give the inseparable mixture of **3ju** and **3ju**' (**3ju** /**3ju**' = 1/0.22, 104 mg, 87%, average of two runs) as a colourless liquid. ¹H NMR (400 MHz; CDCl₃): δ 7.58-7.55 (m, 2H), 7.49-7.46 (m, 0.45), 7.30-7.23 (m, 3H), 7.17-7.13 (m, 1H), 6.99-6.95 (m, 2H), 6.91-6.83 (m, 3H), 6.79-6.76 (m, 0.40), 5.89 (q, *J* = 7.0 Hz, 0.23), 5.78 (s, 1H), 3.79 (s, 3H), 3.73 (s, 0.62H), 1.93 (s, 3H), 1.77 (d, *J* = 7.0 Hz, 0.62H). ¹³C{¹H} NMR (126 MHz; CDCl₃): δ 155.50, 154.23, 151.33, 150.17, 150.09, 149.03, 135.75, 135.62, 128.50, 128.41, 128.16, 127.84, 126.38, 125.32, 121.65, 119.23, 116.17, 114.77, 114.75, 113.55, 112.35, 110.03, 108.34, 55.75, 55.71, 19.69, 11.52. HRMS (APCI) calcd. for C₁₆H₁₇O₂ [(M+H)⁺] 241.1223, found 241.1223. (Z)-3-(2-Phenoxyhex-1-en-1-yl)pyridine yl)pyridine (3nt') (3nt/3nt' =1/0.43)

(3nt) and (Z)-3-(1-phenoxyhex-1-en-1-

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne **1n** (79.0 mg, 0.50 mmol), phenol (**2t**) (47.0 mg, 0.50 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (19.5 mg, 15 μ mol, 3.0 mol %) in toluene (1 mL) at 110 °C for 24 h, was purified by column chromatography on silica

gel (*n*-hexane/EtOAc = $95/5 \sim 70/30$) to give **3nt** and **3nt'** (**3nt** / **3nt'** = 1/0.43, 96 mg, 76%, average of two runs) as a pale yellow oil.

¹**H** NMR (CDCl₃, 300 MHz) δ 8.77 (d, J = 1.8 Hz, 1H), 8.63 (br, 2.25H), 8.45 (dd, J = 4.7, 1.4 Hz, 1H), 8.36 (d, J = 3.7 Hz, 2.33H), 7.94 (dt, J = 8.1, 1.9 Hz, 2.36H), 7.71 (dt, J = 8.0, 2.0 Hz, 1H), 7.34-7.12 (m, 12H), 7.08-6.92 (m, 10H), 5.95-5.89 (m, 1+2.21H), 2.33-2.20 (m, 6.62H), 1.58-1.21 (m, 15.38H), 0.89 (t, J = 7.3 Hz, 10.38H); ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 157.0, 155.7, 155.1, 149.7, 148.8, 147.5, 147.1, 146.4, 134.9, 132.6, 131.3, 129.8, 129.8, 123.5, 123.3, 122.9, 121.9, 120.4, 117.4, 115.6, 111.2, 32.9, 31.4, 29.3, 25.7, 22.6, 22.2, 14.0, 14.0. HRMS (ESI) calcd for C₁₇H₂₀O₁N₁ [(M+H)⁺] 254.1539, found 254.1541.

(Z)-[{4-(Benzyloxy)but-2-en-2-yl}oxy]benzene (3ot)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne **1o** [7] (160.0 mg, 1.00 mmol), phenol (**2t**) (47.0 mg, 0.50 mmol) and $[{Au(IPr)}_2(\mu-OH)][BF_4]$ (3.2 mg, 2.5 µmol, 0.5 mol %) in toluene (1 mL) at 80 °C for 2 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 95/5) to give **3ot** (89 mg, 70%, average of two runs) as a colourless liquid. ¹H NMR (CDCl₃, 300 MHz) δ 7.34-7.18 (m, 7H), 7.03-6.94 (m, 1H),

NOESY

6.94-6.86 (m, 2 H), 5.21 (t, J = 6.8 Hz, 1H), 4.43 (s, 2H), 4.06 (d, J = 6.8 Hz, 2H), 1.81 (s, 3H); ¹³C{¹H} NMR (CDCl₃, 101 MHz) δ 156.1, 150.9, 138.6, 129.7, 128.4, 127.9, 127.6, 122.4, 117.0, 112.6, 72.4, 64.5, 18.6; HRMS (APCI) calcd for C₁₇H₁₉O₂ [(M+H)⁺] 255.1380, found 255.1375.

(Z)-[{5-(Benzyloxy)pent-2-en-2-yl}oxy]benzene (3pt) and (Z)-[{5-(benzyloxy)pent-2-en-3-yl} oxy]benzene (3pt') (3pt/3pt' =1/0.17)

According to the general procedure for hydrophenoxylation, a crude product, which was prepared from alkyne **1p** [8] (87.0 mg, 0.50 mmol), phenol (**2t**) (52.0 mg, 0.55 mmol) and [{Au(IPr)}₂(μ -OH)][BF₄] (3.2 mg, 2.5 μ mol, 0.5 mol %) in toluene (1 mL) at 80 °C for 3 h, was purified by column chromatography on silica gel (*n*-hexane/EtOAc = 95/5) to give **3pt** and **3pt'** (**3pt** /**3pt'** = 1/0.17, 114 mg, 85%, average of

two runs) as a colourless liquid.

¹**H NMR** (CDCl₃, 300 MHz) δ 7.33-7.14 (m, 7+1.19H), 6.96-6.80 (m, 3+0.51H), 5.12 (q, J = 6.7 Hz, 0.17 H), 5.03 (tq, J = 7.2, 1.1 Hz, 1H), 4.43 (s, 2H), 4.42 (s, 0.34H), 3.51 (t, J = 6.7 Hz, 0.34H), 3.41 (t, J = 7.2 Hz, 2H), 2.45-2.36 (m, 0.34H), 2.31 (dtq, J = 7.2, 7.2 1.1 Hz, 2H), 1.75 (dt, J = 7.2, 1.1 Hz, 3H), 1.50-1.47 (m, 0.51H); ¹³C{¹H} NMR (CDCl₃, 75 MHz) δ 156.6, 156.4, 148.6, 148.4, 138.7, 138.5, 129.6, 129.6, 128.5, 128.4, 127.8, 127.8, 127.7, 127.6, 121.8, 121.6, 116.4, 115.9, 112.7, 112.3, 73.0, 72.8, 69.8, 67.5, 33.5, 26.0, 18.5, 10.9.

3. References

[1] a) R. S. Ramón, S. Gaillard, A. Poater, L. Cavallo, A. M. Z. Slawin, S. P. Nolan, *Chem. Eur. J.* **2011**, *17*, 1238-1246; b) A. Gómez-Suárez, Y. Oonishi, S. Meiries, S. P. Nolan, *Organometallics* **2013**, *32*, 1106-1111.

[2] Y. Oonishi, A. Gomez-Suarez, A. R. Martin, Y. Makida, A. M. Slawin, S. P. Nolan, *Chem. Eur. J.* **2014**, *20*, 13507-13510.

[3] M. R. Kuram, M. Bhanuchandra, A. K. Sahoo, J. Org. Chem. 2010, 75, 2247-2258.

[4] H. Hiranuma, S. I. Miller, J. Org. Chem. **1982**, 47, 5083-5088.

[5] P. Chuentragool, K. Vongnam, P. Rashatasakhon, M. Sukwattanasinitt, S. Wacharasindhu, *Tetrahedron* **2011**, *67*, 8177-8182.

[6] K. Semba, T. Fujihara, J. Terao, Y. Tsuji, *Chem. Eur. J.* **2012**, *18*, 4179-4184.

[7] F. Alonso, I. Osante, M. Yus, *Tetrahedron* **2007**, *63*, 93-102.

4. NMR Spectra

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -25

7, 81 7, 7, 79 7, 79 7, 70 7

[1] a) R. S. Ramón, S. Gaillard, A. Poater, L. Cavallo, A. M. Z. Slawin, S. P. Nolan, *Chem. Eur. J.* **2011**, *17*, 1238-1246; b) A. Gómez-Suárez, Y. Oonishi, S. Meiries, S. P. Nolan, *Organometallics* **2013**, *32*, 1106-1111.

[2] Y. Oonishi, A. Gomez-Suarez, A. R. Martin, S. P. Nolan, *Angew Chem Int Ed* **2013**, *5*2, 9767-9771.

- [3] Y. Oonishi, A. Gomez-Suarez, A. R. Martin, Y. Makida, A. M. Slawin, S. P. Nolan, *Chem. Eur. J.* **2014**, *20*, 13507-13510.
- [4] M. R. Kuram, M. Bhanuchandra, A. K. Sahoo, J. Org. Chem. 2010, 75, 2247-2258.
- [5] H. Hiranuma, S. I. Miller, J. Org. Chem. **1982**, 47, 5083-5088.
- [6] P. Chuentragool, K. Vongnam, P. Rashatasakhon, M. Sukwattanasinitt, S. Wacharasindhu, *Tetrahedron* **2011**, 67, 8177-8182.
- [7] K. Semba, T. Fujihara, J. Terao, Y. Tsuji, *Chem. Eur. J.* **2012**, *18*, 4179-4184.
- [8] F. Alonso, I. Osante, M. Yus, *Tetrahedron* **2007**, 63, 93-102.