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Figure S1: PEDV-positive accessions by state for three periods in 2013. Above each panel is the range of
ISO weeks over which counts of positive accessions are aggregated to determine the fill color. The periods
correspond roughly to spring, summer and autumn of 2013. Note that the scale of the colorbar is different
for each panel and a lull occurred in the summer period for most states. States with no positive accessions
in 2013 have dashed borders. This figure was created with the R package surveillance [1].
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Figure S2: Counts of positive accessions and confirmed or presumptive positive premises by state in year
2014–2015. A confirmed positive premises is a premises where swine tested positive and have clinical signs.
A presumptive positive premises is a premise where swine tested positive but have non-specific, unknown,
or no clinical signs consistent with PED. The counts of positive accessions are similar to those of premises
that are confirmed or presumptive.
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Figure S3: Matrix correlations and p values as a function of the transmission probability across transport
edges in the contact network. For the distance and transport matrices, correlations increase with the trans-
mission probability. In all cases, p values tend to decrease with increases in the transmission probability.
These trends are clearer when the seasonal amplitude is below 0.5.
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Figure S4: Matrix correlations and p values as a function of the number of the spatial resolution of the
simulation. As the spatial resolution increases, the distances over which spatial edges occur in the contact
network decreases. Matrix correlations were higher and p values were lower when spatial neighborhoods were
larger. Seasonal amplitude has no noticeable effect.
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Figure S5: Matrix correlations and p values as a function of the probability of transmission across spatial
edges in the contact network. On average, correlations are increasing and p values are decreasing. These
trends are weak for the transport matrix.
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Figure S6: Scatter plots and Pearson correlations between pair-averaged (i.e., undirected) transport flows,
cross correlations between time series of positive accessions, and negative geographic distances. The p values
are from a Mantel tests.
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Figure S7: Rank scatter plots and Spearman correlations between transport flows, cross correlations between
time series of positive accessions, and negative geographic distances. The p values are from a Mantel test.
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Figure S8: Rank scatter plots and Spearman correlations between pair-averaged (i.e., undirected) transport
flows, cross correlations between time series of positive accessions, and negative geographic distances. The p
values are from a Mantel test.
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Figure S9: Comparison of swine transport flows and coupling of outbreak dynamics. (a) Annual swine
transport flows from source states to destination states. (b) Cross correlations of PEDV positive accessions
per week. Cross correlations are calculated as the correlations between positive accessions in the leading
state with those in the lagging state in the previous week. Within-state values of flows and cross correlations
are not included in the analysis and appear as white squares. In both panels, rows and columns are arranged
to cluster together states with similar shipment flows.



Supplementary Tables

Table S1: Farm types and the age classes of swine typically present on them. Ones (zeros) indicate the
presence (absence) of an age class on a particular farm type.

Farms type Suckling Nursery Grower/Feeder Sow/Boar
Farrow to wean 1 0 0 1
Farrow to finish 1 1 1 1
Finish only 0 0 1 0
Farrow to feeder 1 1 0 1
Nursery 0 1 0 0
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Table S2: USDA ERS estimates of number of swine moved between states in 2001 for feeding and breeding.
Origin in row, destination in column. Table 1 of 6.

AL AK AZ AR CA CO CT DE DC
AL 247 5
AK
AZ 31
AR 291 67 6
CA
CO 20
CT
DE
DC
FL 1 1
GA 147332 1
HI 1
ID 2 51
IL 92 28 62 496 120
IN 46 12 8
IA 170 999 14237
KS 12 691 71 18144
KY 130 18253
LA 1
ME 45
MD 31 53
MA
MI 2

MN 1 14917
MS 350
MO 2 12 48494 645 2134
MT 815
NE 185 8496
NV 83
NH 2
NJ

NM 5
NY
NC 27275 6600
ND 190
OH 7 21 108
OK 1082 52520 16762
OR 195
PA 29
RI
SC
SD 2355 404 229
TN 805
TX 183
UT 4883
VT
VA
WA 4 12
WV
WI 57 2379 5

WY 11001 674
Mexico
Canada 6590

Other states



Table S3: USDA ERS estimates of number of swine moved between states in 2001 for feeding and breeding.
Origin in row, destination in column. Table 2 of 6.

FL GA HI ID IL IN IA KS KY
AL 413 22672 1200 980 244823 7270
AK
AZ 1
AR 11 16 13233 2430 241204 452
CA 9415 4843
CO 64790 28600 316678 248742
CT 2
DE
DC
FL 5124 39
GA 2152 2805 5500 98494 16253
HI
ID
IL 234 86 113245 1424813 4278 16964
IN 4 877 101857 225425 69 2585
IA 69 431 190481 1435 9821 9694
KS 75 13947 14847 157764 258
KY 899 16205 45788 17658 1999
LA 33
ME 233 36
MD 1
MA
MI 6745 81932 9232 6 35511

MN 550 2 1101 1380 1656184 5243 614
MS 1 461
MO 177 223313 45820 2389932 21894
MT 9900
NE 34093 25375 1152749 85792 11762
NV
NH 15 6
NJ

NM
NY 2
NC 87 13301 776744 408824 1216195 4003 3231
ND 1 8030 15397 969
OH 10 2601 193579 25456 157 549
OK 2656 47536 28475 1477925 82357
OR 3 4
PA 1283 15810 1016
RI
SC 17 106 60 1100
SD 1590 2735 363885 4989
TN 1699 2 34149 837 47036 3231
TX 205 317 82434 2872
UT 2650 16005 960
VT
VA 36 1930 3320
WA
WV
WI 20 31 18927 500 110098 1141 13765

WY 370 2396 84761 20
Mexico
Canada 800 74 24440 22028 1662037 3072 12343

Other states



Table S4: USDA ERS estimates of number of swine moved between states in 2001 for feeding and breeding.
Origin in row, destination in column. Table 3 of 6.

LA ME MD MA MI MN MS MO MT
AL 1905 1025 13700 8
AK
AZ 8100
AR 19 323 36907 1 589534
CA 1413 1
CO 203033 100 41934
CT 1 79
DE 1284
DC
FL 1 2
GA 1 2458 3201 2400
HI
ID
IL 500 3 22640 117647 37 98050
IN 8 1347 55 306
IA 37 860950 39 13890
KS 4 4 354 22554 521 144338
KY 6 2816 48 2406
LA 208
ME 986 27 44
MD 2 12 12
MA 6
MI 7759 178

MN 976 6157 443
MS 1 1
MO 5 290 1 22921 117548 139
MT 4105
NE 1015 1 725790 35 14074
NV
NH 275 60 141 1
NJ 6

NM
NY 200 4
NC 7207 55866 73220 231883
ND 126132
OH 27 8 2738 75 71
OK 129194 35 397676
OR 6 4
PA 2120 24 117 34
RI 11
SC 7
SD 306309 1 1172
TN 5917 601
TX 7 5400 36867
UT 3 2468
VT
VA 25 2

WA
WV 45 21
WI 11 880 33922 1528

WY 105 67822 254 23
Mexico
Canada 3599 912246 2320

Other states



Table S5: USDA ERS estimates of number of swine moved between states in 2001 for feeding and breeding.
Origin in row, destination in column. Table 4 of 6.

NE NV NH NJ NM NY NC ND OH
AL 585 10000 851
AK
AZ
AR 950 10272 17
CA 9 35
CO 1267
CT
DE 280
DC
FL 13
GA 1200 23722 3313
HI
ID 2
IL 8725 2 35 9 35793 96974
IN 2 14629
IA 34405 15448 10114
KS 59895 25 3786 177
KY 590
LA 2382
ME 57 13 18
MD 17 9 2
MA 76 46
MI 13220

MN 46374 22 1248 1132 3866
MS 11 1 2920
MO 18003 3113 1 8 10 6087 1361
MT
NE 2075
NV
NH
NJ

NM
NY 87 1
NC 20900 130164
ND
OH 1 17 8768
OK 392
OR 20
PA 661
RI
SC 90834
SD 98676 261
TN 1320
TX 8 25
UT 32
VT
VA 34723

WA
WV 1
WI 1081 2 38 830 859

WY 6484 10 7 320
Mexico
Canada 16515

Other states 2354



Table S6: USDA ERS estimates of number of swine moved between states in 2001 for feeding and breeding.
Origin in row, destination in column. Table 5 of 6.

OK OR PA RI SC SD TN TX UT
AL 940 17645
AK
AZ 850
AR 5596 1900 1275 35
CA 144
CO 1 208887
CT
DE
DC
FL 27 2359 2965
GA 1387 7120 69 8235 450
HI
ID 213
IL 2109 33 93 1 14 3295 7927 957
IN 18 12330
IA 1219 104 98 11698 10114
KS 7676 359 66 2316 17
KY 1071
LA
ME
MD 2253 3
MA 2
MI

MN 18 2 2571 134537 173 45
MS 129 8
MO 5069 13 215 22608 9223 319
MT 4837
NE 2 141312
NV
NH
NJ

NM
NY
NC 2015 54309 176474 15800 29879 3
ND 1839
OH 1
OK 9 22141
OR
PA
RI
SC
SD 309 3 2733 25
TN
TX 1 175095
UT 1 9
VT
VA

WA 101
WV 70
WI 671 1 480 62 1008 7 59

WY 250 7810 7501 11
Mexico
Canada 145137

Other states



Table S7: USDA ERS estimates of number of swine moved between states in 2001 for feeding and breeding.
Origin in row, destination in column. Table 6 of 6.

VT VA WA WV WI WY Mexico Canada Other states
AL
AK
AZ
AR
CA
CO 1 234
CT
DE
DC
FL 8
GA 450 762
HI
ID
IL 90 16207
IN 12
IA 1219 27 21896
KS 19 21 24 34300
KY
LA 7
ME
MD 341 22
MA 2 4
MI 3

MN 1 14 30893 1
MS 153
MO 2 127
MT 47
NE 17
NV
NH
NJ

NM
NY
NC 136736 2425
ND 10
OH 26
OK 1 38
OR
PA 16
RI
SC
SD 101 2181
TN
TX 2
UT
VT
VA 3
WA
WV
WI 61 62

WY
Mexico
Canada

Other states



Supplementary Note

1. Descriptive statistics of data sets

The tables below provide the number of observations n, the number of missing values, the number of unique
values, and the mean. Depending on their distributions, variables are further described with some subset of
quantiles, order statistics, histograms, and probability mass functions.

Variables in Mantel tests
4 Variables 462 Observations

Transport flow, log10(#swine / y + 1)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

462 0 246 1.93 0.000 0.000 0.000 1.447 3.788 4.729 5.196

lowest : 0.0000 0.3010 0.4771 0.6021 0.6990
highest: 6.0850 6.1538 6.1697 6.2191 6.3784

Cross correlation in positive accessions

n missing unique Mean .05 .10 .25 .50
462 0 413 0.1158 -0.13346 -0.11225 -0.05071 0.04438
.75 .90 .95

0.25525 0.42874 0.57676
lowest : -0.2190 -0.2078 -0.1994 -0.1994 -0.1791
highest: 0.7353 0.7410 0.7614 0.7898 0.7959

-Geographic distance (km)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

462 0 231 -1271 -2609.7 -2186.9 -1716.7 -1133.6 -724.8 -486.0 -366.1

lowest : -3843.0 -3769.1 -3698.4 -3676.4 -3250.2
highest: -312.5 -297.6 -281.3 -242.9 -193.3

Shared border
n missing unique Sum Mean

462 0 2 76 0.1645

Variables used in stability selection with responses of any positive accessions
26 Variables 42 Observations

Any positive accessions
n missing unique
42 0 2

FALSE (20, 48%), TRUE (22, 52%)

Log(#farms)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
42 0 40 5.474 2.962 3.556 4.580 5.277 6.757 7.548 7.609

lowest : 2.303 2.565 2.944 3.296 3.532
highest: 7.554 7.598 7.610 8.100 8.929

Log(mean over counties of #farms / km2)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
42 0 42 -6.292 -9.164 -7.885 -7.248 -6.234 -4.987 -4.298 -3.873

lowest : -9.906 -9.572 -9.214 -8.218 -7.907
highest: -4.288 -4.282 -3.852 -3.774 -2.982

Log(mean over counties with farms of #farms / km2)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
42 0 42 -5.915 -8.321 -7.534 -6.764 -5.954 -4.839 -4.203 -3.833

lowest : -8.586 -8.489 -8.349 -7.790 -7.571
highest: -4.199 -4.105 -3.819 -3.715 -2.982
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Log(median over counties of #farms / km2)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

42 0 40 -6.974 -10.795 -8.626 -8.016 -6.993 -5.699 -4.850 -4.369

lowest : -10.850 -9.752 -8.631 -8.588 -8.574
highest: -4.814 -4.416 -4.366 -4.219 -3.115

Log(maximum over counties of #farms / km2)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
42 0 42 -4.365 -7.400 -6.210 -5.301 -4.582 -3.299 -2.262 -1.834

lowest : -7.732 -7.506 -7.455 -6.364 -6.264
highest: -2.262 -2.058 -1.822 -1.563 -1.456

Log(swine inventory in year 2012)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
42 0 42 5.327 1.496 1.807 3.790 5.301 7.077 8.219 8.917

lowest : 0.2624 0.9933 1.4951 1.5041 1.7918
highest: 8.2428 8.4338 8.9425 9.1050 9.9330

Log(pig crop)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
42 0 42 6.007 1.731 2.281 4.274 6.573 8.038 8.953 9.408

lowest : 0.3365 0.5306 1.7192 1.9459 2.2721
highest: 8.9564 9.2229 9.4176 9.8014 9.9241

Log(inshipments)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

42 0 37 4.053 0.004766 0.182322 2.165058 4.429042 5.875295 6.714020 7.895151

lowest : 0.00000 0.09531 0.18232 0.69315 1.38629
highest: 6.71659 7.83320 7.89841 8.98457 10.08581

Log(marketings)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
42 0 42 6.224 1.866 2.184 4.802 6.612 8.174 9.001 9.699

lowest : 0.5878 1.8310 1.8563 2.0541 2.1518
highest: 9.0014 9.4175 9.7133 9.8706 10.6246

Weighted mean over counties of whether a county is in resource region 1
n missing unique Mean
42 0 8 0.1672

0 (33, 79%), 0.334405144694534 (1, 2%), 0.661064425770308 (1, 2%)
0.667582417582418 (1, 2%), 0.705559368565546 (1, 2%)
0.796841785605831 (1, 2%), 0.857545839210155 (1, 2%), 1 (3, 7%)

Weighted mean over counties of whether a county is in resource region 2
n missing unique Mean
42 0 6 0.1609

0 (33, 79%), 0.190403887033101 (1, 2%), 0.198352779684283 (1, 2%)
0.481981981981982 (1, 2%), 0.888992537313433 (1, 2%), 1 (5, 12%)

Weighted mean over counties of whether a county is in resource region 3
n missing unique Mean
42 0 8 0.06456

0 (35, 83%), 0.0127543273610689 (1, 2%), 0.0453781512605042 (1, 2%)
0.332417582417582 (1, 2%), 0.37888198757764 (1, 2%)
0.425925925925926 (1, 2%), 0.516129032258065 (1, 2%), 1 (1, 2%)

Weighted mean over counties of whether a county is in resource region 4
n missing unique Mean
42 0 7 0.08144

0 (36, 86%), 0.293557422969188 (1, 2%), 0.397515527950311 (1, 2%)
0.4 (1, 2%), 0.662087912087912 (1, 2%), 0.667447306791569 (1, 2%)
1 (1, 2%)
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Weighted mean over counties of whether a county is in resource region 5
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

42 0 14 0.1038 0.00000 0.00000 0.00000 0.00000 0.03363 0.46252 0.65861

0 (29, 69%), 0.00576217915138816 (1, 2%), 0.018018018018018 (1, 2%)
0.0388349514563107 (1, 2%), 0.0960878517501716 (1, 2%)
0.111007462686567 (1, 2%), 0.115537848605578 (1, 2%)
0.142454160789845 (1, 2%), 0.337912087912088 (1, 2%)
0.476363636363636 (1, 2%), 0.525925925925926 (1, 2%)
0.665594855305466 (1, 2%), 0.825726141078838 (1, 2%), 1 (1, 2%)

Weighted mean over counties of whether a county is in resource region 6
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
42 0 11 0.123 0.0000 0.0000 0.0000 0.0000 0.0000 0.4974 0.8668

0 (32, 76%), 0.016597510373444 (1, 2%), 0.175257731958763 (1, 2%)
0.192037470725995 (1, 2%), 0.206611570247934 (1, 2%)
0.474074074074074 (1, 2%), 0.5 (1, 2%), 0.854368932038835 (1, 2%)
0.867469879518072 (1, 2%), 0.884462151394422 (1, 2%)
0.994237820848612 (1, 2%)

Weighted mean over counties of whether a county is in resource region 7
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
42 0 10 0.1353 0.0000 0.0000 0.0000 0.0000 0.0000 0.8352 0.8493

0 (33, 79%), 0.106796116504854 (1, 2%), 0.132530120481928 (1, 2%)
0.140515222482436 (1, 2%), 0.806451612903226 (1, 2%)
0.838383838383838 (1, 2%), 0.845238095238095 (1, 2%)
0.849462365591398 (1, 2%), 0.962962962962963 (1, 2%), 1 (1, 2%)

Weighted mean over counties of whether a county is in resource region 8
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

42 0 11 0.109 0.00000 0.00000 0.00000 0.00000 0.02778 0.45784 0.59870

0 (31, 74%), 0.037037037037037 (1, 2%), 0.150537634408602 (1, 2%)
0.154761904761905 (1, 2%), 0.161616161616162 (1, 2%)
0.193548387096774 (1, 2%), 0.22360248447205 (1, 2%)
0.483870967741935 (1, 2%), 0.574074074074074 (1, 2%), 0.6 (1, 2%)
1 (2, 5%)

Weighted mean over counties of whether a county is in resource region 9
n missing unique Mean
42 0 5 0.05475

0 (38, 90%), 0.157676348547718 (1, 2%), 0.523636363636364 (1, 2%)
0.793388429752066 (1, 2%), 0.824742268041237 (1, 2%)

Log (positive accessions), weighted by shared border
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

42 0 34 3.591 -1.0000 -0.5756 0.3219 4.6585 6.2385 7.0276 7.3729

lowest : -1.0000 -0.5850 -0.4912 -0.2630 0.3219
highest: 7.0470 7.3038 7.3765 7.5107 7.6884

Log (positive accessions), weighted by directed flows
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
42 0 42 21.3 3.746 6.644 17.326 24.388 27.330 29.821 29.971

lowest : 2.459 3.047 3.644 5.687 6.384
highest: 29.823 29.924 29.974 30.071 30.639

Log (positive accessions), weighted by directed flows0.5

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
42 0 42 14.74 2.594 3.714 12.226 17.094 18.529 19.861 19.913

lowest : 1.452 1.987 2.576 2.934 3.265
highest: 19.867 19.909 19.913 19.943 20.238

Log (positive accessions), weighted by directed flows0.25

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
42 0 42 11.61 1.673 2.805 10.990 13.652 14.370 15.025 15.087

lowest : 0.9966 1.2395 1.6655 1.8149 2.4237
highest: 15.0411 15.0667 15.0884 15.1906 15.3049

19



Log (positive accessions), weighted by directed flows0.125

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
42 0 42 10.13 1.097 2.674 9.857 11.869 12.503 12.716 12.774

lowest : 0.7848 0.8986 1.0941 1.1618 2.3620
highest: 12.7186 12.7648 12.7742 12.9473 13.0080

Log (positive accessions), weighted by directed flows0.0625

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
42 0 42 9.428 0.8323 2.6110 9.4022 11.0280 11.5403 11.6722 11.7493

lowest : 0.6833 0.7381 0.8307 0.8624 2.3341
highest: 11.6724 11.7110 11.7513 11.8737 11.9198

Data for stability selection with response of total positive accessions
25 Variables 22 Observations

Log(total positive accessions)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

22 0 19 2.857 0.00000 0.06931 1.44208 3.05462 4.21639 5.46536 5.71144

-1.09861228866811 (1, 5%), 0 (2, 9%), 0.693147180559945 (1, 5%)
1.38629436111989 (2, 9%), 1.6094379124341 (2, 9%)
1.79175946922805 (1, 5%), 2.19722457733622 (1, 5%)
2.89037175789616 (1, 5%), 3.2188758248682 (1, 5%)
3.3322045101752 (1, 5%), 3.40119738166216 (1, 5%)
4.06044301054642 (1, 5%), 4.07753744390572 (1, 5%)
4.26267987704132 (1, 5%), 4.97673374242057 (1, 5%)
5.32787616878958 (1, 5%), 5.48063892334199 (1, 5%)
5.72358510195238 (1, 5%), 6.5206211275587 (1, 5%)

Log(#farms)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
22 0 22 6.481 4.044 5.096 5.648 6.701 7.436 7.609 8.075

lowest : 3.769 3.989 5.081 5.226 5.557
highest: 7.554 7.598 7.610 8.100 8.929

Log(mean over counties of #farms / km2)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
22 0 22 -5.376 -7.455 -7.384 -6.036 -5.020 -4.400 -3.895 -3.778

lowest : -8.218 -7.458 -7.404 -7.205 -6.106
highest: -4.288 -4.282 -3.852 -3.774 -2.982

Log(mean over counties with farms of #farms / km2)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
22 0 22 -5.168 -6.948 -6.809 -5.797 -4.860 -4.259 -3.847 -3.720

lowest : -7.790 -6.955 -6.811 -6.792 -5.967
highest: -4.199 -4.105 -3.819 -3.715 -2.982

Log(median over counties of #farms / km2)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
22 0 22 -5.891 -8.323 -7.905 -6.317 -5.729 -5.182 -4.371 -4.226

lowest : -8.588 -8.344 -7.927 -7.708 -6.695
highest: -4.814 -4.416 -4.366 -4.219 -3.115

Log(maximum over counties of #farms / km2)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
22 0 22 -3.474 -5.609 -5.366 -4.489 -3.301 -2.269 -1.845 -1.576

lowest : -6.364 -5.622 -5.371 -5.321 -4.846
highest: -2.262 -2.058 -1.822 -1.563 -1.456

Log(swine inventory in year 2012)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
22 0 22 6.825 4.203 4.474 5.760 7.064 7.985 8.892 9.097

lowest : 2.367 4.190 4.454 4.654 5.011
highest: 8.243 8.434 8.942 9.105 9.933
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Log(pig crop)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
22 0 22 7.566 4.190 4.884 6.655 7.996 8.921 9.398 9.782

lowest : 3.138 4.159 4.787 5.753 6.510
highest: 8.956 9.223 9.418 9.801 9.924

Log(inshipments)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
22 0 22 5.711 2.492 2.779 4.518 5.825 6.681 7.892 8.930

lowest : 1.386 2.485 2.637 4.060 4.369
highest: 6.717 7.833 7.898 8.985 10.086

Log(marketings)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
22 0 22 7.781 5.021 5.548 6.672 8.102 8.987 9.684 9.863

lowest : 3.638 4.995 5.509 5.892 6.586
highest: 9.001 9.418 9.713 9.871 10.625

Weighted mean over counties of whether a county is in resource region 1
n missing unique Mean
22 0 8 0.3192

0 (13, 59%), 0.334405144694534 (1, 5%), 0.661064425770308 (1, 5%)
0.667582417582418 (1, 5%), 0.705559368565546 (1, 5%)
0.796841785605831 (1, 5%), 0.857545839210155 (1, 5%), 1 (3, 14%)

Weighted mean over counties of whether a county is in resource region 2
n missing unique Mean
22 0 6 0.2164

0 (15, 68%), 0.190403887033101 (1, 5%), 0.198352779684283 (1, 5%)
0.481981981981982 (1, 5%), 0.888992537313433 (1, 5%), 1 (3, 14%)

Weighted mean over counties of whether a county is in resource region 3
n missing unique Mean
22 0 6 0.05433

0 (17, 77%), 0.0127543273610689 (1, 5%), 0.0453781512605042 (1, 5%)
0.332417582417582 (1, 5%), 0.37888198757764 (1, 5%)
0.425925925925926 (1, 5%)

Weighted mean over counties of whether a county is in resource region 4
n missing unique Mean
22 0 6 0.1373

0 (17, 77%), 0.293557422969188 (1, 5%), 0.397515527950311 (1, 5%)
0.662087912087912 (1, 5%), 0.667447306791569 (1, 5%), 1 (1, 5%)

Weighted mean over counties of whether a county is in resource region 5
n missing unique Mean
22 0 9 0.08424

0 (14, 64%), 0.00576217915138816 (1, 5%), 0.018018018018018 (1, 5%)
0.0960878517501716 (1, 5%), 0.111007462686567 (1, 5%)
0.142454160789845 (1, 5%), 0.337912087912088 (1, 5%)
0.476363636363636 (1, 5%), 0.665594855305466 (1, 5%)

Weighted mean over counties of whether a county is in resource region 6
n missing unique Mean
22 0 4 0.07665

0 (19, 86%), 0.192037470725995 (1, 5%), 0.5 (1, 5%)
0.994237820848612 (1, 5%)
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Weighted mean over counties of whether a county is in resource region 7
n missing unique Mean
22 0 3 0.045

0 (20, 91%), 0.140515222482436 (1, 5%), 0.849462365591398 (1, 5%)

Weighted mean over counties of whether a county is in resource region 8
n missing unique Mean
22 0 4 0.0431

0 (19, 86%), 0.150537634408602 (1, 5%), 0.22360248447205 (1, 5%)
0.574074074074074 (1, 5%)

Weighted mean over counties of whether a county is in resource region 9
n missing unique Mean
22 0 2 0.0238

0 (21, 95%), 0.523636363636364 (1, 5%)

Log (positive accessions), weighted by shared border
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
22 0 22 4.962 0.417 2.229 3.898 5.531 6.719 7.369 7.504

lowest : -1.0000 0.3219 2.2224 2.2870 2.8074
highest: 7.0470 7.3038 7.3765 7.5107 7.6884

Log (positive accessions), weighted by directed flows
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
22 0 22 25.39 12.58 20.85 24.27 26.58 29.40 29.97 30.07

lowest : 8.984 12.157 20.718 22.022 24.010
highest: 29.823 29.924 29.974 30.071 30.639

Log (positive accessions), weighted by directed flows0.5

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
22 0 22 17.46 8.835 15.139 17.202 18.190 19.646 19.913 19.942

lowest : 8.325 8.508 15.047 15.959 17.070
highest: 19.867 19.909 19.913 19.943 20.238

Log (positive accessions), weighted by directed flows0.25

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
22 0 22 13.69 8.487 12.519 13.787 14.225 14.852 15.086 15.185

lowest : 7.058 8.277 12.461 13.034 13.732
highest: 15.041 15.067 15.088 15.191 15.305

Log (positive accessions), weighted by directed flows0.125

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
22 0 22 11.91 8.416 11.263 12.110 12.307 12.641 12.773 12.939

lowest : 6.439 8.269 11.221 11.639 12.005
highest: 12.719 12.765 12.774 12.947 13.008

Log (positive accessions), weighted by directed flows0.0625

n missing unique Mean .05 .10 .25 .50 .75 .90 .95
22 0 22 11.05 8.384 10.649 11.253 11.390 11.641 11.707 11.866

lowest : 6.158 8.266 10.614 10.969 11.087
highest: 11.670 11.672 11.711 11.874 11.920

Distribution of positive accessions over states of origin by age class
4 Variables 20 Observations
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Grower/Finisher
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
20 0 14 25.1 0.00 0.00 0.75 8.00 16.50 47.20 76.20

0 1 2 4 6 10 11 12 13 27 41 45 67 251
Frequency 5 2 1 1 1 1 2 1 1 1 1 1 1 1
% 25 10 5 5 5 5 10 5 5 5 5 5 5 5

Nursery
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
20 0 15 19.95 0.00 0.00 0.75 6.50 15.50 52.20 75.85

0 1 3 4 6 7 8 10 12 14 20 42 50 72 149
Frequency 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1
% 25 10 5 5 5 5 5 5 5 5 5 5 5 5 5

Sow/Boar
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
20 0 12 9.7 0.00 0.00 0.00 2.50 8.25 37.20 39.60

0 1 2 3 4 5 8 9 30 37 39 51
Frequency 8 1 1 1 1 2 1 1 1 1 1 1
% 40 5 5 5 5 10 5 5 5 5 5 5

Suckling
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
20 0 14 21.8 0.0 0.9 2.0 5.0 20.5 59.5 101.6

0 1 2 3 4 6 10 11 20 22 52 55 100 132
Frequency 2 2 4 1 1 1 1 2 1 1 1 1 1 1
% 10 10 20 5 5 5 5 10 5 5 5 5 5 5

Variables in logistic regression of the proportion of positive accessions from the suckling age
class

3 Variables 20 Observations

Observed proportion suckling
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
20 0 15 0.4045 0.0000 0.1385 0.2266 0.2679 0.4306 1.0000 1.0000

0 (2, 10%), 0.153846153846154 (1, 5%), 0.16 (1, 5%)
0.212765957446809 (1, 5%), 0.231173380035026 (1, 5%)
0.244444444444444 (1, 5%), 0.25 (1, 5%), 0.263157894736842 (2, 10%)
0.272727272727273 (1, 5%), 0.373134328358209 (1, 5%)
0.379310344827586 (1, 5%), 0.37956204379562 (1, 5%)
0.407407407407407 (1, 5%), 0.5 (1, 5%), 1 (4, 20%)

Number of positive accessions with known age class
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
20 0 18 76.55 1.00 1.00 3.75 23.50 64.00 214.90 283.15

1 2 3 4 6 8 13 22 25 29 38 45 54 94 137 209 268 571
Frequency 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
% 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Model sampling probability of suckling
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

20 0 20 0.1313 0.06501 0.08031 0.09393 0.11338 0.13888 0.20801 0.27182

lowest : 0.05961 0.06530 0.08198 0.08972 0.09151
highest: 0.14607 0.19812 0.20097 0.27139 0.28010

Variables used in likelihood ratio test of within-state flows
7 Variables 1776 Observations
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Positive accessions this week
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

1776 0 36 1.153 0 0 0 0 0 2 6

lowest : 0 1 2 3 4, highest: 54 61 65 66 96

Log(positive accessions last week + 0.5)
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

1776 0 35 -0.3485 -0.6931 -0.6931 -0.6931 -0.6931 -0.6931 0.9163 1.8718

lowest : -0.6931 0.4055 0.9163 1.2528 1.5041
highest: 3.9416 4.1190 4.1821 4.1972 4.5695

Scaled log[(median farm density among counties having farms) (# farms)2]

n missing unique Mean .05 .10 .25
1776 0 48 1.409e-17 -1.11739 -0.83959 -0.43886
.50 .75 .90 .95

0.03578 0.56114 0.90760 0.98326
lowest : -1.6059 -1.1671 -1.1174 -0.9422 -0.8396
highest: 0.9076 0.9698 0.9833 1.0571 1.4788

Scaled log[2 (#swine moved within state) / y]
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

1776 0 48 1.949e-16 -1.1805 -1.0482 -0.4992 0.1086 0.5008 0.8120 1.0686

lowest : -1.3168 -1.2602 -1.1805 -1.1172 -1.0482
highest: 0.8120 0.8454 1.0686 1.2861 1.3881

Centred week
n missing unique Mean .05 .10 .25 .50 .75 .90 .95

1776 0 37 0.5 -16.5 -14.5 -8.5 0.5 9.5 15.5 17.5

lowest : -17.5 -16.5 -15.5 -14.5 -13.5
highest: 14.5 15.5 16.5 17.5 18.5

State
n missing unique

1776 0 48

lowest : AL AR AZ CA CO, highest: VT WA WI WV WY

Centred offset

n missing unique Mean .05 .10 .25
1776 0 337 9.502e-17 -1.64789 -1.51607 -0.92311
.50 .75 .90 .95

-0.03373 0.92442 1.58652 2.10097
lowest : -2.502 -2.496 -2.486 -2.479 -2.472
highest: 1.587 1.745 2.101 2.371 2.643

2. Detailed data descriptions

Transport flows

Our data on shipment of live swine was an estimate of the total number of swine moved between all ordered
pairs of states over the course of a year. We refer to these estimates as transport flows. They were gener-
ated by the USDA Economic Research Service [2] and are available on the web.1 They are also printed in
Supplementary Tables S2–S7.

State-to-state distances

R’s[3] datasets package provided the coordinates of the approximate geographic centres of each state. We used
these coordinates to calculate the distance between pairs of states via the haversine formula. This formula

1http://webarchives.cdlib.org/sw1rf5mh0k/http://ers.usda.gov/Data/InterstateLivestockMovements/

StateShipments.xls
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uses a spherical model of the Earth to account for the curvature of the Earth’s surface on the shortest path
along the surface between two locations.

Positive accessions

We obtained the case data from the January 8 version of a publicly available report of laboratory testing
activity [4] via the “Number of New Cases Reported” link on the webpage of the American Association
of Swine Veterinarians (AASV). We used the data in Tables 2 and 4 in this report. Table 2 contained the
number of positive diagnostic case submissions stratified by the state of origin and the week of submission.
Table 4 contained the number of positive diagnostic case submissions stratified by the state of origin and
the age class of the swine from which the tissue sample was taken.

The precise meaning of the values in the time series changed in the week of June 16. Prior to that week,
the values are the number of farms testing positive for PEDV. Beginning with that week, the values are the
number of diagnostic cases submissions, or accessions, and there may be many of these accessions for each
infected farm. However, in the 9 weeks prior to June 16, the difference between numbers of positive case
submissions and numbers of positive farms was typically less than 5. Thus it seems that the number of case
submissions approximates the number of infected farms reasonably well. As mentioned in the main text,
positive accessions are correlated with the number of positive farms available in more recent reports.

Predictors of cumulative burden

In the fitted regression models for cumulative burdens, many states in the Northeast had close centroids and
very similar residuals, suggesting a lack of independence at this spatial scale. Using single linkage clustering,
we found two groups of states that formed chains of states with centroids less than 175 km apart: (1) MD,
DE, and NJ; and (2) VT, NH, CT, MA, and RI. Because of the lack of independence among data from these
states suggested by our initial fits, we created a reduced data set where the values of both predictive variables
and response variables for these two groups of states were averaged to form single observations. The results
presented are based on that data, for which no spatial autocorrelation was indicated by maximum likelihood
fits of a model of exponentially decaying covariance in the residuals.

Counts of farms of different sizes were obtained from a database application available from the USDA [5].
This application contains data from the 2007 Census of Agriculture.

The balance sheet variables for each state came from estimates for the period of December 2011 to
December 2012 in Ref. [6]. These variables were swine inventory, which is the total number of swine; pig
crop, which is the number of pigs born that survive the first few weeks of life; inshipments, which is the
number of swine imported to the state; and marketings, which is the number of swine either exported from
the state or slaughtered at a commercial facility.

Farm resource regions classify counties into one of 9 general groups based on a wide variety of criteria
including farm characteristics and crops and livestock produced [7]. A list mapping counties to these regions
was obtained from a USDA spreadsheet.2 We included a variable for each region and each state was assigned
a value in [0,1] for each such variable that was equal to the proportion of farms with 25 or more swine in
the counties of that region.

Nearby positive accessions were calculated in various ways based on different possible models of spread.
To represent cumulative exposure from a spatial model, we calculated for each state the average number of
mean weekly positive accessions in other states with shared borders and used the logarithm of this average
as a potential predictor. To represent cumulative exposure via shipment of pigs, we calculated for each state
a weighted sum of mean weekly positive accessions in other states, where the weights were given by the flows
from that state. To allow for nonlinear effects, we used various power transforms of the flows as weights.
Specifically, we used the flows raised to the powers of 1, 1/2, 1/4, 1/8, and 1/16. These weighted sums were
then log transformed to create a series of potential predictors.

The summary statistics for farm density were average number of farms per county, average number of
farms in counties with at least one farm, median number of farms per county, and maximum number of
farms per county. Some states had a median of zero farms per county. When log transforming, one half of

2http://www.ers.usda.gov/Briefing/ARMS/resourceregions/reglink.xls
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the smallest positive median was added to values of all states before transformation. For this analysis, we
defined farms as operations with 25 or more swine.

3. Simulations, correlation analysis, and sensitivity analysis

Simulations were run on a set of 1,000 points sampled from a Sobol sequence in the space of the continuous
input variables. The one discrete input was the number of columns in the raster grid. Since generating the
contact network was computationally intensive, we generated only one for each level of the variable and
divided simulations evenly among them.

The spatial contact networks were generated as follows. We iterated over the count of swine farms by
county in the 2002 census and randomly sampled coordinates for the location of the farm within the county.
Over this set of points we overlaid a raster grid of square cells which covered the area of the contiguous
United States. Farms with coordinates with the same cell or the Moore neighborhood of each other were
connected with a spatial edge.

The transport contact networks were generated as follows. The goal was to generate an unweighted,
directed network with a given mean degree and the total number of edges between farms in each pair of
states proportional to the transport flows between those states. The number of edges between farms in the
same state was to be proportional to the within state flows calculated for our time series regression model.
We achieved this goal by dividing the elements of the transport flows matrix by the number of pairs of farms
in the corresponding pairs of states and using the quotient as the probability of such an edge forming. These
probabilities were scaled so that the expected number of edges was consistent with the target mean degree.
Then a set of directed edges was sampled using a stochastic block model sampler which excluded edges that
looped back to the farm of origin.

With the above contact networks generated and a set of parameters determined, time series of outbreaks
by state were generated as follows. Our starting-grid input variables related to the location of the first
outbreak of PED. The point of introduction of PEDV in 2013 is not known and so we were interested in
seeing if this unknown variable had the potential to affect our results. The input variables determined which
cell of a 10 cell wide by 2 cell tall grid over the contiguous United States the initial outbreak should occur in.
For example, if the starting grid (x, y) coordinates were (0.05, 0.6), we sampled farms from the cell covering
the state of Washington since 0.05 is in [0, 0.1) and 0.6 is in [0.5, 1). To begin the simulation, the farm selected
by this procedure was classified as infected and all other farms were classified as susceptible. The status of all
farms was determined at discrete steps corresponding to weeks according to the following algorithm. First, a
seasonal adjustment factor was calculated as 1−{seasonal amplitude} sin(2π(x+ 3)/52) where x counts the
number of steps completed plus one. Second the spatial, transport, and external transmission probabilities
were all adjusted by multiplying the input values by the computed factor and resetting them to 1 if that
caused them to exceed one. Third, susceptible farms were selected to be infected at the current step with a
probability equal to the complement of no transmission occurring along any of edges leading to them and
no transmission occurring to them from external sources. Finally, infected farms were selected to recover at
the current step with a probability of 0.5. Thirty-seven updates were performed to generate a time series of
length 38, which was the length of our empirical time series.

The outbreak time series was processed with an observation model based on our understanding of how the
PED accession data were generated. From the simulations, we obtained a time series of newly infected farms
in each weekly step. Since under-reporting may have been substantial for PED in 2013, we simulated the
number of farms submitting samples to diagnostic labs each week for each state by sampling from a binomial
distribution with a number of trials equal to the number of newly infected farms and with a probability of
submission equal to 0.1. The number of accessions simulated was based on a negative binomial regression of
the 2014–2015 accession counts on counts of presumptive and confirmed PEDV positive farms. Based on the
estimates from that regression, we simulated the number of accessions by sampling from a negative binomial
distribution with a mean of 0.75 + 1.92 × {# farms submitting samples} and a dispersion parameter θ of
1.75. In this way, we generated a synthetic version of our empirical data set of weekly positive accessions by
state.

Our synthetic and empirical data sets were used in a correlation analysis of the state-to-state similarities
in the time series of positive accessions with the state-to-state proxy variables for contact rates. Similarity
in time series was quantified by the the cross correlation with a lag of 1 week between all pairs of states with

26



any positive accessions. The cross correlation is the correlation between the values of one time series and
corresponding values in another time series shifted by some lag. We conducted one-tailed Mantel tests with
a significance threshold of α = 0.05 to determine if there were significant positive correlations between cor-
responding elements of matrices of cross correlations, negative geographic distances, shared order indicator
variables, and transport flows. The Mantel test evaluates the significance of such an association via a per-
mutation procedure that accounts for the intrinsic dependence among elements of distance matrices[8]. This
correlation analysis of the empirical data was followed up by two additional analyses described in the follow-
ing subsections, but our simulation study was restricted to the correlation analysis to limit computational
demands.

Since the simulated correlation for a given set of parameters is stochastic, we fit our simulation output
to a metamodel to determine how the mean correlations changed with the inputs. We used a joint Gaussian
process metamodel with the same covariance functions as Marrel and coauthors[9]. The parameters of each
metamodel were optimized using an evolutionary algorithm[10] designed to avoid converging on local optima.
Global sensitivity indices were calculated up to second order for all input parameters for the mean metamodel
using standard Monte Carlo estimators [11]. We used a random Latin hypercube sample of 100,000 points
from the metamodel to generate the estimates and calculated their confidence intervals using the basic
bootstrap method. These global sensitivity indices quantified the sensitivity of the mean correlations to the
input parameters without making any strong assumptions about the functional form of the relationship.

4. Age-specific reporting bias

Because infection mortality is high among piglets only [12], we might expect that operations without piglets
are less likely to perform diagnostic testing. We can gain some insight into such potential reporting biases
from the data about the age classes of diagnostic samples. These age classes are suckling (less than 1 month
old or still on sow), nursery (1–3 months of age), grower/finisher (3–8 months), and sow/boar (more than
8 months old). Although the report providing the data uses the term age class and gives those particular
age ranges for each class, these terms are really names for production stages in the swine industry for which
there may be some variation outside of those ranges, in particular for the time at which pigs are weaned and
sent to a nursery.

We tested the hypothesis that, among those states having any positive accessions with known age class, the
age-class distribution is independent of the state of origin. We used simulation to generate a null distribution
of test statistics rather than rely on asymptotic results because several of the observed cell counts were small.
Tables of counts of samples in all combinations of age classes and states were simulated under the hypothesis
of independence of age-class and state-of-origin. The simulated tables had the same marginal distributions
as the observed data. The sum of Pearson residuals based on observed and expected cell counts was our test
statistic. We conducted a test of independence at a significance level of 0.05. We rejected the hypothesis
of independence based on an observed test statistic of 210, which was greater than the test statistic in all
10,000 of our null statistics (p < 1 × 10−4). To quantify the extent of dependence, we calculated that the
uncertainty coefficient[13] of age class, given the state of origin, was equal to 0.05, which indicates relatively
weak dependence.

To determine whether the proportion of positive accessions in the suckling age class may be explained
by the distribution of farm types within a state, we compute expected proportions under a model of two-
step random sampling as follows. In the first step, we sample a certain type of farming operation from a
distribution of operation types. Table S1 gives the names of the available types. We obtain the distribution
of these types for each state from census data[5]. In the second step we draw an age class from the age class
distribution of the sampled farm type.

We derive an age-class distribution by first assuming that sows on average produced 2.31 litters of weaning
size 10.3 every year and that pigs spent 21.5 days as suckling pigs, 46.0 days in the nursery stage, and 121.5
days in the grower/finisher stage. Those parameters are taken from 2012 averages from sow farms, nurseries,
and conventional finishing farms participating in a U.S. benchmarking system [14, Tables 2, 4, and 5]. Larger
farms tend to use artificial insemination [15, Table 3] and thus we assume that boars make up a negligible
part of the total population on sow farms.

Given these parameters, we calculate an age-class distribution for the entire population by first calculating
the rate of weaned pig production from the number of sows. The number of animals in all of the other age
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classes follow as the product of that rate and the average time spent in each class. Age classes on a farms
with some subset of age classes follow as a subset of the age-class distribution for the entire population to
those classes present on the farm. Table S1 shows which age classes are typically present on each type of
farm. We normalise these age-class distributions to obtain sampling probabilities conditional on a farm type.

We used a standard logistic regression analysis to test for an association between observed proportions of
pigs in the suckling age class and those proportions predicted by our sampling model. The response variable
was whether or not positive accessions where in the suckling age class and the predictors were probabilities
from our sampling model and an intercept. We conducted a two-tailed Wald test of the hypothesis that the
regression coefficient for the sampling probabilities was zero, and failed to reject this hypothesis (p = 0.64).

To see if the expected and observed probabilities were different on average, we fitted an intercept-only
logistic model with logits of expected probabilities as offset terms. The observed log odds of suckling positive
accessions was on average 3.54 natural logarithmic units above those predicted by random sampling (95%
profile confidence interval = [3.15,3.97]). Removing highly influential observations (i.e., IA, NC, OK, KS,
IL, and MN) resulted in somewhat lower interval estimate bounds of [1.86, 3.51]. These results indicate that
farms with unweaned pigs are either more likely to choose unweaned pigs to be diagnostic samples than
other pigs, more likely to seek laboratory confirmation of PEDV, or more likely to experience an outbreak
than other farms.

5. Stability selection

We considered cumulative burdens to be an appropriate response variable because many of the candidate
variables were not time-varying. Also, cumulative measures of burden may be more robust measures of
incidence. Using the data on positive farms available after June 2014[16], we found the Spearman rank
correlation between positive accessions and positive farms to equal 0.91, as compared to 0.74 for the weekly
counts.

We used absolute burdens rather than prevalence as the response variable because of uncertainty in the
correct denominator for calculation of prevalence. Our analysis of the positive accessions by age class in
section 4 indicates that sampling of positive accessions may be highly biased toward farms with suckling
pigs, which is reasonable because such farms would likely observe the most mortality in an outbreak[17].
However, we did not attempt to correct for this bias because we cannot rule out the possibility that in fact
there was not bias but real increased risk to the farms with suckling pigs. Assuming that each time a trailer
arrives for a pick-up there is a similar risk of infection, and that pigs typically spend about one month on
sow-farms being weaned versus three months on finishing farms being fed to market weight, a sow farm of a
certain size inventory would have a time-averaged risk 3-fold greater than a finishing farm of the same size
inventory.

Many states had no confirmed positive accessions (Supplementary Fig. 1) such that the case counts
appear to be a mixture of zeroes and a right-skewed distribution of counts. Thus we chose to fit the data
to a hurdle model in which the probability of a state having a confirmed case and the number of positive
accessions, given that there is at least one case in the state, are described by separate regression models. We
used binomial generalised linear models for the probability responses and a least-squares linear model for the
response of the log of positive accessions. Predictors were put onto the same scale by dividing by standard
deviations.

The elastic net penalty includes a tuning parameter, denoted by α, that determines the extent to which
groups of correlated variables are selected together. We set α to 0.8 to allow for highly correlated variables
to be grouped for selection while still keeping the total number of selected variables small.

The choice α = 0.8 was made subjectively, but we checked that the results were not sensitive to this choice
by also looking at the results with α ∈ {0.01, 0.2, 0.5, 1}. For α 6= 1, only additional balance sheet variables
were selected for all models. When α = 1, inventory and resource region 4 were selected as predictors of both
litter rate decrease and total positive accessions, and no variables were selected as predictors of whether any
positive accessions occurred. We consider these aberrations likely to be an artefact of correlations among
predictors, as single members of correlated groups can be selected somewhat arbitrarily when α = 1.

For stability selection, we used 1,000 subsamples of 63.2 percent of the full data sets (the same percentage
that would appear in large bootstrap samples of a data set). The set of selected variables was chosen by using
a threshold parameter πthr of 0.6 and choosing the regularisation parameter λ to select as many variables as
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possible while keeping the per-comparison error rate (i.e., the probability that any one variable is incorrectly
selected) below 0.05. The results of stability selection are not usually sensitive to the choice of πthr as long
as it is between 0.6 and 0.9. The error rate is only guaranteed to hold under the restrictive assumption of
exchangeability for the selection probability of all noise variables, but numerically it has been found to be
accurate even when this assumption was most likely not satisfied [18]. Although we cannot guarantee similar
accuracy for our data set, we propose that controlling the nominal error rate provides a reasonable criteria
for identifying the candidate variables that are most likely to be relevant.

6. Time series regression modelling

A transmission model is integrated within a regression model by having the expected number of outbreaks
in state i at week t+ 1, E(Ii,t+1) follow

E(Ii,t+1) = βi,t(
∑
jwi,jIj,t + η)αSi,t, (S1)

where βi,t is the transmission rate for state i at time t, wi,j is the weight for the influence of infectives in
state j on susceptibles in state i, η is parameter that determines the influence of other sources of infection,
α determines the power by which the expected number of transmissions grows with these risks, and Si,t
is the number of susceptibles in state i at week t. We set Si,t = Ni −

∑t−1
k=0 Ii,t, where Ni is the number

of farms in state i from the 2002 Census of Agriculture[19]. This model is a variant of the time series SIR
(susceptible–infective–recovered) model[20].

A number of simplifying assumptions are implicit in equation S1. First, we treat entire farms as either
infective or susceptible. Second, we assume that the infection of a farm lags 1 week behind its infectious
exposure. In support of this assumption, we found that a 1-week lag had a higher likelihood in our models
than lags of 2 to 4 weeks. Third, we assume that farms are only infectious for 1 week. This assumption is
a simplification that may not be too inaccurate if farms are most infectious the first week of an outbreak,
perhaps because the number of animals shedding later becomes smaller or because more stringent biosecurity
reduces the amount of infectious material leaving the farm. This assumption is congruent with those made
by Ref. [21, p. 71] in setting parameters for an agent-based model of spread.

For the number of farms Ni, we used data from the 2002 Census [19] instead of data from more recent
censuses so as to obtain farm count data that were contemporary with the transport flow data, which are from
2001 [2]. In this analysis, we included farms with any swine in the counts, unlike our analysis of cumulative
burdens where we only included farms with at least 25 swine. All farms were included here because farms
with fewer than 25 swine are numerous enough to constitute a non-negligible fraction of total swine inventory
and flows.

Our calculation of Si,t assumes that all farms were susceptible to infection at the beginning of the epizootic
and that farms pass on to an immune state following infection. The assumption of complete susceptibility
seems reasonable for the United States given the absence of previous reports of PED and the high frequency
of high-mortality outbreaks that followed the first reported outbreak[22]. Although PED has been observed
to reoccur on a farm[23], that observation was a newsworthy event[24] and it followed a 6-month interval
of normal operations. Thus the assumption of immunity over the 38 week period that we analyse seems
reasonable.

Our transmission rate βi,t in equation (S1) takes the form

βi,t = exp(c0 + Zi + c1t)(N
2
i di)

c2f c3i N
−2
i , (S2)

where the ci are unknown parameters that we estimate, Zi represents state-level random effects, di is a
state-level summary statistic of the county-level farm density from the 2007 Census [5], and fi is value
characterising the average flow of swine through individual farms in state i. c1 allows the transmission rate
to vary seasonally, which has been proposed as an explanation for why most positive accessions occurred in
the fall and winter. For the summary statistic di, we used the median county-level density among counties
with any farms in the state. The results were not sensitive to using this statistic versus others such as
the overall median or mean. di is multiplied by N2

i because that led to the greatest correlation between the
density and flow terms on the logarithmic scale, and we wished to as much as possible separate the estimated
effects of flows with those of farm density. It also allowed us to see whether density-dependent transmission
[25] is suggested by the data, which would have corresponded to estimates (ĉ2, ĉ3) ≈ (1, 0).
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The characteristic flows fi in equation (S2) and the weights wi in equation (S1) are calculated in various
ways to model the rate of contact of a susceptible farm with infected farms in various scenarios. We make the
derivations assuming α = 1, and values of α below 1 can be understood as capturing the effects of infective
farms being clustered together in the contact network. Let Fi,j be the number of swine shipped to farms
in state i from farms in state j per year. In the directed model, only farms receiving animals are at risk for
infection. Then, omitting the time subscripts for simplicity, susceptible farms in state i are infected at a rate
proportional to

∑
j Fi,j(NiNj)

−1Ij , or fiN
−2
i

∑
j wi,jIj , where fi =

∑
j Fi,j and wi,j = NiN

−1
j Fi,jf

−1
i . In

the undirected model, both farms sending and farms receiving animals may be at risk, and susceptible farms in
state i are infected at a rate proportional to

∑
j(Fi,j+Fj,i)(NiNj)

−1Ij , which implies that fi =
∑
j Fi,j+Fj,i

and wi,j = NiN
−1
j (Fi,j + Fj,i)f

−1
i .

In the internal model, both farms sending and receiving animals may be at risk, but transmission asso-
ciated with flows only occurs within a state. Susceptible farms in state i are infected at a rate proportional
to 2Fi,iN

−2
i Ii. In this case, fi = 2Fi,i and wi,j = δi,j , where δi,j is a Kronecker delta. Comparison of the fit

of this model with the directed or undirected models allows any effects of between-state transmission to be
seen. The internal model also includes in the case that c3 = 0 a null model which has no flows in it, which
we use in a likelihood ratio test of the hypothesis that flows have no effect on transmission rates.

The values of Fi,j , when i 6= j, come directly from the estimates[2] of interstate flows. We estimated
within-state flows in two ways. In the first, a demand for pigs was calculated for state i from 2002 sales[19]
of finish-only and nursery operations plus the deaths reported in the 2001 balance sheet[26]. Internal flow,
Fi,i, was estimated as the this demand less imports,

∑
j,j 6=i Fi,j . In the second method, Fi,i was estimated as

the combined sales of farrow-to-wean, farrow-to-feeder, and nursery operations less exports,
∑
j,i 6=j Fj,i. For

most states with large inventories, the logarithms of these two estimates were similar relative to estimates
from other states, and we averaged the log-transformed estimates to generate a single estimate. For the
other states, one of the estimates was negative, and we simply used the positive estimate. We suspect the
negative estimates and the difference between the positive estimates stem in part from us not being able to
use 2001 sales data or to account for internal supplies of and demand for breeding animals. Coarse as these
estimates may be, it still seems reasonable to us that they will permit detection of large, state-level effects on
transmission rates. To that end, we formed linear predictor of log E(Ii,t+1) by substituting equation (S2) into
equation (S1) and taking logarithms to obtain equation 1 in the Methods of the main text and proceeded as
described there.

7. Software

We used R[3] for most of this work. The key contributed packages used were c060[27], DiceKriging[28],
igraph[29], glmmADMB[30], glmnet[31], ggplot2[32], lme4[33], rgenoud[10], sensitivity[34], sp[35], and vegan[36].
We performed the edge bundling for Supplementary Figs. 1 using JFlowMap [37]. Code to reproduce the
results is archived on the web[38], and has been developed to run in Docker[39] containers for enhanced re-
producibility. Thus, after installing one open-source software package on their personal computer, interested
readers may quickly repeat our analysis, examine intermediate results, perform their own diagnostics, and
extend this work.
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