New Insights into the Conversion of Versicolorin A in the Biosynthesis of Aflatoxin B1

David Conradt, Michael A. Schätzle, Julian Haas, Craig A. Townsend and Michael Müller

Supporting Information

I.	General remarks	S2
II.	Molecular cloning, bacterial expression and activity measurements	S3
III.	Chemoenzymatic reductions (experimental data and analytical methods)	S5
IV.	¹ H and ¹³ C NMR spectra	S8
V.	CD and VCD spectra	S10
VI.	Nucleotide and protein sequences	S12
VII.	References	S 14

I. General remarks

Nuclear magnetic resonance (NMR) spectra were recorded at 24 °C on a DRX 400 spectrometer (Bruker) operating at 400 and 100 MHz for 1 H and 13 C acquisitions, respectively. Chemical shifts (δ) of the 1 H NMR and 13 C NMR spectra are reported in ppm with a solvent resonance as internal standard (1 H NMR: acetone- d_{5} 2.05, 13 C NMR: acetone- d_{6} 30.0). CD spectroscopy was carried out on a Jasco J-810 spectrophotometer (Jasco International Co.). Activity measurements were performed on a UV Mini 1240 UV/Vis spectrophotometer from Shimadzu. All chemical reagents and solvents were obtained from Sigma-Aldrich, Applichem or Roth. Versicolorin A was provided by C. A. Townsend, John Hopkins University Baltimore, USA. Glucose dehydrogenase (GDH) was obtained from evocatal (Düsseldorf, Germany). Yields refer to chromatographically pure materials; conversions were calculated from the reactant-product ratios in crude 1 H NMR spectra.

FT-VCD and FT-IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer equipped with a Bruker PMA 50 VCD module (Bruker Optik GmbH, Ettlingen) with a resolution of 4 cm $^{-1}$ in a rotating BaF $_2$ cell (path length 110 μ m). Experimental spectra represent the average of 4 h 40 min measurement. VCD and IR-spectra were corrected by subtraction of the solvent spectrum. Opus 7.0 software (Bruker Corporation) was used to analyze the spectra. The conformer search was carried out at the molecular mechanics level (MMFF) using Spartan 08 (Wavefunction Inc., Irvine, CA, USA). Geometry optimization and calculation of energies as well as IR and VCD frequencies and intensities of 10 conformers at DFT level (B3LYP/6-31+G(d,p), SMD solvation model for dmso) was carried out with Gaussian 09 Revision B.01. [1,2] The calculated vibrational frequencies were scaled by 0.98. Shown spectra were obtained as Boltzmann-weighted average of the calculated spectra of each single conformer with Lorentzian lineshapes of 6 cm $^{-1}$ width around calculated intensities.

II. Molecular cloning, bacterial expression and activity measurements

Bacteria, DNA preparation and expression vector

E. coli TG1 and BL21(DE3) (Stratagene) were used for cloning and expression of AflM-his. Codon-optimized, His-tagged *aflM-his* from *Aspergillus parasiticus* including an N-terminal T7 10 feeder and the restriction sites was synthesized by MWG Eurofins Operon. The upstream construct was identical to the one described elsewhere^[3,4] (see also VI.). Ligation into pET19b by XbaI and BamHI restriction sites was also performed by MWG Eurofins Operon (see VI.).

Cloning and sequence analysis

Plasmid DNA isolation was performed using the Bioneer AccuPrep Plasmid Mini Extraction Kit. Transformation of competent *E. coli* cells was performed by applying a heatshock at 42 °C for 90 s. Correct sequences were confirmed by sequence analysis through GATC-Biotech.

Media and growth conditions

One clone was picked and dispersed in 5 mL of LB-media (Lennox), followed by incubation overnight (37 °C, 160 rpm). Ampicillin (100 μ g·mL⁻¹) was added as required.

Cultivation and expression

The overnight cultures were diluted to 1 L of medium each (ampicillin 100 μ g·mL⁻¹). IPTG (0.1 mM) was added after reaching the midlog phase (OD₆₀₀= 0.6). The cultures were incubated for 16 h at 25 °C and 160 rpm.

Workup and storage

The harvested E. coli cells were resuspended in KPi buffer (50 mM, pH = 7.0; 5 mL per harvested cells

of 1 L medium). The cells were disrupted by sonication (6 times 15 sec, Branson Sonifier II "Modell

W-250", Heinemann), followed by centrifugation (30 min, 12000 g, 4 °C). Glycerol (20% v/v) was

added and the crude enzyme preparation was frozen at -20 °C.

Enzyme purification

AflM-his was purified by Ni-NTA affinity chromatography. Non-specifically bound proteins were

washed off with 200 mM imidazole in KPi buffer (50 mM, pH 7.0). Elution was performed with a 500

mM imidazole in KPi buffer (50 mM, pH 7.0). The eluted solution was desalted by gel filtration

(SephadexTM G-25M, GE Healthcare). Concentration of the protein was performed by ultrafiltration

(Amicon Ultra-15 Centrifugal Filter Units, 10000 nominal molecular weight limit, Merck Millipore).

Concentration of the protein was determined by measuring the UV absorption at 280 nm (Nanodrop

2000, Thermo Scientific, extinction coefficient 18700 M⁻¹·cm⁻¹, molecular weight 30.7 kDa).

Activity measurements

GDH was assayed as described elsewhere.^[3]

Blank experiments

Blank experiments were performed to exclude background reactions ensuing from GDH and crude

enzyme preparation. For this purpose, the host vector pET19b was transformed in E. coli BL21 and

expressed in the same manner like AflM_pET19b in E. coli BL21. The obtained crude preparation was

used in black experiments instead of purified AflM-his using the respective conditions. In all cases, no

background reaction was observed.

S4

III. Chemoenzymatic reductions (experimental data and analytical methods)

(R)-3,8,9,10-Tetrahydroxy-6-methyl-3,4-dihydroanthracen-1(2H)-one (14)

A stream of nitrogen was bubbled through the buffer solution for 30 min, followed by degassing under reduced pressure before use. In a total volume of 50 mL of KPi buffer (50 mM, pH 7.0), D-glucose (166 mg, 926 μmol, 5 eq.), NADP⁺-Na (15.5 mg, 18.5 μmol, 10 mol%), Na₂S₂O₄ (322 mg, 1.8 mmol, 10 eq.), 50 mg (185 μmol) of emodin (9), 215 U of GDH and 4.8 mg of AflM-his were stirred under a nitrogen atmosphere for 24 hours. The solution was extracted three times with ethyl acetate (50 mL), dried over MgSO₄, and the solvent was removed under reduced pressure. The conversion (50%) was immediately determined by ¹H NMR analysis of the crude product. 10 mg (37 μmol, 20%) of the title compound was obtained after automated flash chromatography (Isolera Prime, Biotage, SNAP Cartridge: KP-Sil 25g, solvent gradient: cyclohexane/ethyl acetate 22:78 to 0:100, flow rate: 25 mL-min⁻¹). The analytical data were consistent with the one described elsewhere.^[4]

TLC (cyclohexane/ethyl acetate, 1:9 v/v): $R_f = 0.22$

¹H NMR: (400 MHz, acetone- d_6), δ 2.44 (s, 3 H, CH₃), 2.80 (ddd, ²J = 17.1 Hz, ³J = 7.2 Hz, ⁴J = 1.2 Hz, 1 H, H-2), 2.98 (ddd, ²J = 17.1 Hz, ³J = 3.6 Hz, ⁴J = 1.1 Hz, 1 H, H-2), 3.06 (ddd, ²J = 16.4 Hz, ³J = 6.8 Hz, ⁴J = 1.1 Hz, 1 H, H-4), 3.26 (ddd, ²J = 16.4 Hz, ³J = 3.8 Hz, ⁴J = 1.1 Hz, 1 H, H-4), 4.37 (d, ³J = 4.3 Hz, 1 H, OH-3), 4.41–4.49 (m, 1 H, H-3), 6.68 (s, 1 H, H-7), 7.46 (s, 1 H, H-5), 7.65 (s, 1 H, OH-10), 9.78 (s, 1 H, OH-8), 15.94 (s, OH-9).

¹³C NMR: (100 MHz, acetone-*d*₆), δ 22.5 (CH₃), 32.6 (C-4), 46.7 (C-2), 65.9 (C-3), 110.0 und 111.6 (C-8a und C-9a), 113.2 und 113.4 (C-5 und C-7), 117.7 (C-4a), 133.9 (C-10a), 141.6 (C-10), 143.7 (C-6), 158.9 und 160.2 (C-8 und C-9), 204.9 (C-1).

CD: $(c = 182 \,\mu\text{mol} \cdot \text{L}^{-1}, 1 = 0.5 \,\text{cm}, \text{ acetonitrile}), \lambda \, [\text{nm}] \, (\text{Mol. CD}) = 197 \, (0.98), 231 \, (-1.08), 243 \, (-0.61), 262 \, (-1.71), 280 \, (-0.13), 291 \, (-0.44), 320 \, (0.22), 354 \, (0.02), 414 \, (0.43); \text{ see also VII.}$ $C_{15}H_{14}O_{5}: 274.27 \, \text{g·mol}^{-1}.$

Chrysophanol (11)

In the above-mentioned conversion of emodine (9) to 14, the formation of the titled compound (8%) was observed and determined by ¹H NMR experiments.

TLC (cyclohexane/ethyl acetate, 1:9 v/v): $R_f = 0.91$

¹H NMR: (400 MHz, acetone- d_6), δ 2.50 (CH₃), 7.18–7.19 (m, 1 H, H-2), 7.36 (dd, 3J = 8.1 Hz, 4J = 1.5 Hz, 1 H, H-7), 7.62 (d, 4J = 1.5 Hz, 1 H, H-4), 7.79 (dd, 3J = 7.5 Hz, 4J = 1.5 Hz, 1 H, H-5), 7.83 (dd, 3J = 7.5 Hz, 3J = 8.1 Hz, 1 H, H-6), 11.95 (s, 1 H, OH-1), 12.05 (s, 1 H, OH-8).

¹³C NMR: (100 MHz, acetone-*d*₆), δ 22.1 (CH₃), 113.9 (C-9a), 115.8 (C-8a), 120 (C-5), 121.7 (C-4), 124.8 (C-2), 125.2 (C-7), 133.4 (C-4a), 133.8 (C-10a), 138.3 (C-6), 150 (C-3), 163 (C-8), 164 (C-1), 182 (C-10), 192 (C-9).

 $C_{15}H_{10}O_4$: 254.24 g·mol⁻¹.

(1'R,2'S,6R)-1,6,9,10-tetrahydroxy-2',5,6,7-tetrahydroanthra[3,2-b]furo[2',1'-d]furan-8(1'H)-one (17)

17

The reduction was performed as described above using a total volume of 5 mL of KPi buffer (50 mM, pH 7.0), 13 mg of D-glucose (72 μ mol, 5 eq.), 1.2 mg of NADP⁺-Na (1.5 μ mol, 10 mol%), 25 mg of Na₂S₂O₄ (145 μ mol, 10 eq.), 5 mg (14.6 μ mol) of versicolorin A (3), 6 U of GDH and 5.4 mg of AflMhis. After 24 hours, the solution was extracted three times with ethyl acetate (5 mL), dried over MgSO₄, and the solvent was removed under reduced pressure. The conversion (25%) was determined from the ¹H NMR spectrum of the crude product. The absolute configuration (6R) was assumed with regard to compound 14.

TLC (n-hexane/ethyl acetate/acetic acid, 8:1.8:0.2 v/v/v): $R_f = 0.43$

¹H NMR: (400 MHz, acetone- d_6), δ 2.80 (dd, ²J = 17.3 Hz, ³J = 7.2 Hz, 1 H, H-7), 2.97 (dd, ²J = 17.3 Hz, ³J = 3.8 Hz, 1 H, H-7), 3.05 (dd, ²J = 16.3 Hz, ³J = 9.9 Hz, 1 H, H-5), 3.24 (dd, ²J = 16.3 Hz, ³J = 3.3 Hz, 1 H, H-5), 4.38–4.46 (m, 1 H, H-6 und OH-6), 4.75 (dt, ³J = 2.5 Hz, ³J = 7.1 Hz, 1 H, H-2'), 5.42 (t, ³J = 2.5 Hz, 1 H, H-3'), 6.59 (t, ³J = 2.5 Hz, 1 H, H-4'), 6.83 (d, ³J = 7.1 Hz, 1 H, H-1'), 7.04 (s, 1 H, H-4), 7.61 (s, 1 H, OH-10), 10.14 (s, 1 H, OH-1), 16.1 (s, 1 H, OH-9).

C₁₈H₁₄O₇: 342.30 g·mol⁻¹.

IV. ¹H and ¹³C NMR spectra

¹H NMR (acetone-*d*₆)

V. CD and VCD spectra

Figure S1. UV and CD spectrum of 14.

Figure S2. Experimental IR and VCD spectra of 14 (225 mM in $dmso-d_6$ comparison to theoretical IR and VCD spectra. The spectra were calculated at the B3LYP/6-31+G(d,p)with level the solvation model for dmso for 10 conformers of 14 and Boltzmann-averaged relative respect to energies.[1,2] There is a good agreement of calculated VCD bands showing the same sign for the majority of conformers, in particular those with highest Boltzmann weight (marked with an asterisk), with corresponding bands in the experimental spectrum.

VI. Nucleotide and protein sequences

Nucleotide sequence

Upstream construct of aflM-his pET19b

AflM-his (codon optimized)

```
ATG
     GGC
          CAT
               CAT
                    CAT
                         CAT
                              CAT
                                   CAT
                                         CAT
                                              CAT
                                                   CAT
                                                        CAC
                                                             AGC
AGC
     GGC
          CAT
               ATC
                    GAC
                         GAC
                              GAC
                                   GAC
                                        AAG
                                              CAT
                                                   ATG
                                                        TCG
                                                             GAC
AAC
     CAT
          CGC
               TTA
                    GAC
                         GGG
                              AAA
                                    GTC
                                        GCC
                                              CTT
                                                   GTC
                                                        ACA
                                                             GGT
          CGC
                    ATT
                                                   GTC
GCT
    GGG
               GGT
                         GGC
                              GCT
                                   GCC
                                        ATT
                                              GCC
                                                        GCG
                                                             TTA
GGC
    GAA
          CGT
               GGA
                    GCA
                        AAA
                              GTG
                                   GTC
                                        GTG
                                              AAC
                                                   TAC
                                                        GCT
                                                            CAC
AGT
     CGT
          GAG
               GCA
                    GCA
                         GAG
                              AAA
                                    GTT
                                         GTC
                                              GAG
                                                   CAG
                                                        ATC
                                                             AAA
GCG
    AAC
          GGT
               ACC
                    GAT
                         GCC
                              ATT
                                    GCC
                                        ATC
                                              CAA
                                                   GCG
                                                        GAT
                                                             GTG
GGC GAT
          CCT
               GAA
                    GCG ACG
                              GCG
                                   AAA
                                         CTG
                                              ATG
                                                   GCG
                                                        GAA
                                                             ACC
GTA
    CGC
          CAT
               TTC
                    GGC
                         TAT
                              CTC
                                    GAT
                                         ATC
                                              GTG
                                                   AGC
                                                        TCA
                                                             AAT
GCG
    GGC
          ATT
               GTT
                    TCC
                         TTT
                              GGT
                                    CAC
                                         CTG
                                              AAG
                                                   GAC
                                                        GTT
                                                             ACT
CCG
    GAA
          GAG
               TTT
                    GAC
                         CGG
                              GTT
                                   TTC
                                         CGT
                                              GTG
                                                   AAC
                                                        ACT
                                                             CGT
GGT
    CAG
          TTC
               TTT
                    GTG
                         GCA
                              CGT
                                    GAA
                                         GCG
                                              TAT
                                                   CGC
                                                        CAC
                                                             ATG
CGT
     GAA
          GGA
               GGT
                    CGC
                         ATC
                              ATT
                                    CTG
                                        ACC
                                              AGC
                                                   TCG
                                                        AAC
                                                             ACA
GCA
     TGC
          GTA
               AAA
                    GGC GTT
                              CCG
                                   AAA
                                         CAT
                                              GCG
                                                   GTG
                                                        TAT
                                                             TCA
    AGC
          AAA
                    GCC
                        ATT
                                   ACG
                                         TTT
                                              GTG
                                                   CGC
                                                        TGT
GGC
               GGG
                              GAC
                                                             ATG
GCG
    ATC
          GAT
               TGC
                    GGC GAT
                              AAG
                                   AAG
                                        ATT
                                              ACG
                                                   GTC
                                                        AAT
                                                             GCT
GTT
     GCC
          CCA
               GGT
                    GCA ATC
                              AAA
                                   ACC
                                         GAC
                                              ATG
                                                   TTT
                                                        CTG
                                                             GCC
GTG
    TCT
          CGC
               GAA
                    TAC
                         ATT
                              CCC
                                   AAT
                                         GGG
                                              GAA
                                                   ACG
                                                        TTC
                                                             ACC
     GAA
                         GAG
                              TGT
                                                   TTG
                                                        AGT
GAT
          CAG
               GTA
                    GAT
                                   GCT
                                         GCG
                                              TGG
                                                             CCG
CTG
    AAT
          CGG
               GTA
                    GGA
                         TTG
                              CCG
                                   GTA
                                         GAT
                                              GTT
                                                   GCT
                                                        CGC
                                                             GTT
GTG
    TCC
          TTT
               CTG
                    GCG
                         TCT
                              GAT
                                    ACC
                                         GCC
                                              GAA
                                                   TGG
                                                        GTG
                                                             AGC
                        GTC
                                                   TTC
GGC
    AAA
          ATT
               ATC
                    GGC
                              GAT
                                    GGT
                                         GGT
                                              GCA
                                                        CGC
                                                             TAA
```

Protein sequence of AflM-his

MGHHHHHHHHHHSSGHIDDDDKHMSDNHRLDGKVALVTGAGRGIGAAIAVALGERGA KVVVNYAHSREAAEKVVEQIKANGTDAIAIQADVGDPEATAKLMAETVRHFGYLDIVSSNA GIVSFGHLKDVTPEEFDRVFRVNTRGQFFVAREAYRHMREGGRIILTSSNTACVKGVPKHA VYSGSKGAIDTFVRCMAIDCGDKKITVNAVAPGAIKTDMFLAVSREYIPNGETFTDEQVDEC AAWLSPLNRVGLPVDVARVVSFLASDTAEWVSGKIIGVDGGAFR

VII. References

- [1] Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian, Inc.*, Wallingford CT, **2009**.
- [2] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- [3] M. A. Schätzle, S. Flemming, S. M. Husain, M. Richter, S. Günther, M. Müller, *Angew. Chem.* **2012**, *124*, 2697–2700.
- [4] M. A. Schätzle, S. M. Husain, S. Ferlaino, M. Müller, *J. Am. Chem. Soc.* **2012**, *134*, 14742–14745.