Measurement of Outflow Facility using iPerfusion

Joseph M. Sherwood, Ester Reina-Torres, Jacques Bertrand, Barnaby Rowe, Darryl R. Overby

Supporting Information 3: Nomenclature

This Supporting Information provides a list of all variables and parameters used in the main text. Table 1 defines the subscripts, Table 2 describes the main terms used in the paper, and Table 3 provides a list of sources of uncertainty and measures of spread.

S3-1 Subscripts

We use several subscripts to categorise variables, which are listed in Table 1.

Table 1: Subscripts

- 1 the control eye of a pair
- 2 the treated eye of a pair
- *A* the control population
- *B* the treated population
- *i* an index representing a given eye
- j an index representing a given pressure step
- p an index representing a given pair of eyes
- r reference: C_r is calculated at reference pressure P_r

S3-2 General nomenclature

Variables are listed in alphabetical order, with the exception of confidence intervals, *CI*, which follow the variable that they apply to.

Symbol	Units	Meaning
β	_	Non-linearity parameter in the power-law model for the
		flow-pressure and facility-pressure relationships (Equa-
		tions 9 and 11): positive values indicate a pressure de-
		pendent increase in facility and negative values indicate
		a pressure dependent decrease
C	nl/min/mmHg	Total outflow facility, or simply 'facility', comprising both
		conventional outflow and any pressure-dependent compo-
		nents of unconventional outflow and AH secretion (pseud-
		ofacility), also used for the hydrodynamic conductance of
		the capillaries in the <i>in vitro</i> tests, as these values are anal-
		ogous
$C_{\sf lin}$	nl/min/mmHg	Facility when calculated assuming a linear Q-P relation-
		ship, implying a facility that is independent of pressure
\overline{C}^*	nl/min/mmHg	Weighted geometric mean of facility for a given population
		sample
$\mathrm{ME}_{\overline{C}^*,95}$	-	Margin of error on average facility
C_q	nl/min/mmHg	Hydrodynamic conductance of the flow sensor
C_r	nl/min/mmHg	Reference facility: the value of C at reference pressure P_r
D	mm	Internal diameter of inlet reservoir used in perfusion sys-
		tem
\overline{D}^*	_	Average fold change in facility
$\mathrm{ME}_{\overline{D}^*,95}$	-	Margin of error on fold change in facility
ΔP_q	mmHg	Pressure drop across flow sensor
g	m/s^2	Gravitational acceleration, $9.81 m/s^2$
Γ	nl/min/mmHg	Instantaneous ratio of measured flow and pressure $\Gamma\left(t\right)=$
		$Q\left(t ight)/P\left(t ight)$: $\Gamma=C$ when the system reaches steady state
h_b	m	Height of the fluid surface in the inlet reservoir relative to
		that in the eye bath: see Figure 1a
h_r	m	Submersion depth of the eye: see Figure 1a
i	_	Index for a given eye
j	_	Index for a given pressure step
L_c	m	Length of glass capillary used for an <i>in vitro</i> test

m	kg	Mass of the fluid in the inlet reservoir
ME_{95}	-	Margin of error corresponding to the half-width of the 95% confidence interval
N	_	Number of eves in an unpaired population sample
ν	_	Number of degrees of freedom
p	_	Index for a given pair of eves
P	mmHq	Instantaneous pressure drop across the outflow pathway
P_{a}	mmHa	Applied pressure drop across the system, equal to aah_r .
u		related to <i>P</i> by Equation 5
P_{e}	mmHq	Pressure in the episcleral vessels
P_i	mmHq	Average pressure, P at steady state for a given pressure
J		step
P_r	mmHg	Reference pressure: selected pressure at which to evaluate C_r
$P_{\mathrm{I}}, P_{\mathrm{II}}$	mmHg	Measured pressures at two pressure steps I and II, as used
	U	in the 'two-step' perfusion protocol (Equation 2)
Ψ	_	Number of pairs of eyes in a sample
$\Psi_{\rm con}$	_	Number of pairs of eyes of untreated eyes for the estima-
		tion of s_{con}^2
Q	nl/min	Instantaneous flow rate into the eye from the perfusion system
Q_i	nl/min	Average flow rate at steady state for a given pressure step
Q_0	nl/min	Pressure independent outflow: the total outflow when the
	,	pressure drop across the pressure dependent pathways is zero
$Q_{\mathrm{I}}, Q_{\mathrm{II}}$	nl/min	Measured flow rates at two pressure steps I and II, as used
	1	in the 'two-step' perfusion protocol (Equation 2)
r	_	Pearson's product moment correlation coefficient
R_L	$mmHg/\mu l/min/mm$	Resistance per unit length of glass capillary used for <i>in vitro</i>
	0,,,,,,,	testing
R_0	$mmHg/\mu l/min$	Resistance of the perfusion system downstream of the flow sensor
ρ	kq/m^3	Fluid density
Y	_	Log-transformed facility, $Y = \ln(C)$
\overline{Y}	_	Weighted mean log-transformed facility for a population sample
$ME_{\overline{Y}^*.95}$	-	Margin of error on average log transformed facility

Z_p	—	Difference in log-transformed facility between paired eyes,
		for pair <i>p</i>
\overline{Z}	_	Weighted mean difference between treated and control
		eyes for a sample of paired eyes
$\mathrm{ME}_{\overline{Z},95}$	-	Margin of error on average change in log transformed fa-
		cility

_

S3-3 Uncertainties and measures of spread

In this section we describe uncertainties and measures of spread (MOS). Uncertainties are defined as ambiguities or potential variabilities in the *measurements* due to error, noise or lack of certainty that affect the results and propagate throughout the analysis. MOS are defined as endpoint descriptive statistics used to summarise the variability, predicted range or confidence for a *sample*.

A distinction should be made between 'arithmetic' or normal variables, and 'geometric' or lognormal variables. The arithmetic variables are all provided in the form s^2 , indicating a variance, which allows addition in order to combine sources of uncertainty. For geometric variables, denoted with *, we provide the geometric standard deviations s^* . All values are dimensionless unless indicated.

Symbol	Applies to	Meaning
$s_{\rm con}^2$	Paired eyes from a given	Intra-individual uncertainty in Z: comprises tissue vari-
	population	ability between paired eyes and uncertainty associated
		with interfacing the eye with the perfusion system
s^*_C	MOS: Sample of eyes	Geometric standard deviation in facility for a given
		population
$s_{\overline{C}}^*$	MOS: Sample of eyes	Geometric standard deviation on the geometric mean
		facility for a given population, could be interpreted as
		the standard error on the geometric mean
$s^2_{ m dif}$	A sample of paired eyes	Total variability in the differences in log-facilities for
		paired data: the unweighted variance of Z_p
$s\frac{*}{D}$	MOS: Paired/Unpaired	Geometric standard deviation of fold change between
	comparison	two populations
$s^2_{Q\mathrm{ave}}$	Pressure step, j	Uncertainty in flow rate due to averaging a noisy signal,
		units: $(nl/min)^2$
s_{Qsens}^2	A given flow ensor	Uncertainty in flow rate due to sensor uncertainty,
		units: $(nl/min)^2$
$s_{Q,j}^2$	Pressure step, j	Uncertainty in flow rate for a given pressure step j ,
		due to averaging a noisy signal and sensor uncertainty,
		units: $(nl/min)^2$
$s_{P,j}^2$	Pressure step, j	Uncertainty in pressure for a given pressure step j , due
		to averaging a noisy signal and sensor uncertainty, neg-
		ligibly small for the present system, units: $mmHg^2$

s_{pop}^2	A sample of unpaired	Inter-individual uncertainty in Y: comprises tissue
	eyes	variability between unpaired eyes from the same pop-
		ulation and uncertainty associated with interfacing the
		eye with the perfusion system
$s^2_{\mathrm{reg},i}$	A single eye, <i>i</i>	Uncertainty in log facility for a given eye, <i>i</i> , arising from
0,		regression fitting of model to $Q - P$ data, assumed to be
		equal to the 68% confidence interval on Y
$\overline{s_{\rm reg}^2}$	A sample of eyes	Unweighted mean of $s^2_{\operatorname{reg},i}$ for a given sample
$s_{\rm tot}^2$	A sample of unpaired	Total unweighted variance in log-facility for a given
	eyes	population sample: the unweighted variance of Y_i
$s_{\text{tot},Z}^2$	A sample of paired eyes	Total unweighted variance in difference in log-facility
,		for a sample of paired eyes: the unweighted variance of
		Z_p
$s_{\rm tre}^2$	Sample of treated paired	Additional uncertainty in Z arising from variable effects
	or unpaired eyes	of the treatment
$s^*_{ m tre}$	MOS: Paired/Unpaired	Geometric standard deviation of fold change due to
	comparison	treatment variability
s_Z^2	MOS: Paired/Unpaired	Unbiased weighted variance of Z
	comparison in log do-	
	main	
$s\frac{2}{Z}$	MOS: Paired/Unpaired	Unbiased variance of \overline{Z} , qualitatively comparable to the
2	comparison in log do-	square of the standard error on the weighted mean of Z
	main	
s_Y^2	MOS: Sample of un-	Unbiased weighted variance of Y
	paired eyes	
$s\frac{2}{Y}$	MOS: Sample of un-	Unbiased variance of \overline{Y} , qualitatively comparable to the
÷	paired eyes	square of the standard error on the weighted mean of Y