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Supplemental information 
 
Visual sensory networks and effective information transfer 
in animal groups 
 
Supplemental Data 
Table S1: Means and standard deviations of best parameter fits for each model.  
Means and standard deviations are calculated over 10 runs, each using 10,000 samples from 
parameter space. Best fit parameters are shown for the models in Figure 1C (see also Figures 
S2C and D).  
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Supplemental Figures  
 

 
Figure S1: Effectiveness and dynamics of information transfer. (A) Group-level accuracy 
(percentage of the time that the group reached the target) as a function of the number of informed 
individuals within the group. Data points represent the aggregate probability over all trials. Error 
bars represent 95% confidence intervals generated via bootstrapping. (B) Extracting individual 
responses from trajectory data. Distance form the target over time is shown for each informed 
(thick red lines) and uninformed (thin blue dotted lines) individual during the same leadership 
event as is shown in Figure 1B. Individual behavioral responses are marked with dots. (C) The 
propagation of behavioral responses during four different leadership events. Circles represent 
responses of individual fish. Locations of circles indicate the location of each fish when it 
responded, while color represents the time at which the response occurred.  
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Figure S2: Empirical support for different models of information transfer in fish schools. Log 
marginal likelihoods are given for each model (higher values indicate more support). Values 
represent means over 10 runs of numerical integration, each using 5,000 (A) or 10,000 (B-F) 

samples from parameter space. Error bars indicate standard deviation. (A) shows the support for 
models assuming different functional forms for social influence, as described in the “Alternative 
mechanisms for information transfer” section. Here the interaction range is assumed to be metric 
for all models. A global model (in which a given individual is influenced by all others within the 
group) is also shown for comparison. (B) shows the support for social models with and without a 
time lag (denoted “TL”), as described in the “Models with a time lag” section. (C) and (D) show 
the empirical support for different models for informed and uninformed individuals respectively 

(same models as in main text). (E) and (F) show the support for alternative visual models, 
described in the “Alternative visual models” section, as compared to metric, topological, and 

Voronoi models.
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Supplemental Methods 
 
Experimental procedures 
 
Experiments with golden shiners (Notemigonus crysoleucas) took place at Princeton University 
from March 20 to April 20, 2010, with initial training running from March 20 - 27 and 
experimental trials running from March 28 – April 20. The first three days of experimental trials 
were excluded from the analysis due to a change of personnel within that time period. Following 
that point, A.B. Kao conducted all experiments. A total of 100 trained and 470 uninformed fish 
(both males and females, though their sex was not determined) were used in the experiments. 
Fish (approximately 5 cm in length at the time of experiments) were purchased from I.F. 
Anderson Farms (www.andersonminnows.com), and were housed in 27-gallon black plastic 
tanks for at least two months prior to the experiment. Tanks were continuously filtered and 
oxygenated, and water temperature was maintained at 16°C. Each tank housed approximately 
100 fish. Prior to experiments, they were fed twice daily with crushed TetraMin flakes.  
 
Fish were tagged before experiments began. We used visible implant elastomer tags of different 
colors to enable us to visually differentiate between informed and uninformed individuals in the 
videos. These tags were injected under the skin of each individual, on either side of the spine. All 
fish were allowed at least 2 days to recover from tagging prior to the start of experiments.  
 
The experimental arena consisted of a 2.1 m × 1.2 m white fiberglass tank containing 5 cm of 
water at the same temperature as the holding tanks. Four automatic feeders were mounted, 
equally-spaced, on the two longer sides of the arena (as can be seen in Figure S1C-F). A green 
laser pointer mounted above the arena could be programmed to project the light onto the water 
near any of the four feeders at a given time. During training trials, the laser was projected, and 
food (also TetraMin flakes) was delivered at the corresponding feeder. During experimental 
trials, the laser was projected but no food was delivered. A Sony EX1 video camera (1280 x 720 
pixels) mounted above the tank recorded the entire arena at a frame rate of 60 Hz throughout 
each experimental trial. (The effective frame rate was subsequently reduced to 30 Hz in post-
processing to reduce computational runtime for all analyses.) 
 
Training 
Fish were trained prior to the beginning of experimental trials in groups of approximately 50. 
Before each set of training trials, the fish were placed into the arena and allowed to acclimate to 
the environment for at least 15 minutes. During each training trial, the laser was shone, and food 
was released from the corresponding feeder. After the fish had consumed all of the food, the 
laser was switched off, and remained off until the fish resumed their normal schooling activity. 
The feeder at which the food was presented was randomized between trials. Groups underwent 
10 training trials during each training session, with at least 5 minutes between trials. One training 
session was performed each day for two groups of individuals, resulting in a total of 100 trained 
individuals. The fish were trained in this manner for 5 days prior to beginning experimental 
trials. Informed fish were also retrained at the end of each day after experimental trials (in one 
group of 70 and one group of 30) to ensure that they maintained their association of the light 
with food. On the two days during which experimental trials did not take place (April 10, and 11) 
during the three-week-long period of the experiment, informed fish still underwent training trials. 
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Experimental Trials 
Experimental trials mimicked training trials, except that no food was presented at the feeder, and 
the majority of the group was replaced with uninformed (untrained) individuals. Groups were 
allowed approximately three minutes to reach the target once the light was turned on, after which 
the group was declared to have not reached the target and the light was switched off. Each group 
contained 70 fish, including 0, 1, 3, 5, or 10 informed (trained) individuals (with the rest 
uninformed). Groups with 1, 3, 5, and 10 informed individuals completed one session of five 
trials each day, with the order randomized. Groups with 0 informed individuals completed two 
sessions of five trials, at the beginning and end of the experimental session each day. Adjacent 
trials were separated by at least 30 seconds. Roughly the same group of uninformed individuals 
was used throughout the day, with informed and uninformed fish swapped out between sessions 
to ensure the correct number of informed individuals in each group. Uninformed fish were all 
drawn each day from the same stock of fish, thus individuals were reused in haphazard order on 
different days.  Informed fish were only used during a maximum of one session on each day. The 
full dataset represents experimental trials from 19 days (from March 31 – April 20, but skipping 
April 11 and 12), resulting in a total of 95 trials per experimental condition, and 190 trials for the 
control (0 informed) condition. We observed with some frequency that the group exhibited an 
initial startle reaction when the stimulus light turned on. Because we were concerned that startles 
could bias results, trials in which these startle events occurred were not included in the analysis. 
The final dataset therefore consists of 107, 48, 53, 47, and 54 trials for experimental groups 
containing 0, 1, 3, 5, and 10 informed individuals respectively. 
 
All experiments were approved by the Institutional Animal Care and Use Committee at 
Princeton University.  
 
Determining how many leaders are needed to lead a group 
 
Though our main analysis (Figure 1) focuses on the situation in which ten individuals were 
informed (trained), we also tested groups with 0, 1, 3, and 5 informed individuals to investigate 
how the probability of successful leadership scales with the number of “leaders,” as described 
above. Theoretical predictions based on flocking simulations [S1] suggest that leadership 
accuracy should increase monotonically with the number of leaders, and that a relatively small 
number of leaders are needed to achieve a high level of accuracy. Our experimental results 
qualitatively confirm these predictions (Figure S1A). Here, accuracy is defined as the probability 
that the group was led to the target during the allotted time. 
 
Waves of information transfer: Obtaining individual trajectories and 
extracting “responses” 
 
We extracted 25 representative leadership events from our videos for the trajectory-based 
analysis. Leadership events were selected from the experimental condition with 10 informed 
individuals because of the high repeatability of leadership and strong response of individuals in 
that condition. Video clips were extracted such that they started before any visible response from 
the group was observed, and ended when the first fish reached the target. Ending the clips at this 
point avoided the confounding effects of negative feedback from leading fish once they realized 
that no food was present in experimental trials, as well as any boundary effects as the group 
approached the edge of the arena. The selected clips ranged from 10 to 15 seconds in length. 
Trajectories were obtained using a novel, fully-automated tracking software developed by H. Wu 
(SchoolTracker). This software extracts the position and orientation of each individual in each 
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frame, and links these detections together into full trajectories. For our data, the software 
detected 69-71 fish (i.e. up to one false positive or one false negative) in 98% of frames. 
 
Individual behavioral responses (transitions from typical ambient movement to directed 
movement towards the target) were extracted from trajectory data using a combination of 
velocity and acceleration thresholds. When an individual exceeded both of these thresholds, it 
was considered to have responded. The values for the two thresholds were set manually such that 
they corresponded to the visually-apparent response points (Figure S1B, Movie S2). Once set, 
the thresholds were kept the same for all videos. We checked each video manually to ensure that 
individual responses were accurately captured by this thresholding process. Because typically not 
all fish had responded before the first fish reached the target, the number of observed responses 
in each leadership event ranged between 29 and 66.  
 
These responses can be seen to propagate in a wave across the group (Figure S1B, Movie S2). 
While reminiscent of the “waves of agitation” observed in schools of fish responding to a fright 
stimulus [S2], waves of information transfer during leadership events are relatively slow 
(approximately: 7.6 +/- 2.8 individuals/sec; 4.87 +/- 0.08 cm/sec; 0.94 +/- 0.02 body 
lengths/sec). In addition, leadership events involve maximum speeds similar to those seen in free 
schooling behavior, and are not nearly as fast as those seen in startle events: The maximum 
speed reached by a responding fish near (i.e. within a half-second of) its response point was 20.8 
± 5.2 cm/sec (mean ± standard deviation over all individuals), a value comparable to the speeds 
of up to approximately 20-30 cm/sec seen in freely schooling fish [S3], but far removed from the 
speeds typically seen in startle events in the same species (77.6 ± 18.2 cm/sec; unpublished data). 
Furthermore we note that transitions in group behavior, similar to those investigated here, 
characterize natural schooling behavior in golden shiners [S3]. 
 
Reconstructing the visual information available to each individual 
 
The field of view for each individual in the school was estimated using a ray-casting algorithm 
from the vantage point of each eye of each individual, after determining the position and pose of 
each individual’s body in space, for a given moment in time. Individual head positions were 
determined using the SchoolTracker novel tracking software (H. Wu), developed to deal with 
many partially occluded and overlapping bodies in space. Next, body estimation was achieved in 
two stages. First, the midline of each individual was estimated, allowing for multiply overlapping 
bodies, using a curve-tracing algorithm similar to [S4]. A uniform, two-knot cubic basis spline 
was fit to each midline estimation, and integrated with prior estimations using an Unscented 
Kalman Filter. Taking inspiration from [S5] but simplifying the approach, the flanks of each 
individual were estimated using a simple linear fit to the displacements of the body-background 
boundary from the midline b-spline (fits were done using the Theil-Sen estimator for robust 
linear regression). Flank slope and offset parameter estimates were improved over time using 
simple constant scalar Kalman filters. Eye positions were approximated at fixed positions near 
the estimated position and orientation of the head. After body and eye estimations were 
completed, bodies were encoded in a simple, regular grid spatial data structure along with 
boundary information, in preparation for efficient ray-casting. Ray-casting was used to 
determine, for each eye of each individual, what bodies or boundaries are visible to that eye 
(Figure 1A). Two thousand equally-spaced rays were cast from each eye of each individual, and 
represented the fish’s line of sight in every direction. Each of these rays terminated, ultimately at 
a surface: the body of another fish, the fish’s own body, the target (i.e. stimulus light), or the tank 
wall. From the number of rays hitting various surfaces, we estimated the angular area of each 
object subtended on the retina of the focal individual. For all subsequent analysis, the maximum 
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angular area between the two eyes was used, thus avoiding any complications arising from 
binocular vision. Visual field and body pose estimation methods were developed by C.R. 
Twomey. 
 
Statistical Analyses 
 
Spread of responses within a group 
We used Linear Mixed Models (LMMs) to determine whether responses spread out from the 
target or from the first fish to respond (the “source”), and whether informed individuals tended to 
respond before uninformed individuals (Table S1). The order in which responses occurred was 
determined for each leadership event, and this was used as the dependent variable. The time 
when the “source” individual responded was considered to be the beginning of the leadership 
event, t0. The fixed effects included in the LMM were: an individual’s distance from the target at 
t0, the individual’s distance from the “source” individual at t0, and whether the individual was 
informed or uninformed. The event number and the group from which the tracks were obtained 
were included as nested random effects. The first individual to respond in each event was 
removed from the dataset, as this individual would always have a distance from the “source” of 
0.  
 
Models were built up in the following stepwise procedure. The significance of main effects was 
first determined by comparing a model including terms for all possible main effects to a model 
with the relevant term removed. If there were two or more significant main effects, the 
significance of interaction effects was then determined by comparing a model including the 
interaction and main effects to a model with only the main effects. Degrees of freedom were 
determined by the difference between the numbers of parameters in the two models under 
comparison. Parameter estimates are reported from the full model (including all possible main 
effects) or from a model including interactions when they were found to be significant. Results 
are shown below: 
 
LMM; Response variable: Rank (order of responses) 
Effect Estimate Std. Error χ2 d.f. P 
Intercept 24.95 3.63 NA NA NA 
Informed -9.92 2.46 150.56 1 <0.0001 
Distance to source individual 2.89 0.19 225.56 1 <0.0001 
Distance to target  -0.28 0.14 2.91 1 0.09 
Informed : Distance to source individual -0.96 0.42 5.07 1 0.02 
 
 
Relative positioning of informed individuals within the group 
We defined the “frontness score” of an individual fish to be the number of fish that that 
individual is in front of at any given time. If an imaginary line is drawn through the current 
position of a focal fish, perpendicular to its orientation vector, any fish that falls above that line 
is considered to be in front of the focal fish. Note that, by this definition, two fish can both be in 
front of each other if they are facing one another.  
 
We investigated the frontness scores of informed and uninformed fish at both the beginning 
(when the first fish responded, t0) and the end (when the last fish responded, tf) of leadership 
events. We computed the average of these frontness scores for all informed individuals (over all 
trials), and compared this average frontness test statistic to a null model that assumes informed 
individuals were randomly positioned within the group. To determine statistical significance, we 
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used a permutation test. This method involved randomly permuting the labels of informed and 
uninformed fish within each group, then computing the resulting average frontness statistic. By 
repeating this process 1000 times, we constructed a null distribution of average frontness 
statistics. We then compared the observed average frontness to this distribution to determine a 
(two-tailed) P-value.  
 
Permutation tests on average frontness score test statistic. P-values are two-tailed. 
Time  Informed average frontness 

score 
Uninformed average 
frontness score 

P 

Beginning 34.48 29.97 <0.001 
End 50.97 32.01 <0.001 
 
 
Comparing the support for different models  
Following the methodology of [S6], we employed Bayesian model selection to compare the 
empirical support for different models of information spread. Bayesian model selection is a 
technique that allows one to directly compare the level of support for different models of varying 
complexity. In contrast to traditional model fitting, which finds the parameters that maximize the 
likelihood of the data given a particular model, Bayesian model selection involves integrating the 
marginal likelihood over a specified prior distribution of parameters. The resulting marginal 
likelihood describes the overall support for a given model (assuming the prior distribution of 
parameters), and the marginal likelihoods of different models can then be compared. Because 
prior distributions are normalized, this method automatically penalizes models with more 
parameters [S6].  
 
Here, we are interested in modeling individual responses. In each frame (1/30 sec) we classify 
each individual as “pre-response” (before the response) or “post-response” (after the response). 
During each frame, an individual in the pre-response state either does or does not transition to 
the post-response state. Each of our models predicts the probability that such a transition occurs 
in a given frame based on both environmental and social factors. The models all assume that 
once an individual has transitioned to the post-response state (i.e. responded), its probability of 
responding becomes 0. Hence, after individuals have responded, they no longer contribute to the 
likelihood calculations.  
 
Using these predicted probabilities, we then compute the likelihood of the actual responses given 
a particular model and parameter set. The likelihood is defined as the probability of the data 
given the model, P(D | M,{αk}), where D is the data, M is the model, and {αk} is the set of 
parameters. If we define Xitjas 1 if individual i responds at time step t during leadership event j, 
and 0 otherwise, then the likelihood can be computed as follows: 
 

P(D | M,{α k}) = Ptrans
itj (sitj |{αk})

i
∏ Xitj + 1− Ptrans

itj (sitj |{αk})( )1− Xijt( )
t

∏
j

∏ , (S1)

 
where Ptrans

ijt (sitj |{αk}) is the model-predicted probability that individual i responds in time t 
during leadership event j, given the parameter set, and the products run over all trials, time steps, 
and individuals.  
 
The marginal likelihood of the model given the data can then be computed by integrating over 
the entire (possibly multivariate) parameter space, A: 
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P(D | M) = P(D | M,{αk})P({α k} | M)dA
A
∫ , (S2)

 
where P({αk} | M) is the prior distribution of parameters. Following [S6], we randomly sample 
parameter space according to specified prior parameter distributions (defined below), then 
perform numerical integration to compute an estimate of the marginal likelihood of a given 
model. To obtain an estimate of the error in this integration, we perform 10 calculations of the 
marginal likelihood using 10,000 samples from parameter space in each calculation for each 
model and then compute the standard deviation of the resulting distribution. 
 
We assume that the probability that an individual responds during a given time step, Ptrans(s) 
(where we now drop the subscripts and superscripts for convenience), is given by the logistic 
expression 
 

Ptrans(s) =
1

1+ e−s  (S3)

 
 

 
 
where s may depend on environmental and/or social factors present in the environment of the 
individual at that particular time step. Our different models represent different ways of 
determining s at a given time step. The model definitions and descriptions are given below. 
 
Models: 
 Non-social models: 

In non-social models, s of each focal individual is determined by factors unrelated to the 
current state of other individuals. The models compared are: 
 

  constant – constant response probability over time: 
 

s = a (S4)
 
  target distance – response probability depends on an individual’s distance from 
the target, δtar: 
 

s(dtar ) = a + dδ tar
e (S5)

 
target visibility – response probability depends on the angular area of the target on 
the retina of a focal individual, αtar: 
 

s(α tar ) = a + lH(α tar ) (S6)
 

where H(x, y) is the Heaviside step function, defined as: 

H(x) =
0, x < 0
1, x > 0

⎧ 
⎨ 
⎩ 

 (S7)

 
 Social models: 
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In all social models, s is determined by the fraction of “neighboring” individuals that 
have previously responded, nresp, according to: 

 
s = a + fnresp (S8)

 
To investigate which “neighbors” actually influence an individual’s response probability, 
we compared models using different neighborhood definitions: 
 
 global – all individuals in the group  
 
 metric – only individuals within a radius rmet of the focal individual 
 
 topological – only the rtop closest individuals to the focal individual 
 

Voronoi – only individuals that share an edge with the focal individual in a 
Voronoi tessellation of the group 

 
visual threshold – only those individuals that take up an angular area on the eye of 
the focal individual that is greater than or equal to a threshold, τvis.  

 
Prior parameter distributions are given below, where Uc (x,y) and Ud (x, y) indicate continuous 
and discrete (integer) uniform distributions on the interval [x,y] respectively. 
 

Parameters Prior distribution 
a Uc (−10,0)*unitless 
d Uc (−10,10)*units are 1/pixels, where 1 fish body length ~40 px 
e Uc (−10,10)*unitless 
f Uc (−10,10)*unitless 
l Uc (−10,10)*unitless 
rmet Uc (1,519)*units are pixels 
rtop Ud (1,70)*units are individuals 
τvis Uc (0,0.76)*units are angular area 

 
To introduce the least amount of bias, the upper limit of rmet was chosen to be the average 
distance between the focal individual and the farthest-away neighbor, averaged over all 
individuals and all trials. Similarly, the upper limit of τvis was chosen to be the angular area 
threshold at which individuals had an average of 1 neighbor. These priors were chosen so as to 
make models using different neighborhood definitions as comparable as possible. All best fit 
parameter values (Table S1) fell well within these parameter ranges for all models, giving us 
confidence that priors were reasonable. 
 
While previous simulations of collective motion have typically adopted metric, topological, or 
Voronoi assumptions, two notable exceptions are the recent theoretical work of Lemasson et al. 
[S7,S8] and Kunz & Hemelrijk [S9], both of whom develop models of collective motion based 
explicitly on the visual information available to individuals. These models differ from the visual 
models described here in that they use a self-propelled particle framework to describe velocity 
changes of individuals over time, whereas our analysis employs experimental data to test among 
alternative models of how a behavioral change is propagated within groups. While the substantial 
differences make it difficult to compare these models directly, commonalities include the 
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incorporation of occlusion and a threshold on angular area to determine which neighbors are 
influential.  
 
Alternative mechanisms for information transfer 
For the social models shown in the main text (Figure 1C), we assume that individuals 
conditioned their probability of responding on the fraction of their neighbors that had already 
responded. In a preliminary analysis, we also tested several other functional forms for predicting 
responses. From this comparison, we determined that the fraction of neighbors that have already 
responded was the most likely model, and we therefore focused on this measure in our main 
comparison of different neighborhood definitions. Below we list the alternative mechanisms, and 
their marginal likelihoods are shown in Figure S2A. All models described below use a metric 
neighborhood definition (with a globally-connected model also shown for comparison).  
 
Model Response probability 

depends on… 
Functional Form 

Global Fraction of all individuals 
that have already 
responded 

s(nresp ) = a + fnresp

where nresp is the fraction of all individuals that 
have responded 

Number Number of neighbors that 
have already responded 

s(Nresp ) = a + fNresp

where Nresp is the number of neighbors that have 
already responded 

Distance Distance to all neighbors 
that have already 
responded 

s di{ }( ) = a + g di
h

i
∑  

where di is the distance to a given individual and 
the sum runs over all individuals that have already 
responded 

Difference Difference between 
number of neighbors that 
have and have not 
responded 

s(Nresp,Nno−resp ) = a + f (Nresp − Nno−resp )  
where Nresp and Nno-resp are the numbers of 
individuals that have and have not responded 
respectively 

Fraction Fraction of neighbors that 
have already responded 

s(nresp ) = a + fnresp

where nresp is the fraction of neighbors that have 
responded 

Fractional 
difference 

Difference between 
number of neighbors that 
have and have not 
responded divided by total 
number of neighbors  

s(Nresp,Nno−resp ) = a + f
Nresp − Nno−resp

Nresp + Nno−resp

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

where Nresp and Nno-resp are the number of neighbors 
that have and have not responded respectively 

 
We also tested an additional nonsocial model that is not shown in the main text. This model 
assumes that individuals’ response times are drawn from a Gaussian distribution with a mean μ 
and standard deviation σ. The Gaussian is truncated at t = 0 (so that individuals do not respond 
before the stimulus light), and renormalized such that the total probability of responding is equal 
to 1. The log marginal likelihood of this model is -21157.55 ± 9.62. Due to the extremely low 
likelihood of this model, its marginal likelihood is not plotted in Figure S2A. We speculate that 
this model performs so poorly because the fish often did not notice the stimulus light 
immediately, and therefore the absolute response times varied widely, in contrast to the model 
assumptions. 
 
Models with a time lag 
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In the social models discussed above, fish are assumed to respond to the characteristics of their 
instantaneous neighborhood. As an extension, we also considered the possibility that individuals 
respond to their neighborhood configurations some time in the past. In other words, there may be 
time lag between when an individual observes its neighborhood and when it responds to this 
observation. To test this idea, we created models identical to the social models shown in Figure 
1C (including metric, topological, Voronoi, and visual neighborhoods), but with the addition of a 
time lag, h. Thus, in these models, individuals conditioned their response probabilities on their 
neighborhood configurations some time, h, in the past.  
 
We found little evidence for the existence of such a time lag (Figure S2B). Each time-lag model 
performed worse (i.e. had a lower marginal likelihood over all data from the uninformed 
individuals) than its non-time-lag counterpart. In addition, the mean best-fit values for the time 
lag (h) were very small (0-1 frames), further supporting the approximation that fish respond to 
their instantaneous local neighborhoods.  
 
Models for informed individuals 
In our main analysis, we test models for predicting individual responses of the uninformed 
(untrained) individuals within the group (Figure 1C). We chose to use only the uninformed 
individuals because the informed individuals could have shown biased behavior due to their 
training. In addition, there were six times as many uninformed individuals as informed 
individuals in each group, therefore providing more data. However, we also performed the same 
analysis for the informed individuals, using the same models (Figure S2C). The relative 
performance of different models is very similar for both informed and uninformed individuals 
(compare Figure S2C and D) suggesting that, despite the difference in information, both make 
decisions using the same, or similar, mechanism(s). The differences between informed and 
uninformed individuals instead manifest themselves through different best fit parameter values 
(Table S1). However, due to the smaller amount of data and the potential confounding factor of 
prior training, we must be cautious in interpreting the results pertaining to informed individuals. 
 
Alternative visual models 
We tested four other vision-based models, in addition to the model shown in Figure 1C. The first 
is a combination visual / topological model which assumes that interactions are topological, but 
that only visible individuals are relevant. In other words, it is equivalent to a topological model 
where individuals that are not visible are not counted. The second assumes that individuals are 
ranked by the angular area they occupy on a given focal fish’s retina, and that the focal 
individual only pays attention to a certain number of these “most seen” neighbors. This model is 
similar to a topological model, but it uses visual information rather than physical distance to 
determine which individuals count as neighbors. The third assumes that individuals interact with 
all visible neighbors (equivalent to a visual threshold of 0). The final model is an additive 
combination of this “all visible” model and the “target visibility” model. The results are shown 
for both informed and uninformed individuals in Figure S2E and F respectively. For uninformed 
individuals, all of these alternative visual models perform similarly well to the models shown in 
the main text. For informed individuals, the first three perform slightly worse and the last 
performs slightly better.  
 
AIC scores 
Bayesian model selection requires us to choose a prior distribution of parameters. To ensure that 
our choice of priors did not influence our results, we compared the relative performance of 
models based on our full analysis (Figure 1C; Figure S2C,D) to the relative support based on the 
models’ Akaike Information Criterion (AIC) scores, a measure which is independent of the prior 
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distribution of parameters. As shown below, the relative performance of the various models 
based on AIC scores is consistent with their performance based on the full Bayesian analysis, 
suggesting that our results are robust to the prior distribution of parameters chosen. 
 

Models describing informed individuals 
Model AIC 

Voronoi 2383.08 
visual threshold 2385.26 

topological 2399.65 
metric 2419.45 

target visibility 2445.73 
global 2455.45 

constant 2497.17 
target distance 2501.11 

 
Models describing uninformed individuals 

Model AIC 
visual threshold 14343.95 

Voronoi 14709.10 
topological 14914.29 

metric 15026.86 
global 15545.04 

target visibility 16273.18 
target distance 16790.98 

constant 16796.00 
 
 
 
Network analysis 
 
To get a broader picture of information flow in the various models, we created hypothetical 
interaction networks from our data based on each model’s assumptions. For metric networks, 
each individual was taken to be connected to all individuals within a given distance, rmet. For 
topological networks, each was connected to its rtop nearest neighbors. For Voronoi networks, 
each individual was connected to its Voronoi neighbors. For visual networks, each individual 
was connected to individuals that occupied an angular area on its retina greater than a threshold 
value, τvis. Different parameterizations of these networks were generated by varying their 
respective interaction ranges (rmet, rtop, and τvis). For Voronoi networks, only one 
parameterization exists because the interaction range is not variable. 
 
For each network parameterization, we computed three basic network properties (shown in 
Figure 1D and E). All measurements represent mean values over all of our data, randomly 
subsampled to include 10 networks per sequence (and thus 250 networks total). The measured 
properties include: 
 
Average degree 
This measure gives the average number of neighbors for a given individual within the network 
(averaged over all individuals). 
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Network efficiency 
This measure provides an estimate of how fast information can spread through the network. It is 
defined by computing the inverse of the shortest (directed) path length for each pair of 
individuals within the network (i.e. the inverse of the fewest number of links that must be 
traversed to pass from one individual to another). These values are then averaged (in an 
unweighted fashion) over the entire network to yield one value.  
 
Network transitivity 
This measure represents the extent to which individuals who share neighbors are also neighbors 
themselves. In other words, transitivity measures the extent to which triplets of individuals are 
mutually connected. The measure is defined on an undirected graph as the ratio between the 
number of connected triads (triplets of nodes) to the number of triads in which at least two of the 
nodes are connected. Here, for simplicity, we use the undirected version of this measure even on 
our directed graphs (visual and topological) by converting all directed edges to undirected edges. 
However, using a directed definition of transitivity does not qualitatively change results. 
 
While the transitivity measure described above only addresses redundancy of connections at a 
local scale, we can generalize this measure to account for longer path lengths. One such 
generalized definition is: given that there exists some path of length n from a start node to an end 
node, what is the probability that the start node is also connected to the end node? In other 
words, for every pair of nodes connected by a path of length n (not necessarily a shortest path), 
how often are these nodes also directly connected? We call this probability the n-transitivity of a 
graph, and suggest that its value may reflect the correlation of information at a given scale (the 
scale becomes more global as n increases). From our data, we computed the n-transitivity of 
metric, topological, Voronoi, and visual networks across a range of average degrees for n up to 
25. Our results (graphs not shown) indicate that the difference between visual / Voronoi and 
metric / topological networks persists even past the local scale, and indeed is still apparent up to 
n = 10, a relatively long path length. As n increases, the curves converge, and eventually 
coincide (for approximately n > 15).  
 
All network properties were calculated using igraph v0.6 [S10] in R v2.15.0. 
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