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Mathematical model

The model proposed here follows the structure of the mathematical model in

(2). In this model, we consider the population of the cancer cells and the drug, which is
assumed to be a chemotherapeutic agent. The resistance level is denoted by a scalar x, which
can be normalized as x € [0, 1]. In our notations, x=0 corresponds to no resistance, while x=1

corresponds to maximum resistance.

Let n(x, t) denote the population density of cells with trait x (resistance level) at time t. We
describe the dynamics of the cell population via the following selection/alteration integro-

differential:

on(x,t) _
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where the total population is denoted as p(t):

1
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See Table S1 for explanations of the notations used. The assumptions for (1) can be described



as follows: r(x) denotes the natural division rate of a cancer cell with trait x, and d(x) denotes
the natural apoptotic rate of a similar cell. These rates are time independent, so we assume no
external forces are influencing the inherent growth and death rates. c(x,a) denotes the
increased mortality rate of a cell of trait x and drug dose a. At this stage, we do not intend to
study the treatment protocol, therefore the drug is assumed to be applied uniformly over time.
f(p(t)) and g(p(t)) are included to add density dependence to the division and death rates. It
is well known that density plays a role in both of these terms and their specific forms will play

an important role in the overall dynamics. The cell division r(x) and drug-induced death
c(x,) rates have the same density dependence factor f, since we assume that the
chemotherapeutic drug affects primarily cells that are dividing. Hence, the induced death term

should be proportional to the division rate. All parameters are nonnegative:r, d, ¢, g20,r, d, c

€ C([0, 1]) and f> O.

We further assume that when cells undergo division, they may be mutated or modified. That is,
if the parental cell has the specific trait x, the daughter cell can have the same level of x, which
we call a faithful division, or have a different level (y), which we refer to as a modification or
alteration. This alteration can be the result of genetic or epigenetic changes. 8(x) denotes the
total fraction of cells with trait x having any modification, where 0 < 8(x) < 1, and hence 1 - 6(x)
denotes the fraction of cells undergoing faithful division. The integral in system (1) takes into
account all changes during division from different traits of y. M(y, x) denotes the probability
that given a change, a parental cell with trait y will yield a daughter cell with trait x. The
probability M(y, x) satisfies

(3)M(x,y)=0,Vx,y€EJ[1,0]
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(4) f M (x, y)dx =1,Yy€[1,0]
0

Equation (4) indicates that when a modification occurs, it must change to some x € [0, 1].
Equation (1) is a selection/alteration model, which moves through the (x, n(x, t)) phase space by
both Darwinian evolution and via mutations/changes. As time progresses, different traits
become advantageous or disadvantageous, and the overall dynamics are determined by various
rates, modification parameters, and the initial distribution of the cells. It is also worth noting
that the model (1) can be thought of as the expected value of an individual stochastic model of
cells described as above, where the expected value is over the number of cells of type x. Hence
we can write (1) as:

on(x,t) _

Py [/ (@) (r(x)(1 - 0(x)) = c(x,@) ) = g(p(1)d (x) ] n(x,1)
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Rescaling the time by the term 7 =ff(,0(s))ds, andg—lz = j—Zf(p(t)), gives
0

(6) %XT’T) = [r(0)(1-6(x)) - c(x,@) = G(p(0)d(x) Jn(x,7) + 6(x) [r(NM (y,x)n(y,T)dy

where

)

(7)G(p y’ where limG(p) =

Ia—>oo
Note that ? = f(p(t)) >0, so that we have not changed the direction of time. Henceforth, we
t

study (6), with the notational convention that we replace t by t, even though the change of



units is understood as above.

As mentioned, there are two types of modifications that could occur, heredity or temporal
changes. B(x) should be thought of as the summation of two separate parameters: 61(x) and
02(x). When a similar effect is applied to the modification (M) function, the system (6) can be

rewritten as:

. %’;JL [r(x)(l—i;@(x))—C(xoa)_G(P(f))d(x) n(x,t)

* Ei=1,2{@(y)r(y)Mi(J/»x)”(yol‘)dy

Drug-induced death rate: c(x,a)

We chose to work with a basic mathematical description of a sigmoid function:

__ B
1+[exp(8)]"

c . In the first case, c;, the information concerning the death rate based on the

trait is measurable for a given dose. Since the dependence on the dose is known to be a

ﬂl(x) ’
1+[exp(5, () ]”

sigmoid function, we could propose the following structure: ¢ (a,x) =

where 3 (x) and f,() decrease functions and g, is a parameter. Here, we chose the

following functions: f,(x) = ﬁ By(x,a) =-20(a)+10and B, =0.5=>
+X

2.4
(1 + xz)
55 - Plotted in Fig. 2C.
1+ exp(-20(x) +10)™

¢ (x,a)=

The second case, c;, is less trivial to define, since it includes less information on the trait. For

this type of case, it is known that the survival curves as a function of the dose have sigmoid



shapes, for a given resistance level. Also, it is clear that the I1Csg values for resistant cells are

higher than for sensitive cells. Therefore, this rate of death has a 3D sigmoid function with an

B
1+ [exp(B,(x, @) "

‘angle’. This 'angle' is basically described by g, (x,a) inc,(a,x) = , Where

B, (x, ) is a decreasing function, and S, and ,are parameters. Here, we chose the following
: 50
functions: f,(x) =3, B,(x,a) =-20(a)+ ?x and 3, =0.4=>

3

1+ exp(—20(a) +530x)

¢ (x,a)= - - Plotted in Fig. 2D.

0

In practice, the type of data sets, and information included, determine which function to use (c;

or ¢;) and help to estimate 3, 3, and [3,based on the available biological data.

Numerical results

Here, we assume two cases of initial conditions for (6):
(i) IC, =1, Vx

0 x=<0.25
(ii) IC, = ) ~(x-1)’
10.3465(x=0.25) e ' x>0.25

In our numerical simulations, we used the following form for the density function:

(9)G(p) = p(p -2)’

and for the alteration kernel:

(10) M(y,@) =h<y)exp(—@)



Note that (10), for a fixed value of y, is essentially a Gaussian distribution confined to [0, 1] with

mean y and variance 82/2. As before, h(y) is chosen to ensure that (4) for all y € [0, 1].

All simulations were done using Matlab 2012(b). The functions and parameters that were used
in all numerical analyses were: 7(x) = 2/(1.1 + 2x5), c(x) = 2/(1 + xz), d(x) =0.05 unless
mentioned otherwise. In case 1 and Fig. 1: ¢, (X) = ¢(x), ¢, (x) =0.5¢,,, (x), €=0,0=0,

t, =12.5 in arbitrary units. Fig. 2 includes two drug-induced death rates as a function of the

1.2¢(x)
1+ exp(-20(cx) +10)°°
3

drug dose. The apoptosis assay was illustrated by the function ¢ (x,a) =

, and the survival assay was illustrated by the function c,(x,a) =

04 °

1+ exp(—20(a) +530x)

Fig. S1 illustrates the population response with these two drug-induced death rates, where

g =0, 8 = 0and the treatment time periods in all simulations and figures (prior to, during and
post treatment, ¢, =2.5,¢, =5, t, =12.5) were chosen with the intention of demonstrating all of
these cases and not in order to optimize a treatment protocol. In case 2 and Fig. 3:

0=0.1, =0, £=001¢6 =1and ¢, =2.5,¢, =5,¢, =12.5. For case 3 and Fig. S2, since the
exact biological details about the relation between the genetic and epigenetic networks are not

well known, we suggested two mathematical variants that mainly depend on external stress.

The first includes two M functions with different time scale:

on(x,t) _ n(x.1)

i=1,2

f(p(t))[r(x)(l -3 a.(x)) —c(x,a)) ~g(p0)d)

(11)
+ 3 oS (@) 6. ()M (y.x)n(y.0)dy



Weused ¢, =0.01, ¢,,, =1, 6 =0.05, 6, =0.15 in Figure S2 and Table S3.

The second includes only a single M function with varying £ and @ (Table 3), where these

parameters depend on the external stress and time:

on(x,t) _

» [ £ (p®)(r(x)(1-O(stress, x,t)) - c(x,a) ) - g ( p(t))d(x)] n(x,1)

(12) |
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Table S1. Variable References

Variable | Range | Biological Interpretation

X [0, 1] Resistance level

t R+ Time

o [0, 1] Drug dose

£ [0, 1] Reflects the variance in the 'alteration kernel function', M

n(x, t) R+ Concentration of cells with trait x at time t

r(x) R+ Natural division rate of cell with trait x

d(x) R+ Natural death rate of cell with trait x

c(x,a) R+ Drug-induced death rate of cell with trait x and drug dose a

flp) R+ Density dependence within the cell division rate

g(p) R+ Density dependence within the death rate

0(x) [0,1] Proportion of divisions of cells with trait x undergoing mutations/epimutations

My, x) [0,1] The alteration kernel function. Probability that a cell division results in a
alteration from state y to state x, given that an alteration occurs

p(1) R. Density of cells as a function of time




Table S2. Simulation details of all figures

Figure

Time

u | W 0 £ r(x) d(x)
_ o2
All figs. (1 N xz) [0,1] [0,1]
Cpug, (X) = €(x),
Cprg, (X) =0.5¢,,, (X)
¢, (x)=0
Fig. 1 12.5 IC, =1,Vx 0 0
0 x=<0.25
IC, = ) (1)’
10.3465(x-025) e %' x>0.25
1.2
Fig. 2C,E ¢ (x,a) = c(x) 3 0 0
1+ exp(-20(x) +10)™
3
e (x,a) =
Fig. 2D,F 2(%.0) 50 \™ 0 0
1+ exp(—20(a) +3x)
£ =0
Fig.3A | £, =25, co(X) g =0.01
t,=5, 01 | &= 2 0.05
Fig. 38 | £,=12.5 | Cppuy (¥) e = (1.1+2x°) .
Fig. 3C Cprug, (¥) g =0.01
2c(x
cl,Dmgl (xﬁ a) = ( ) 1
1+ exp(-20(x) +10)
Fig. S1
A-B 1.2¢(x
C\.Drug, (x,a) = (x) 05
1+ exp(-20(x) +10)
t, =25,
t, =5 3
2w C3.Drug, (x,a) = 20 " 0 0
t=12.5 1+exp(—20(a)+x)
. 3
Fig. S1 3
¢-D cZ,Drug2 ('x’ a) = 50 0.4
1+ exp(—ZO(a) +3x)
=25, 6 =0.05
| 1 1 {0.01,1}
Fig. S2 t, =5, ¢, (x) 0,=0.15
Table S3




Table S3. Simulation details of Figure S2

Panel | t<ta tict<t2 ta<t<ts

a I>>¢,6 =0 g >>¢>0 I>>¢,6 =0

b I>>¢,6 =0 I>>¢,=6>0 |1>>¢,¢6=0
£>>0,6=0 g =¢>>0 £>>0,6=0

d g>>0,6 =0 g>>¢€>0 g>>0,6=0

Table S4. Dynamics with variations in the percentage of cells altered

£ o Cell density (o)
0.01 0.1 2.931
1 2.903
0.1 0.1 2.823
1 0.133

Simulation results at time t=10 in case a and t=100 in case b, where @ vary (6 =0.1, 1) with
low/ high alteration rates (¢, =0.01, ¢,,, =0.1, respectively). The densities ( o ) at the last

point in time are listed. Note that for a longer time period (than listed here) the same

qualitative results can be plotted.



Figure S1. Drug efficacy as a function of the dose and resistance level
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Panels A and C represent the two common types of drug-induced death rates, c¢;(x,a) and
Co(x,a) that are plotted in Fig. 2C and D, respectively. Given the exact function of drug-induced
death rate, in each panel (A and C) two different treatments were considered (Drug 1 and Drug
2), in a range of drug concentrations, for cells with different resistance levels. Panels B and D
illustrate the population response during the treatments, and the density is plotted as a
function of the drug dose and time. The shapes of the density curves vary according to the type

of treatment and type of drug-induced death rate that were assumed. In all cases, a better

12



treatment would give lower cell density at a lower drug dose (a*), with a wide range of

effective concentrations.
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Figure S2. Dynamics with variations in the mutation rates over time with/without drugs
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In all of these cases, there is an initial alteration ( &, ) fixed over time, and an additional

alteration rate ( &, ) applied only when the drug (Cz) was applied for a certain period of time

(t1<t<t2, where t2<t3). See Table S2 for the variations in the alteration rates.
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