Immunity, Volume 38

Supplemental Information

Activation of the Innate Signaling Molecule MAVS

by Bunyavirus Infection Upregulates

the Adaptor Protein SARM1, Leading to Neuronal Death

Piyali Mukherjee, Tyson Woods, Roger A. Moore, and Karin E. Peterson

Supplemental Inventory

Supplemental Figures and Tables

Figure S1, Related to Figure 3 Figure S2, Related to Figure 4 Figure S3, Related to Figure 2 Figure S4, Related to Figure 5 Figure S5, Related to Figure 6 Figure S6, Related to Figure 7 Fig. S1.

Figure S1. SARM1 Expression in the Brain and Spinal Cord of LACV-Infected Mice, Related to Figure 3

(A-B) Brain tissue from (A) mock and (B) LACV-infected wildtype mice at 5-7 dpi were analyzed for SARM1 expression as described in methods. SARM1 staining was observed around cell bodies in (A) mock-infected mice, but was also found in axons of localized regions in the cortex in (B) LACV-infected mice. Images are 200X.

(C) Western blot analysis of mitochondrial fractions from lysates of brain tissue from mock or LACV-infected wildtype mice at 5 dpi stained for SARM1 or mitochondrial protein CoxIV.

(D-F) SARM1 expression in spinal cord of (D) uninfected and (E-F) LACV-infected (D-E) wildtype and (F) *Sarm1-/-* mice. SARM1 (red fluorescence) localized to the (D-E) cell body and (E) axons of MAP-2-positive (green fluorescence) neurons from wildtype mice (yellow arrow), but not *Sarm1-/-* mice. Some staining of nuclei was also observed (white arrow), but this was also observed in *Sarm1-/-* mice suggesting non-specificity. Images are 200X.

(G-H) Immunohistochemistry of brain tissue from LACV-infected (G) wildtype and (H) *Sarm1-/-*mice stained for TUNEL (green fluorescence) and the G2 protein of LACV (red fluorescence). Images are 400X.

Fig. S2

A Oxidative stress response genes

Figure S2. SARM1 Expression Is Necessary for LACV-Induced Upregulation of Oxidative Stress Response Genes, but Not Type I IFN Response Genes, Related to Figure 4

(A-B) Primary cortical neurons from wildtype and *Sarm1-/-* mice were infected with LACV at a MOI of 0.01. At 30 hpi, RNA was extracted and used to generate cDNA. cDNA from 3 mock and 3 LACV-infected neuron cultures generated from wildtype and *Sarm1-/-* mice were analyzed for the expression of (A) oxidative stress response genes or (B) type I IFN response genes. Results are shown as a volcano plot of mock vs LACV-infected cells for each mouse strain. Data are shown as the fold increases in gene expression of LACV-infected samples relative to mock-infected samples. Yellow or blue areas indicate regions of a 2-fold difference relative to mock-infected controls (X axis), with significance between samples indicated by *P* values of <0.05 (Y axis). The only significant difference between wildtype and *Sarm1-/-* mice in the IFN response gene analysis was annexin A11, which was increased by two-fold in wildtype cells compared to *Sarm1-/-* cells.

Fig. S3

siRNA

Figure S3. IL-1 and Type I IFN Are Not Responsible for SARM1-Mediated Cell Death, Related to Figure 2

(A) Wildtype neurons were treated with 200 uM of general caspase-inhibitor (ZVAD-FMK) and 10 uM of caspase-1 inhibitor (Z-WEHD-FMK) at the time of LACV infection and after 36 hpi cell viability was measured by MTT assay. Data are the mean +/- SEM of 3-6 samples per group. (B) RNA isolated at 30 hpi from wildtype and *Sarm1*^{-/-} neurons infected with LACV or with mock supernatants were analyzed for expression of *Il-1b* mRNA. Data are presented as gene expression relative to *Gapdh* mRNA expression and are the mean +/- SEM of 3-4 replicates per group.

(C) Analysis of IL-1 β from whole cell lysates of mock and LACV-infected neurons at 36 hpi showing pro-IL1 β , but not cleavage products, during LACV infection. β -actin was used as loading control (lower panel).

(D) Neuron cultures were stimulated with 1,500 U/ml of IFN-beta and RNA isolated at 6, 24 (not shown) and 48 hpi (shown). Expression of *Sarm1* mRNA was measured by real-time PCR analysis with no difference of expression observed at any time point.

(E) Neurons from *Ifnar* or *Irf3/Irf7* deficient mice were infected with LACV and analyzed for cell death at 36 hpi as described in Fig. 2. The level of LACV-induced cell death was comparable to that observed in wildtype controls at 36 hpi. Data are the average of 4-6 wells per group and are representative of at least two experiments per strain.

(F) RIG-I levels in brain homogenate from mock and LACV-infected mice at 5 dpi. Brain tissue from mock and LACV-infected mice was homogenized and analyzed for RIG-I protein levels by western blot analysis. Equal volume of protein was loaded in each lane

(G) siRNA specific to *Rig-I*, but not *Mda-5*, inhibits LACV-induced cell death. Cells were treated as described as in Fig. 2, except that siRNA against *Rig-I* or *Mda-5* were utilized. Data are shown as the mean +/-SEM of 4-6 replicates per group.

SARM Q6PDS3

-			
1	MVLTLLFSAYKLCRFFTMSGPRPGADRLTVPGPDRSGGASPWWAAGGRGSREVSPGVGT	E 60	
61	VQGALERSLPELQQALSELKQASAARAVGAGLAEVFQLVEEAWLLPAVGREVAQGLCDAI	120	
121	RLDGGLDLLLRLLQAPELETRVQAARLLEQILVAENRDRVARIGLGVILNLAKEREPVEL	180	
181	ARSVAGILEHMFKHSEETCQRLVAAGGLDAVLYWCRRTDPALLRHCALALANCALHGGQT	240	
241	VQRCMVEKRAAEWLFPLAFSKEDELLRLHACLAVAVLATNKEVEREVEHSGTLALVEPLV	300	
301	ASLDPGRFARCLVDASDTSQGRGPDDLQSLVLLLDSSRLEAQCIGAFYLCAEAAIKSLQG	360	
361	KTKVFSDIGAIQSLKRLVSYSTNGTTSALAKRALRLLGEEVPRRILPCVASWKEAEVQTW	420	
421	LQQIGFSQYCENFREQQVDGDLLLRLTDEELQTDLGMKSSITRKRFFRELTELKTFASYA	480	
481	TCDRSNLADWLGSLDPRFRQYTYGLVSCGLDRSLLHRVSEQQLLEDCGIRLGVHRTRILS	540	
541	AAREMLHSPLPCTGGKLSGDTPDVFISYRRNSGSQLASLLKVHLQLHGFSVFIDVEKLEA	600	
601	GKFEDKLIQSVIAARNFVLVLSAGALDKCMQDHDCKDWVHKEIVTALSCGKNIVPIIDGF	660	
661	EWPEPQALPEDMQAVLTFNGIKWSHEYQEATIEKIIRFLQGRPSQDSSAGSDTSLEGATP	720	
721	MGLP		
ATP synthase Q03265			
1	MI SVRVAAAVARAI PRRAGI VSKNAI GSSEVGARNI HASNTRI OKTGTAEMSSII EERII	60	

A

1	MLSVRVAAAVARALPRRAGLVSKNALGSSFVGARNLHASNTRLQKTGTAEMSSILEERIL	60
61	GADTSVDLEETGRVLSIGDGIARVHGLRNVQAEEMVEFSSGLKGMSLNLEPDNVGVVVFG	120
121	NDKLIKEGDVVKRTGAIVDVPVGEELLGRVVDALGNAIDGKGPIGSKTRRRVGLKAPGII	180
181	PRISVREPMQTGIKAVDSLVPIGRGQRELIIGDRQTGKTSIAIDTIINQKRFNDGTDEKK	240
241	KLYCIYVAIGQKRSTVAQLVKRLTDADAMKYTIVVSATASDAAPLQYLAPYSGCSMGEYF	300
301	RDNGKHALIIYDDLSKQAVAYRQMSLLLRRPPGREAYPGDVFYLHSRLLERAAKMNDSFG	360
361	GGSLTALPVIETQAGDVSAYIPTNVISITDGQIFLETELFYKGIRPAINVGLSVSRVGSA	420
421	AQTRAMKQVAGTMKLELAQYREVAAFAQFGSDLDAATQQLLSRGVRLTELLKQGQYSPMA	480
481	IEEQVAVIYAGVRGYLDKLEPSKITKFENAFLSHVISQHQSLLGNIRSDGKISEQSDAKL	540
541	KEIVTNFLAGFEP	600

Figure S4. Immunoprecipitation of SARM1 Results in Pull Down of ATP Synthase, Related to Figure 5

Immunoprecipation was performed as described in Fig. 6 and run on an SDS-PAGE gel. Two bands were identified in the anti-SARM1 immunoprecipitation that were not observed in the IgG control. The top band was identified as SARM1 based on 3 peptides (blue sequence) detected in that sample by tandem mass spectroscopy. The second band was identified as ATP synthase based on detection of 3 peptides (shown in blue).

Fig. S5.

Figure S5. MAVS Colocalizes with SARM1 in Neurons during LACV Infection, Related to Figure 6

(A-C) Mock and LACV-infected neurons from wildtype mice at 36 hpi were stained anti-SARM1 (green fluorescence) and (A-B) anti-MAVS (red fluorescence) or (C) anti-Tomm20 (red fluorescence) and analyzed by confocal microscopy. Shown are axons from (A) mock or (B-C) LACV-infected neurons.

(D-E) Histograms from a 10,000 nm stretch of axon are shown below for both (D) MAVS and SARM1 colocalization and (E) Tomm20 and SARM1 colocalization. Images are representative of 3-4 images per culture from two to four separate experiments.

Fig. S6.

Figure S6. MAVS Does Not Influence OGD-Induced Neuronal Death, Related to Figure 7

Neurons from wildtype, *Sarm1-/-*or *Mavs-/-*mice were cultured under normal or OGD conditions as described in the methods for 1-3 hrs and then analyzed for cell death using an MTT assay. Data are from the 3 hour time point and are the mean+/-SEM of 3-8 samples per treatment group per strain.