
Supplemental Material 

1 Supplemental Tables and Figures 

Supplemental Table 1. Predictive deviance for the validation period. Scenario B (trend-based 

scenario) shows lower values of predictive deviance through the validation period 

Year CHD men  CHD women  STK men  STK women 

A B A B A B A B 

2003 37.5 16.6 66.3 142.2 27.6 51.2 49.4 50.0 

2004 277.2 38.7 359.1 42.0 62.0 18.7 169.9 52.5 

2005 336.9 26.7 582.9 63.3 234.0 35.8 805.0 235.5 

2006 1230.2 170.0 1920.6 208.9 650.9 119.8 2092.8 779.3 

2007 2504.0 434.1 3625.7 467.3 864.1 136.4 2302.0 664.5 

2008 2887.9 293.0 3985.9 339.6 1178.7 171.2 3084.3 836.5 

2009 4257.7 543.1 7396.8 1099.2 1976.0 300.9 4709.2 1448.4 

2010 5158.7 628.6 8470.0 1029.4 2027.1 296.3 4862.5 1269.4 

2011 6245.0 744.9 10212.8 1311.5 2551.0 385.9 5869.2 1570.3 

2012 7240.5 831.0 12382.4 1630.6 2699.6 419.5 6461.7 1669.4 

 

Supplemental Table 2. Population adjusted (2012 population baseline) mortality for Coronary 

Heart Disease and Stroke in 2030, stratified by age and gender with lower (LCrI) and upper 

(UCrI) credible intervals. Table 1A – conventional projections, Table 1B – trend-based projections.  

2A.  

  CHD     Stroke     

Age Mean LCrI UCrI Mean LCrI UCrI 

M 25-34 773 589 978 280 181 388 

M 35-44 5032 3988 6475 931 638 1325 

M 45-54 19452 15811 25701 2931 2110 4101 

M 55-64 29537 24073 37876 6192 4448 8642 

M 65-74 33888 27284 44607 10900 7725 15265 

M 75-84 36158 29416 47811 16698 11505 24312 



M 85+ 35244 28754 45643 15126 10676 21356 

W 25-34 241 170 320 241 179 301 

W 35-44 1563 1166 2029 759 579 977 

W 45-54 7233 5692 9171 2253 1802 2872 

W 55-64 16189 12730 21065 4584 3702 6096 

W 65-74 22349 17726 28957 9415 7391 12531 

W 75-84 29729 23236 38495 18614 14896 24727 

W 85+ 54967 43105 71589 34476 27326 43812 

Totals 292354 233743 380716 123400 93159 166705 

 

2B.  

  CHD     Stroke     

Age Mean LCrI UCrI Mean LCrI UCrI 

M 25-34 776 410 1429 247 56 1484 

M 35-44 4253 2545 6900 761 238 3115 

M 45-54 13561 8679 20933 1935 608 8002 

M 55-64 21120 13374 32884 3989 1157 15914 

M 65-74 23591 14815 38354 6859 2032 26873 

M 75-84 25466 16563 40277 9636 2903 38303 

M 85+ 24374 15607 39518 8849 2609 34621 

W 25-34 261 122 634 192 70 469 

W 35-44 1232 686 2610 557 252 1240 

W 45-54 4679 2812 9130 1566 735 3287 

W 55-64 10520 6443 20755 3203 1449 6783 

W 65-74 14590 8699 29351 6395 3147 12992 

W 75-84 18786 11478 37355 12715 6180 24155 

W 85+ 34193 21157 68329 23852 10828 45715 

Totals 197403 123389 348460 80754 32266 222952 

 

 

 



2 Methods 

2.1. Bayesian Age Period Cohort model 

The APC model is often regarded as a log-linear Poisson model. Here we model the logit of the 

probability of death from CHD in age group i in period j as a linear combination of an intercept  , 

age effects      1,i i I   , period effects  1,j j J    and cohort effects    1,k k K   : 
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I  is the total number of age groups and  J the total number of periods. Cohorts are defined by 

 k C I i j    and the total number of cohorts is  1K C I J   , where C  is the width of the 

age bands.  

To make the model identifiable, the so called “sum to zero” constraints 

 . .  0i j ki e         need to be added. The model is only identifiable when it is possible to 

obtain a unique set of parameters after infinite linear transformations. There is another identifiability 

problem due to the collinear relationship of age, period and cohort effects which makes it impossible 

to identify and interpret the separate contributions of each individual effect 
1
. However, non-linear 

trends or change points can be interpreted because the non-identifiability only affects linear trends 
2
.  

Random walk of first and second order 

For the Bayesian APC model, it is assumed that effects from adjacent time bands tend to be more 

alike 
3
. There are two types of priors that can represent such relationship: a first difference prior and a 

second difference prior. 

In a first difference prior, used for scenario A “conventional projections”, each effect is derived 

from the immediately preceding effect, thus preventing it from varying much with respect to adjacent 

estimates. Additionally, a restriction is added to bound those first differences stochastically to zero 

and preserve a constant trend. This is known as a random walk of first order (RW1) and for the age 

effect is described by: 

 1

1~ , ,   2, ,i iN i I   

   . 

 1( ) .p const   

where the hyperparameter   is also known as the precision parameter: larger values allow baseline 

effects to vary only slightly, while small values allow more heavy variation.  



In a second difference prior, used for scenario B “trend-based”, each effect is derived from its two 

immediate predecessors. A random walk of second order (RW2) restricts the second differences 

stochastically to zero, which penalizes deviations from a linear trend: 

 1
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    . 
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For both types of prior,   is assumed to follow a gamma distribution  , .G a b  For RW1 1a   and 

0.001 b  are set as initial values, and for RW2 initial values are 1a   and 
510b  . Similar priors 

are given to the period   and cohort effects   with hyperparameters   and  , respectively.  

Because the non-identifiability only affects linear trends, the RW1 solves the problem by keeping the 

age, period and cohort effects as constant as possible. However, the RW2 parameters are 

unidentifiable since the RW2 assumes a linear time trend. Fortunately in a Bayesian framework, it is 

not essential to ensure identifiability of age, period and cohort effects because 
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 is fully 

identified 
4
. Additionally, many have considered the problem of identifiability in the APC context as 

unsolvable 
5-7

. 

Finally, the model can be easily extended to account for additional unstructured heterogeneity which 

cannot be explained by the age, period or cohort effects but by unknown and unobserved covariates: 
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where the hyperparameter   is assumed to follow a gamma distribution    ,G a b   with the same 

starting values as .  

Estimation 

The models can be implemented in BAMP 
2
 which uses Markov chain Monte Carlo (MCMC) 

simulation for the model estimation. MCMC constructs a Markov chain whose stationary distribution 

approximates the posterior distribution of interest using a single-component Metropolis-Hastings 

algorithm 
8
 for the age, period and cohort effects and a Gibbs sampler algorithm 

9
 for the 

hyperparameters.  



After it has converged to its stationary distribution, samples from the chain can be used to calculate 

the parameter estimates. We fitted gamma distributions, using the function mass in R, to the samples 

of each hyperparameter obtained from the chain to generate new values of a and b. We used these 

values as new initial values and the models were recalculated. 

The new samples of the posterior distribution were used to calculate credible intervals for the 

probability of death. A  100 1 2 % p credible interval 
1  p pc c 

   is a Bayesian interval estimate 

where 
 pc is equal to the  thp quantile of the scalar component and where 

1  pc 
is equal to the 

 1  
th

p quantile.  

Forecast and comparison 

Future rates ,   1,ijp j J j T     can be calculated by projecting the age, period and cohort effects 

into the future by repeated application of the RW1 or RW2 model definitions. Similarly projected 

effects ,   1,ijz j J j T     can be computed independently from  1  0,N  
.  

Finally, when different BAPC models need to be compared (e.g. RW1 versus RW2), the Deviation 

Information Criterion (DIC) 
10

 provides a simple yet powerful way of evaluating different models. 

DIC is the sum of two components: a term that measures goodness of fit known as posterior 

expectation of the deviance and a penalty term for increasing model complexity. Models with smaller 

DIC should be preferred. 

2.2. Validation 

We used observed data from 1979-2002 to project CVD mortality for 2003-2012 using both 

RW1 and RW2 and calculated predictive deviance. The predictive deviance at time t is 

defined as 

 

Where is the log-likelihood of predicted number of cases in age j and period t and  is the 

maximum log-likelihood achievable. Likewise, models with smaller predictive deviance are preferred. 

2.3. Lee-Carter Model 

As we discussed in the result section of the manuscript, our trend-based scenario underestimated the 

number of deaths during 2003-2012. Therefore, we alternatively used the well know Lee-Carter to 

project mortality over the same period.  



Lee and Carter
11

 developed a method commonly used in actuarial science, that combines a 

demographic model with time-series methods of forecasting. The model uses a single parameter 

(mortality index) governs the dynamics of a mortality trend.  

Let  be the central mortality rate for age  in year , the model states 

 

Where the mortality index is at time  is the average pattern of mortality by age, is the 

relative change with respect to the mortality index at age  and  is the residual at age  and year . 

Generally, Lee-Carter models are most suitable for forecasting mortality trends characterised by 

strong period effects, such as infectious respiratory disease
12

. Period effects might capture temporal 

change in factors associated with medical and broader societal development.  

We fitted the basic Lee-Carter model to the 1979-2002 data and projected 2003-2012. Because Lee-

Carter produces mortality rates , we transformed these into probabilities of death  using the 

next formula 
13

 to allow for comparison with our BAPC scenarios: 

 

 Lee-Carter model was implemented using the R package demography 
14

 , using monotonic regression 

spines for smoothing, due to having data available only in 5-year age group bands
15

 

2.4. Race CVD mortality disparities 

The BAMP software allows saving the samples of the posterior distribution of the outputs generated 

during the estimation process. We used these samples to calculate population-adjusted and age-

adjusted rate ratios to compare CVD mortality in Blacks and Hispanic with Whites. 

For the age-adjusted rate ratios, we obtained the age and gender adjusted probability of death using 

each iteration of the BAMP software and the 2012 US standard population. We then used 

bootstrapping to estimate the age and gender adjusted relative risk of mortality and 95% bootstrapped 

CI. 

 



For the population-adjusted rate ratios, we obtained probability of death standardised by gender, age 

and race group for each iteration of the BAMP software in years 2012 and 2030. We then used 

bootstrapping to estimate the relative risk of mortality and 95% bootstrapped CI. 

2.5. Age-Period and Cohort Analysis 

Random walks models of first order are useful to explore the contributions of age, period and cohort 

effects on CHD and stroke  mortality. More specifically, the hyperparameters of the model gives an 

idea of the size of the effects. Larger values of the hyperparameters allow baseline effects to vary only 

slightly, while small values allow more heavy variation.  

Hyperparameter CHD men Stroke men CHD women Stroke women 

Age  
0.893258 1.12454 0.720158 1.04239 

Period  
1373.6 637.683 1097.82 840.124 

Cohort  
1404.33 2346.25 1338.14 4148.42 

Supplemental Table 3: Hyperparameter estimates 

By far, the most important factor for both sexes in CHD and stroke was age, followed by period and 

cohort. However for CHD, cohort effects were as important as period effects, especially for men. This 

is an interesting finding since there is contradictory evidence whether CHD mortality has a cohort 

effect. APC models built for Australia 
16

and New Zealand 
17

and other descriptive analyses conducted 

for Poland and Hungary 
18

 suggested the absence of any cohort effect. However cohort effects were 

found in Singapore
19

 and Norway
20

. While a descriptive study in Hong Kong 
21

 found cohort effects 

for women but not for men 

Looking at the analysis by ethnicity (supplemental table 3), we found only for white men and women 

the same phenomena. For the rest of the ethnicities cohort has a very small effect in comparison with 

age and period. 

The next graphs show the age, period and cohort effects. Because of some assumptions imposed to the 

model, we can only interpret non-linear trends or change points. For example, for CHD and for both 

men and women there is a distinctive peak at the beginning of the 20
th
 century. Then, we can observe 

a less steep slope for men born around 1955, which can be interpreted as a slowing of the effect. 

Finally, women and men born after 1955 and 1978 respectively experience an increasing trend. 

For stroke, we can see series of peaks before and around the First World War. This distinctive peak 

was also reported by Doll et al. 
22

, who reported that those birth cohorts were associated with an 

historical excess mortality associated with cigarette smoking. Women born around 1955-1960 

experience an increasing slope. But, generations born just before 1970-1980 experiment a sharply 



decreasing slope. New generations born after 1975 (for men) and 1980 (for women) experience an 

increasing trend 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplemental Figure 1: Age effects by ethnicity, sex and cause of death 

 

Supplemental Figure 2: Period effects by ethnicity, sex and cause of death 



 

Supplemental Figure 3; Cohort effects by ethnicity, sex and cause of death 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Figure 4. Validation of mortality projections 2003-2012: Observed rates, Lee-

Carter, ‘trend-based’ and conventional projections. 1A CHD Men, 1B, CHD Women, 1C Stroke 

Men, 1D Stroke Women 
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 Hyperparameter CHD men STK men CHD women STK women 

White 

Age  
0.86 0.93 0.72 0.90 

Period  
1228 1040 1158 1017 

Cohort  
1371 2382 1005 2980 

Black 

Age  
1.10 1.37 0.85 1.37 

Period  
852 752 662 764 

Cohort  
1711 2118 1688 1772 

Hispanic 

Age  
0.85 1.08 0.61 1.11 

Period  
763 835 548 720 

Cohort  
1388 2421 1033 1812 

Other 

Age  
0.87 0.94 0.52 0.89 

Period  
43 72 34 56 

Cohort  
527 875 379 445 

Supplemental Table 4: Hyperparameter estimates by ethnicity 
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