Evolution by gene duplication of *Medicago truncatula PISTILLATA*-like transcription factors. Roque E. *et al.*

SUPPLEMENTARY DATA

Fig. S1. Southern blot analysis of the *Medicago truncatula PI*-like genes. *MtPI* and *MtNGL9* are present in the *Medicago* genome as single copies.

Fig. S2. Molecular characterization of the *Tnt1* insertions in the *MtNGL9* locus. **A.** Schematic diagram of the genomic structure of the *MtNGL9* gene. In NF14948 lines (*mtngl9-1*), *Tnt1* was inserted 360 bp downstream of the ATG codon, at the second exon. In NF12316 lines (*mtngl9-2*). *Tnt1* was inserted 183 bp downstream of the ATG codon, at the end of the first exon. **B.** Genotyping of *mtngl9-1* mutant using NGL9-F/Tnt1-R (upper) and NGL9-291/NGL9-612G (lower) primer pairs. Homozygous plants are indicated in circled numbers. **C.** Genotyping of *mtngl9-2* mutant using NGL9-F/Tnt1-R (upper) and NGL9-590G (lower) primer pairs. Homozygous plants are indicated in circled numbers. **C.** Genotyping of *mtngl9-2* mutant using NGL9-F/Tnt1-R (upper) and NGL9-590G (lower) primer pairs. Homozygous plants are indicated in circled numbers. **WI** rolecular weight markers; WT: wild-type control.

Fig. S3. qRT-PCR expression analyses of loss-of-function plants. A. mRNA levels of the B-function genes in floral buds of *mtpi-2*. **B.** mRNA levels of the B-function genes in floral buds of *mtngl9-1* and *mtngl9-2*. The height of the bars for a given gene indicates relative differences in expression levels in floral buds. The expression value of all B-function genes in WT was set to 1.00. Expression levels were plotted relative to this value.

Fig. S4. Analyses of *35S:MtPI* and *35S:MtNGL9* plants. **A.** Transcript abundance of *MtPI* in 35S::*MtPI* plants. The expression value of *MtPI* in plant number 7 was set to 1.00. Expression levels were plotted relative to this value. Numbers indicate the transgenic line. Underlined number indicates plants classified as medium phenotype, and the remaining plants showed the strong phenotype. **B.** Transcript abundance of *MtNGL9* in 35S::*MtNGL9* plants. The expression value of *MtPI* in plant number 19 was set to 1.00. The number of the transgenic line is indicated. Underlined number indicates plants classified as weak phenotype, and the remaining plants showed the stowed the medium phenotype. **C.** Relative proportion of phenotypes observed in plants overexpressing *MtPI* (N° of transgenic plants= 17) or *MtNGL9* (N° of transgenic plants= 33).

Fig. S5. RT-PCR expression analyses in *pi-1/pi-1*; **35S**:*MtPI* and *pi-1/pi-1*; **35S**:*MtNGL9* **complementation lines. A.** Expression of *MtPI* in *pi-1/pi-1*; **35S**:*MtPI* lines. **B.** Expression of *MtNGL9* in *pi-1/pi-1*; **35S**:*MtNGL9 lines.* **C.** Comparative expression level of *MtPI* and *MtNGL9* in their respective complementation lines. Levels were quantified by measuring the intensity of individual bands using ImageJ densitometry software, and expressed relative to UBIQUITIN signal, as a measure of transcript relative abundance in the different samples. The numbers of the transgenic lines are indicated.

Fig. S6. Analyses of the *pi-1* **complementation by** *MtPI* **and** *MtNGL9.* **A.** Genotyping of some individuals of the complementation lines by *MtPI.* **B.** Genotyping of some individuals of the complementation lines by *MtNGL9.* Genomic PCR product (729 bp) was digested by *BseGI. pi-1/PI*; *35::MtPI* or *pi-1/PI*; *35S::MtNGL9* background resulting in three fragments: 729, 451 and 278 bp. Two fragments (278 and 451 bp) were obtained in the case of wild-type plants (*PIIPI*; *35S::MtNGL9. BseGI* does not cut the 729 bp PCR fragment in *pi-1/pi-1; 35::MtPI* or *pi-1/pi-1; 35::MtNGL9.* Background (underlined numbers).

Classification	Таха	PI-homologues	Gymnosperm B-class
GYMNOSPERMS Coniferales Pinaceae	Picea abies		DAL13-1 (AF158539) DAL13-2 (AF158541)
Cupressaceae	Pinus radiata Cryptomeria japonica		PrDGL (AF120097) CryMADS2 (AF097747) CryMADS1 (AF097746)
Gnetaceae	Gnetum gnemon		GnegGGM2 (AJ132201) GnegGGM13 (AJ132219) GnegGGM15 (AJ251555)
ANGIOSPERMS	New Low Second Sec		
Nymphaceae	Nupnar japonica	NjPI-7 (AB158359) NjPI-2 (AB158360)	
	Nuphar advena Euryale ferox	Nu.ad.PI (AY337736) EfPI (AB158350)	
Magnoliaceae	Liriodendrum tulipifera	<i>LtPI</i> (AF052864)	
	Magnolia praecocissima	MpMADS8 (AB050650)	
Laurales			
Calycanthaceae	Calycanthus floridus	CfPI-1 (AF230708) CfPI-2 (AF230709)	
Lauraceae	Persea americana	Pe.am.PI (AY337738)	
Piperales Piperaceae	Peperomia hirta	PhiPI (AF052865)	
F	Piper magnificum	PmPI-1 (AF052866)	
		PMP1-2 (AFU52867)	
MONOCOTS			
Poaceae	Oryza sativa	OsMADS2 (L37526)	
		OsMADS4 (L37527)	
	Zea mays	ZMM16 (AJ292959)	
		ZMM18 (AJ292960)	
Liliales		ZIVIIVIZ9 (AJZ3Z301)	
Liliaceae	Phalaenonsis equestris	PoMADS6 (AV678200)	
Alismatales			
Alismataceae	Sagittaria montevidensis	SmPI (AF230712)	
divergent eudicots)			
Ranunculales	Papaver nadicaule	PnPI-1 (AF052855)	
Papaveraceae	Papaver somniferum	PapsPI-1 (EF071994)	
	Sanguinaria canadiensis	Papspi-2 (EF071995) ScPI (AF130871)	
	Akebia kinata	AkqPÌ (AY162837)	
	Ranunculus bulbosus	RbPI-1 (AF052859) RbPI-2 (AF052860)	
Depupeulassas	Ranunculus ficaria		
Ranunculaceae	Delphinum ajacis	<i>RfPI-2</i> (AF130872)	
Trochodendraceae	Trochodendron aralioides	DaPI (AF052862)	
Thochodendraceae		<i>Tr.ar. PI-</i> 2 (EF436260)	
CORE FUDICOTS			
Caryophyllales			
Caryophyllaceae	Silene latifolia	<i>SLM</i> 3 (X89108)	
Saxifragales Saxifragaceae	Ribes sanguineum	Ri.sa. PI (AY337742)	
ROSIDS	-		
Euforbiáceas			
Euphorbiaceae	Ricinus communis	Ri.co. PI (XM_002520262)	
Vitales		<i>VvPI</i> (DQ059750.1)	
Vitaceae	Vitis Vinifera		

Myrtales Myrtaceae	Eucalyptus grandis	<i>EGM</i> 2 (AF029976)	
<i>Eurosid I</i> Cucurbitales Cucurbitaceae	Cucumis sativus	<i>CUM</i> 26 (AF043255)	
Fabales Fabaceae	Medicago sativa Medicago trunctula Pisum sativum	MsNGL9 (AF335473) MsPI (KJ470631) MtPI (FJ403468) MtNGL9 (FJ403469) PsPI (AY842791) PsNGL9 (KJ470632) LjPIa (AY770398)	
	Lotus japonicus	LjPlb (AY770399) GmPl1 (BT089901) CmPl2 (BT000476)	
Malvales Malvaceae	Giycine max	GMP12 (B1090476)	
Rosales Rosaceae	Gossypium hirsutum	GhMADS12 (FJ409869)	
EurosidsII	Malus domestica Rosa rugosa	<i>MdPI</i> (AJ291490) MASAKO BP (AB038462)	
Brassicales Brassicaceae	Arabidopsis Thaliana	Atp1 (D30807)	
ASTERIDS			
Cornales Hydrangeaceae	Hydrangea macrophylla	HmPI (AF230711)	
Lamiales Plantaginaceae	Antirrhinum majus	AmGLO (X68831)	
Solanales Solanaceae	Nicotiana tabacum Petunia hybrida	NtGLO (X67959) PhGLO1 (M91190) PhGLO2 (X69947)	
<i>Euasterids II</i> Asterales Asteraceae	Gerbera hybrida Chrysanthemun morifolium Helliantus annuus	GGLO1(AJ009726) CDM86 (AY173061) He.an.PI (AY157725)	

Table S1. Sequences from different plant species used in the elaboration of the phylogenetic tree with their respective GenBank accession numbers.

Model	Log-likelihood (<i>l</i>)	Parameter estimates	Amino acids
G&Y	-10937.758	ω = 0.147	-
FRM	-10773.329	-	-
BSMN	-10837.050	$\omega_0 = 0.144, P_0 = 0.79; \omega_1 = 1,$	-
		P ₁ = 0.21	
BSM	-10836.367	ω_0 = 0.144, P ₀ = 0.68; ω_1 = 1,	Leu9, Ser47,
		P ₁ = 0.18, ω ₂ = 3.71, P ₂ = 0.11	Ser14, Arg40,
			Ala74.

the Table S2. Maximum-likelihood adaptive test of evolution in **PISTILATA-like** duplicated М. truncatula transcription factors. То identify signatures of adaptive evolution after gene duplication, we conducted four models, all implemented in the program PAML package version 4.7 (Yang, 2007): (a) G&Y model estimates the non-synonymous-to-synonymous rates ratio (ω) for the entire alignment and phylogenetic tree, (b) FRM model (Free-ratio model), estimates one phylogenetic branch, (C) BSMN refers per to ω the neutral branch-site model and allows inferring ω under а neutral evolution model (0< **ω≤1**) for user-specified branch of the tree, а this case which in the branch leading the MtNGL9 duplicate, was to and (d) BSM branch-site model is the model that allows ω to be greater than 1, hence possible the identification of positive making it selection. The proportion of sites under each ω category (Pi) was also estimated.

Genotype	Weak rescue	Strong rescue	N°.of F2 kanamycin resistant plants	N°.of expected <i>pi-1/pi-1</i> plants
pi-1/ pi-1; 35S::MtPl	5 (26,3 %)	14 (73,7 %)	65	16,24 (1/4)
pi-1/ pi-1; 35S::MtNGL9	14 (100%)	0	64	16 (1/4)

Table S3. Summary of rescue phenotypes.

Primer name	Sequence 5'-3'	Use	
MtNGL9-ATG	ATGGGAAGAGGAAAGATTGAG	For <i>PsNGL</i> 0 cDNA isolation	
MtNGL9-638	GCTGAAGTAGTGAGTGAAGC	T OF FSNGES CONA ISOIALION	
MtPI-ATG	ATGGGAAGAGGTAAGATTGAG		
MtPI-548	GGTTAAATCCATTGTCCATGCA	For <i>MsPI</i> cDNA isolation	
MsPI-363	GATGGCCCTTGAGGAATCCCTT		
MtNGL9-511	GGCAGTGGAAGGTGGGAGATAA	For southern blot hybridization	
MtNGL9-753	GAAAGTGTAAGCCCAGGGATC	and	
MtPI-504	GGCACTTGAAGGTGTGGGAAA		
MtPI-801	GAAACCAAATTCAATCACTTCATA	RNA in situ hybridization	
MtPI-Sall	GGTCGACCCATGGGAAGAGGTAAGATTGAG		
MtPI-BamHI	GCGGATCCTTAAATCCATTGTCCATGCATG		
MtNGL9-Sall	GGTCGACCCATGGGAAGAGGAAAGATTGAG	For overexpression constructs	
MtNGL9-BamHI	CGGGATCCTTATAATCCATTTATCTCCCA		
BAD-MtPI-FOR	GCTGGATCCGCATGGGAAGAGGTAAGATTGAG		
BD-MtPI-REV	GTCGTCGACTTAAATCCATTGTCCATGCATG		
BAD-MtNGL9-FOR	GCTGGATCCGCATGGGAAGAGGAAAGATTGAG		
BD-MtNGL9-REV	GTCGTCGACAAAGCTGAAGTAGTGAGTGAAG	For yeast two-bybrid constructs	
IKC-MtNMH7-FOR	GCTGGATCCGCGCCTCAACAAAGCAGTTTTTCGAT		
AD-MtNMH7-REV	GTCGAATTCCTAAAAAAGTAAAGGGTAAGTGGTG		
IKC-MtTM6-FOR	GCTGGATCCGCCTCTCTACAAAGAAGATTATTGATC		
AD-MtTM6-REV	GTCCTCGAGTCAACCCAGGCGCAAATCGTCA		
Tnt1-R	CAGTGAACGAGCAGAACCTGTG	_	
NGL9-F	GGGAAGAGGAAAGATTGAGATC	For <i>mtngl9</i> mutants genotyping	
NGL9-590G	GCTACCTGAGCTGAATTTGCATGTC		
NGL9-612G	CCAACCATATATAGCTAATCTAGCTACCTG		
CAPS-FOR	CCTAAAATTGAGAAAGAGAGATAGAGAG	For <i>pi-1</i> mutant genotyping	
CAPS-REV			
MtPI qR1-FOR		_	
		4	
MtNGL9 qR1-FOR		_	
		-	
		_	
		-	
		-	
Sec Ag-gRT-FOR	TEECTACTACECTTECTEEC	-	
Sec Ag-gRT-REV		-	
MsNGL 9 aRT-FOR		-	
MsNGI 9 gRT-REV		-	
MsPL aRT-FOR	GTGTGTTTCCTAAATAGCCATTGATC	-	
MsPL gRT-REV	GCCATATTAAAGCAACATACATTTTTTC		
PsPI gRT-FOR	TGGACAATGGATTTAACCAGATCA	- For gRT-PCR	
PsPI gRT-REV	GCATAATATTGAGCAAACTAATTCCCT	_	
PsNGL9 gRT-FOR	TGATGAATTTGATGAGAGTACTGGAAG	-	
PsNGL9 qRT-REV	GAAAATGGCATCTGGGAATTGA	-	
PsACTIN-11-FOR	AGGTGCTGTACCAACCATCCA		
PsACTIN-11-REV	CGTGAATTCCTGCTGCTTCC		
MsNGL9 qRT-FOR	ATAAAGAAGCTGAATCTGGGTTTTTG		
MsNGL9 qRT-REV	ACACGCATATATAATGTAATGTAACCTCAA		
MsPI qRT-FOR	GTGTGTTTCCTAAATAGCCATTGATC		
MsPI qRT-REV	GCCATATTAAAGCAACATACATTTTTTC		
MsEF-1-FOR	CAGGCTGATTGTGCAGTCCTT		
MsEF-1-REV	CCAGCTTCAAAACCACCAGTG		
AtUBQ FOR	GGCCTTGTATAATCCCTGATGAATAAG		
AtUBQ REV	AAAGAGATAACAGGAACGGAAACATA		
MtNGL9 qRT-FOR	GCIGATGGCCCTTGAGGAAT	4	
MtNGL9-507 REV		For semi-quantitative RT-PCR	
MtPI-363	GAIGGCCCTTGAGGAATCCCTT		
MtPI-548	GGTTAAATCCATIGTCCATGCA		
WITEF-1-FOR			
ATUBQ FUR-S			
AtUBQ REV-S	CGACTIGICATIAGAAAGAAAGAGATAACAGG		