
Supplementary Information

Behaviour of one-step spray-coated carbon nanotube supercapacitor in ambient light harvester circuit with printed organic solar cell and electrochromic display

Sampo Tuukkanen^{1,*}, Marja Välimäki², Suvi Lehtimäki³, Tiina Vuorinen³ and Donald Lupo³

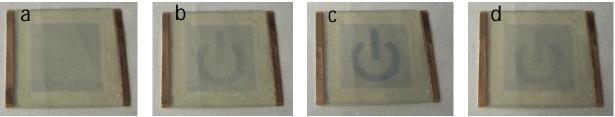


Figure S1. The current-voltage characteristics of two OPV modules used in this work. OPV module fabrication and characterization details are reported in [1].

¹ Tampere University of Technology, Department of Automation Science and Engineering, P.O. Box 692, FI-33101 Tampere, Finland

² VTT Technical Research Centre of Finland, P. O. Box 1100, FI-90570 Oulu, Finland

³ Tampere University of Technology, Department of Electronics and Communications Engineering, P.O. Box 692, FI-33101 Tampere, Finland

Figure S2. Electrochromic display (ECD) switching behavior and stability. External voltage supply was for switching here. a) Display before the experiment (in OFF state). b) Display switched ON using 0.5 V potential. c) Display switched ON using 1 V potential. d) Display after 5 minutes waiting from switching at 1V. The ECD was obtained from Ynvisible.

Figure S3. Photograph of the LUX-meter used for illuminance measurement in this work.

Supplementary information references

[1] Apilo, P., Hiltunen, J., Välimäki, M., Heinilehto, S., Sliz, R., & Hast, J. (2014). Roll-to-roll gravure printing of organic photovoltaic modules—insulation of processing defects by an interfacial layer. Progress in Photovoltaics: Research and Applications.