Supplementary Information

All together now: Analogies between chimera state collapses and epileptic seizures

Ralph G. Andrzejak¹, Christian Rummel², Florian Mormann³, Kaspar Schindler⁴

Supplementary Figure 1-5

Supplementary Fig. 1: Formation and collapse of a chimera state

Panels (**a**, **b**, **d**, **e**) are analogous to panels (a) and (b) of Fig. 1, but for longer intervals including the formation and collapse of a chimera state. Phases $\varphi_j(t)$ (**a**) and phase velocities $\dot{\varphi}_j(t)$ (**b**) after the initialization with random phases. Time is given relative to the start of the network at t_{ST} . The global order parameter $R_{\{1,...,N\}}(t)$ in panel (**c**) is used to detect the time of the initial chimera state formation t_{IF} indicated by the red vertical line. The green horizontal line indicates the threshold used in this detection. During the existence of the chimera state, HCG oscillators show a regular ripple pattern in their phases and only little fluctuations in their phase velocities. Oscillators belonging to the LCG show an irregular phase evolution and time-dependent phase velocities. Red spots in the profile of the phase velocities $\dot{\varphi}_j(t)$ correspond to intermittent changes of the sense of rotation. Panels (**d**-**f**) are the same as (**a**-**c**) but here for the collapse of a chimera state. Time is given relative to onset of the fully synchronized state at t_{FS} . For this realization, the collapse took place at $0.7 \cdot 10^6$ time units. While the global order parameter can be used to determine the times t_{IF} and t_{FS} , it does not show the hypo-coherence event. This can only be detected in the LCG order parameter $R_{\text{LCG}}(t)$ which is shown in panel (**g**). We applied circular shifts to the indices of the ring to maintain the LCG in the center of the display.

immediately collapsed into the fully synchronized state

These plots are analogous to panels (**a-c**) of Supplementary Fig. 1, but here no chimera state is formed after the network is initialized with random phases. $R_{\{1,...,N\}}(t)$ does not stabilize around the mean value found for chimera states (green horizontal line). Instead the network directly collapses to the fully synchronized state.

Supplementary Fig. 3: Coupling kernel functions

Nonlocal coupling kernels G(j - k) as a function of the distances between oscillators on the ring j - k. Black: Kernel with default parameters used throughout the study (B = 44.8 and r = 0.45) Green: Kernel with B = 39.6 and r = 0.45, values exclusively used for the simulation shown in Supplementary Fig. 4. The kernels are defined for all values between -25 and 25. They are, however, only sampled at integer values, indicated by asterisks, since the distances between oscillators are integers.

