The RecQ DNA helicase Rqh1 constrains Exonuclease 1dependent recombination at stalled replication forks

Fekret Osman, Jong Sook Ahn, Alexander Lorenz and Matthew C. Whitby

Genotype	Nick site ^a	gpII ^b	Strain number	Number of colonies	Ade ⁺ His ⁺ recombinant		Ade ⁺ His ⁻ recombinant		
				analysed	frequency ($(x \ 10^{-4})^{c}$	frequency (x 10 ⁻⁴)°	
					Mean	Р	Mean	Р	
						value ^a		value ^a	
wild-type	-	-	MCW39	15	0.38	-	1.30	-	
					(+/- 0.19)		(+/- 0.55)		
wild_type	_	+	MCW39	15	0.53	0.32°	1 45	0.58°	
wild-type	-	т	WIC W 57	15	$(\pm (0.53))$	0.52	(± 0.71)	0.50	
					(+/= 0.27)		(+/= 0./1)		
wild-type	BS	-	MCW1159	18	0.47	0.25 ^e	1.81	0.054 ^e	
					(+/- 0.21)		(+/- 0.54)		
	5.0			10		0.0018		0.0018	
wild-type	BS	+	MCW1159	18	7.25	<0.001	59.9	<0.001	
					(+/- 3.00)		(+/- 22.4)		
wild type	тс		184267	18	0.43	0 42°	1.65	0.10°	
wild-type	15	-	J3A207	10	(1/0.31)	0.42	(1/0.88)	0.10	
					(+/- 0.51)		(+/- 0.88)		
wild-type	TS	+	JSA267	18	9.06	<0.001°	51.5	<0.001°	
					(+/-3.64)		(+/- 19.6)		
$exol\Delta$	BS	-	MCW2209	17	0.52	0.46 ¹	1.67	0.46 ^r	
					(+/- 0.20)		(+/- 0.58)		
erolA	BS	+	MCW2209	18	18.5	0.003 ^g	175 9	<0.001 ^g	
CAULA	05		NIC (220)	10	$(\pm / 13.84)$	0.005	$(\pm / 71.1)$	<0.001	
					(17-15.04)		(1/- / 1.1)		
$rqhl\Delta$	BS	-	MCW2070	18	1.13	<0.001 ^f	6.77	<0.001 ^f	
					(+/- 0.42)		(+/- 1.98)		
	DC		MONIOOZO	10	15.0	0.0118	00.0	0.000	
$rqhI\Delta$	BS	+	MCW2070	18	15.9	0.0115	98.0	0.008	
					(+/- 12.6)		(+/- 53.3)		
exolA	BS	_	MCW2202	18	0.72	0.027^{f}	2.21	0.13 ^f	
$rahl\Lambda$	20		1110 11 2202	10	$(\pm/-0.40)$	0.027	$(\pm/-0.95)$	0.115	
i qili <u>a</u>					(17 0.10)		(17 0.55)		
$exol\Delta$	BS	+	MCW2202	18	12.9	0.025 ^g	207.6	<0.001 ^g	
$rqhl\Delta$					(+/- 9.33)		(+/- 124.1)		
rad 51 A	DC		MCW1904	10	0.02	-0.001 ^f	6 16	-0.001 ^f	
$raasi \Delta$	D3	-	IVIC W 1894	18	0.03	<0.001	0.40	<0.001	
					(+/- 0.06)		(+/- 2.08)		
$rad51\Delta$	BS	+	MCW1894	18	0.12	<0.001 ^g	899.2	<0.001 ^g	
					(+/- 0.27)		(+/- 193.2)		

Supplementary Table S1: Gpll-induced direct repeat recombination

$exo1\Delta$ rad51 Δ	BS	-	MCW3494	17	0.05 (+/- 0.05)	<0.001 ^f	9.53 (+/- 5.13)	<0.001 ^f
$exo1\Delta$ rad51 Δ	BS	+	MCW3494	18	0.14 (+/- 0.29)	<0.001 ^g	240.6 (+/- 99.0)	<0.001 ^g
$rqh1\Delta$ $rad51\Delta$	BS	-	MCW3492	18	0.01 (+/- 0.02)	<0.001 ^f	8.23 (+/- 4.98)	<0.001 ^f
$rqh1\Delta$ $rad51\Delta$	BS	+	MCW3492	18	0.08 (+/- 0.23)	<0.001 ^g	233.5 (+/- 95.5)	<0.001 ^g
$exo1\Delta$ $rqh1\Delta$ $rad51\Delta$	BS	-	MCW3496	21	0.00 (+/- 0.01)	<0.001 ^f	0.27 (+/- 0.17)	<0.001 ^f
$exo1\Delta$ $rqh1\Delta$ $rad51\Delta$	BS	+	MCW3496	18	0.01 (+/- 0.04)	<0.001 ^g	80.0 (+/- 38.3)	0.069 ^g

^a Position of gpII cleavage site: BS (bottom strand = lagging template strand); TS (top strand = leading template strand).

^b Strains are transformed with the empty pREP81 plasmid (-) or pREP81-NLS-gpII (+) that expresses gpII nickase.

^c The values in parentheses are the standard deviations about the mean.

^d P values are derived from independent-sample *t*-tests comparing the mean values as indicated.

^e Compared to the equivalent mean recombinant frequency in wild-type without gpII and its cleavage site.

^f Compared to the equivalent mean recombinant frequency in wild-type with a bottom strand cleavage site but without gpII.

^g Compared to the equivalent mean recombinant frequency in wild-type with a bottom strand cleavage site and gpII.

Genotype	$\begin{array}{cccc} \text{strain} & \text{Number} & \text{UV dose} & \ensuremath{\%} \ \text{survival}^{a} & \text{Ade}^{4} \\ \text{number} & \text{of} & (J/m^2) & \text{recom} \end{array}$		His ⁺ binant	Ade ⁺ recom	Ade ⁺ His ⁻ recombinant			
		colonies			frequency (x 10 ⁻⁴) ^a		frequency (x 10 ⁻⁴) ^a	
		analysed			Mean	P value ^b	Mean	P value ^b
wild-type	MCW429	21	0	100	1.34	-	3.04	-
51					(+/- 0.60)		(+/- 1.30)	
			80	61.2	13.0	<0.001°	13.1	<0.001°
				(+/- 8.8)	(+/- 5.2)		(+/- 5.5)	
			160	12.6	29.2	<0.001°	26.5	<0.001°
				(+/- 2.9)	(+/- 9.1)		(+/- 9.2)	
exo1\Delta	FO949	27	0	100	1.54 (+/- 0.60)	-	3.18 (+/- 0.85)	-
			80	50.6 (+/- 6.9)	12.4 (+/- 2.4)	<0.001°	13.6 (+/- 4.2)	<0.001°
			160	13.1 (+/- 5.2)	26.0 (+/- 8.8)	<0.001°	24.7 (+/- 8.8)	<0.001°
rqh1∆	FO911	27	0	100	2.30 (+/- 1.34)	-	11.1 (+/- 4.5)	-
			20	16.4 (+/- 5.2)	15.2 (+/- 4.7)	<0.001°	62.6 (+/- 17.8)	<0.001°
			40	4.0 (+/- 1.1)	65.1 (+/- 22.9)	<0.001°	209.1 (+/- 59.9)	<0.001°
$exol \Delta$ $rqhl \Delta$	FO1098	27	0	100	1.45 (+/- 0.84)	-	3.83 (+/- 1.43)	-
			20	39.7 (+/- 11.3)	1.69 (+/- 1.05)	0.35°	4.76 (+/- 2.09)	0.06°
			40	8.5 (+/- 3.4)	2.33 (+/- 1.41)	0.008°	5.50 (+/- 2.02)	0.002°

Supplementary Table S2: UV-induced direct repeat recombination

^a The values in parentheses are the standard deviations about the mean. ^b P values are derived from paired *t*-tests comparing the mean values as indicated. ^c Compared to the equivalent mean recombinant frequency for 0 J/m² UV.

Genotype	RTS1	SIStrainNumber $Ade^+ His^+$ numberofrecombinantcoloniesfrequency (x 10 ⁻⁴) ^a		Ade ⁺ His ⁻ recombinant frequency (x 10 ⁻⁴) ^a			
			analysed	Mean	P value ^b	Mean	P value ^b
wild-type	AO	MCW4713	18	161.4 (+/- 19.4)	-	114.4 (+/- 14.1)	-
exo1∆	AO	FO1742	21	57.1 (+/- 11.6)	<0.001°	51.8 (+/- 23.3)	<0.001°
$rqh1\Delta$	AO	MCW1447	16	270.4 (+/- 67.9)	<0.001°	2806.8 (+/- 1044.8)	<0.001°
$exo1\Delta$ $rqh1\Delta$	AO	FO1762	21	44.4 (+/- 11.8)	<0.001°	266.4 (+/- 73.6)	<0.001°

Supplementary Table S3: *RTS1*-induced direct repeat recombination

^a The values in parentheses are the standard deviations about the mean.
^b P values are derived from independent-sample *t*-tests comparing the mean values as indicated.
^c Compared to the equivalent mean recombinant frequency for wild-type.

Strain	Mating	Genotype	Source
FO656	h^+	ura4-D18 his3-D1 leu1-32 arg3-D4	Lab strain
MCW1019	h^+	rah1 A::kanMx6 ura4-D18 his3-D1 leu1-32 arg3-D4	Lab strain
F0951	h^+	$exol \Lambda$: $ura4^+$ $ura4$ -D18 his3-D1 leu1-32 arg3-D4	Lab strain
FO1011	h^+	$exol \Delta::ura4^+$ $rqhl \Delta::kanMx6$ $ura4-Dl8$ $his3-Dl leul-32$ arg3-D4	This study
MCW2453	h^+	rqh1 ^{K547A} ura4-D18 leu1-32	ECS218 ^a
MCW2454	h^+	rqh1 ^{K547R} ura4-D18 leu1-32	ECS220 ^a
MCW4029	h	<i>exo1</i> Δ::ura4 ⁺ rqh1 ^{K547A} ura4-D18 his3-D1 leu1-32 arg3-D4	This study ^a
MCW4030	h^{-}	<i>exo1</i> Δ::ura4 ⁺ rqh1 ^{K547R} ura4-D18 his3-D1 leu1-32 arg3-D4	This study ^a
MCW3605	h⁻	mat2,3∆::LEU2 ⁺ rqh1∆::kanMx6 exo1∆::ura4 ⁺ ura4-D18 leu1-32 arg3-D4	This study ^b
MCW3664	h	mat2,3∆::LEU2 ⁺ ura4-D18 leu1-32 arg3-D4	This study ^b
MCW3665	h	<i>mat2,3</i> <u>\[]</u> : <i>LEU2</i> ⁺ <i>exo1</i> <u>\]</u> : <i>ura4</i> ⁺ <i>ura4</i> - <i>D18 leu1-32 arg3-D4</i>	This study ^b
MCW3666	h^{-}	mat2,3∆::LEU2 ⁺ rqh1∆::kanMx6 ura4-D18 leu1-32 arg3- D4	This study ^b
MCW3667	h^{-smt0}	mat2,3∆::LEU2 ⁺ ura4-D18 leu1-32 arg3-D4	This study ^c
MCW3668	h^{-smt0}	mat2,3 A::LEU2 ⁺ exo1 A::ura4 ⁺ ura4-D18 leu1-32 arg3-D4	This study ^c
MCW3669	h^{-smt0}	mat2,3	This study ^c
MCW3670	h^{-smt0}	$mat2,3\Delta::LEU2^+$ rqh1 $\Delta::kanMx6$ $exo1\Delta::ura4^+$ $ura4-D18$ leu1-32 $arg3-D4$	This study ^c
MCW39	h	ura4-D18 leu1-32 his3-D1 ade6-L469/pUC8/his3 ⁺ /ade6- M375	Lab strain
MCW1159	h⁻	ura4-D18 leu1-32 his3-D1 ade6-L469/pUC8/his3 ⁺ /BS nick site/ade6-M375	This study
JSA267	h⁻	ura4-D18 leu1-32 his3-D1 ade6-L469/pUC8/his3 ⁺ /TS nick site/ade6-M375	This study
MCW2391	h ⁻	rad50S ura4-D18 leu1-32 his3-D1 ade6- 1469/pUC8/his3 ⁺ /BS nick site/ade6-M375	This study
MCW2393	h⁻	rad50S ura4-D18 leu1-32 his3-D1 ade6- 1469/pUC8/his3 ⁺ /TS nick site/ade6-M375	This study
MCW2746	h⁻	rad50S cdc10-V50 ura4-D18 leu1-32 his3-D1 ade6- 1469/pUC8/his3 ⁺ /BS nick site/ade6-M375	This study
MCW2070	h⁻	$rqh1\Delta$::kanMx6 ura4-D18 leu1-32 his3-D1 ade6- 1469/pUC8/his3 ⁺ /BS nick site/ade6-M375	This study
MCW2202	h^+	$rqh1\Delta$::kanMx6 exo1\Delta::ura4 ⁺ ura4-D18 leu1-32 his3-D1 ade6-L469/pUC8/his3 ⁺ /BS nick site/ade6-M375	This study
MCW2209	h^+	$exol \Delta::ura4^+$ $ura4-D18$ $leu1-32$ $his3-D1$ $ade6-1469/pUC8/his3^+/BS nick site/ade6-M375$	This study
MCW1894	h^+	$rad51\Delta$: $ura4^+$ $ura4$ -D18 $leu1$ -32 $his3$ -D1 $ade6$ - $L469/pUC8/his3^+/BS nick site/ade6-M375$	This study
MCW3492	h^+	$rad51\Delta$:: $arg3^+$ $rqh1\Delta$:: $kanMx6$ $ura4-D18$ $leu1-32$ $his3-D1$ $ade6-L469/pUC8/his3^+/BS$ nick site/ade6-M375	This study
MCW3494	h^+	$rad51\Delta$:: $arg3^+$ exo1 Δ :: $ura4^+$ $ura4$ -D18 leu1-32 his3-D1 ade6-L469/pUC8/his3^+/BS nick site/ade6-M375	This study
MCW3496	h^+	rad51 Δ ::arg3 ⁺ exo1 Δ ::ura4 ⁺ rqh1 Δ ::kanMx6 ura4-D18 leu1-32 his3-D1 ade6-L469/pUC8/his3 ⁺ /BS nick site/ade6- M375	This study
MCW429	h^+	ura4-D18 leu1-32 his3-D1 arg3-D4 ade6- L469/pUC8/his3 ⁺ /ade6-M375	This study
FO911	h^+	rqh1Δ::kanMx6 ura4-D18 leu1-32 his3-D1 arg3-D4 ade6- L469/pUC8/his3 ⁺ /ade6-M375	This study
FO949	h^+	exo1Δ::ura4 ⁺ ura4-D18 leu1-32 his3-D1 arg3-D4 ade6- L469/pUC8/his3 ⁺ /ade6-M375	This study
FO1098	h	$exo1\Delta$:: $ura4^+$ $rqh1\Delta$:: $kanMx6$ $ura4$ -D18 $leu1$ -32 $his3$ -D1	This study

Supplementary Table S4: List of *S. pombe* strains used in this study

		arg3-D4 ade6-L469/pUC8/his3 ⁺ /ade6-M375	
MCW4713	h^+	ade6-M375 int::pUC8/his3+/RTS1-AO/ade6-L469 ura4-	This study
		D18 his3-D1 leu1-32 arg3-D4	-
FO1742	h^+	exo1 \Delta::ura4 ⁺ ade6-M375 int::pUC8/his3 ⁺ /RTS1-AO/ade6-	This study
		L469 ura4-D18 his3-D1 leu1-32 arg3-D4	-
MCW1447	h^+	rqh1∆::kanMx6 ade6-M375 int::pUC8/his3 ⁺ /RTS1-	This study
		AO/ade6-L469 ura4-D18 his3-D1 leu1-32 arg3-D4	
FO1762	h^+	$exo1\Delta$:: $ura4^+$ $rqh1\Delta$:: $kanMx6$ $ade6-M375$	This study
		int::pUC8/his3 ⁺ /RTS1-AO/ade6-L469 ura4-D18 his3-D1	
		leu1-32 arg3-D4	
ALP649	h^+	wild type	Lab strain
ALP688	h^{-smt0}	wild type	Lab strain
MCW3748	h^+	$exo1\Delta$:: $ura4^+$ $ura4$ -D18	This study
MCW3749	h^{-smt0}	$exo1\Delta$:: $ura4^+$ $ura4$ -D18	This study
MCW3387	h^+	rqh1∆::kanMx6	(2)
MCW3388	h^{-smt0}	rqh1∆::kanMx6	(2)
MCW4479	h^+	$exo1\Delta$:: $ura4^+$ $rqh1\Delta$:: $kanMx6$ $ura4-D18$	This study
MCW4480	h^{-smt0}	$exo1\Delta$:: $ura4^+$ $rqh1\Delta$:: $kanMx6$ $ura4-D18$	This study
MCW3202	h^+	ura4 ⁺ -aim2 ade6-3083 ura4-D18 leu1-32 his3-D1	(3)
MCW3200	h^{-smt0}	his3+-aim ade6-L469 ura4-D18 his3-D1 arg3-D4	(3)
MCW4268	h^{-smt0}	exo1∆::kanMX6 his3 ⁺ -aim ade6-L469 ura4-D18 his3-D1	This study
		arg3-D4	
MCW4269	h^+	exo1∆::kanMX6 ura4 ⁺ -aim2 ade6-3083 ura4-D18 leu1-32	This study
		his3-D1	
MCW3385	h^+	rqh1∆::kanMX6 ura4 ⁺ -aim2 ade6-3083 ura4-D18 leu1-32	(4)
		his3-D1	
MCW3384	h^{-smt0}	rqh1∆::kanMX6 his3+-aim ade6-L469 ura4-D18 his3-D1	(4)
		arg3-D4	
MCW4270	h^{-smt0}	exo1 \Delta::kanMX6 rqh1	This study
		ura4-D18 his3-D1 arg3-D4	
MCW4271	h^+	exo1 \Delta::kanMX6 rqh1 \Delta::natMX6 ura4+-aim2 ade6-3083	This study
		ura4-D18 leu1-32 his3-D1	

^a derived from ECS218/220, which were a gift from Shao-Win Wang

^b derived from PB70 (1)

^c derived from JZ108 (1)

1. Roseaulin, L., Yamada, Y., Tsutsui, Y., Russell, P., Iwasaki, H. and Arcangioli, B. (2008) Mus81 is essential for sister chromatid recombination at broken replication forks. *EMBO J.*, **27**, 1378-1387.

2. Lorenz, A., Osman, F., Sun, W., Nandi, S., Steinacher, R. and Whitby, M.C. (2012) The fission yeast FANCM ortholog directs non-crossover recombination during meiosis. *Science*, **336**, 1585–1588.

3. Lorenz, A., West, S.C. and Whitby, M.C. (2010) The human Holliday junction resolvase GEN1 rescues the meiotic phenotype of a *Schizosaccharomyces pombe* mus81 mutant. *Nucleic Acids Res.*, **38**, 1866–1873.

4. Lorenz, A., Mehats, A., Osman, F. and Whitby, M.C. (2014) Rad51/Dmc1 paralogs and mediators oppose DNA helicases to limit hybrid DNA formation and promote crossovers during meiotic recombination. *Nucleic Acids Res.*, **42**, 13723-13735.

Supplementary Figure S1. GpII nick-induced DSB formation depends on passage through S-phase.

rad50s cdc10-V50 cells, with the bottom strand nick site and containing either pREP1 or pREP1-NLS-gpII, were grown at 28°C for 20 hours in EMMG lacking histidine, leucine and thiamine to allow full de-repression of the *nmt* promoter, and therefore expression of NLS-gpII in cells containing pREP1-NLS-gpII. Cells were then transferred to fresh media and shifted to 34°C to arrest them in G1. After 4 hours the cells were switched back to 28°C and cell cycle progression and DSB formation monitored by flow cytometry (**A**) and neutral gel analysis (**B** and **C**), respectively. DNA was prepared in agarose plugs and digested with NdeI as in Figure 4C and D. Southern blots were probed with probe A (see Figure 4A).

Supplementary Figure S2. Hypothetical model for how Exo1 and Rqh1 could influence the frequency of direct repeat recombination following replication fork collapse.

(1) Replication fork stalls and collapses between a direct repeat of *ade6* heteroalleles. (2) Replication fork regression exposes a double-stranded DNA end. (3a) Long-range resection of the DNA end, catalysed by Exo1 or Rqh1, results in a 3' single-stranded tail consisting of non-repeated DNA (in black) and ade6 repeated DNA (in red). (4a) Rad51 loads on to the 3' DNA tail and catalyses a search for homologous DNA. As the 3' tail consists of ade6 DNA, Rad51 can use this to locate either *ade6* allele. In the diagram, Rad51 is shown catalysing DNA pairing and strand invasion with the *ade6-L469* allele. (5) Strand invasion, followed by processing of the heterologous DNA flap, exposes a 3' end from which new DNA synthesis can be primed. If processing of the flap results in removal of the *ade6-M375* point mutation, then the new DNA synthesis will result in the invading strand carrying just wild-type ade6 genetic information. However, if Rqh1 unwinds the D-loop prior to DNA synthesis, it will result in a non-recombinant. (6a) Rqh1 unwinds the D-loop after a DNA polymerase has extended the 3' end, which ultimately leads to gene conversion of the *ade6-M375* allele. (6b) Cleavage of the two DNA junction points, by a structure-specific nuclease, such as Mus81-Emel, results in an $ade6^+$ deletion-type recombinant. (3b) In the absence of Exo1 and Rqh1, the DNA end is subject to only short-range resection, which exposes only non-repeated DNA. (4b) Rad51-mediated strand invasion occurs only at non-repeated DNA and, therefore, does not generate an $ade6^+$ recombinant.