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Theory

In this section we explain in detail how we generalize our process to include recovery. At the

initial stage, n = 0, the fraction of nodes in the GC of network A is given by

P A
∞,0 = gA[pA

0 ] = gA[p] .

The failure next propagates to network B in which the fraction of remaining nodes is

pB
0 = gA[p] ,

and hence

P B
∞,0 = gB[pB

0 ] = gB[gA[p]] .

After the initial failure moves from network A to B, the process of recovery begins. The nodes

that are repaired are those that belong to the mutual boundary of both GCs. We calculate the

fraction of nodes that are in the border of each GC to be

F A
0 = (1 − p) (1 − GA

0 [1 − fA
∞,0]) ,

F B
0 = (1 − gB[gA[p]]) (1 − GB

0 [1 − fB
∞,0]) , (S1)

and the mutual boundary, given by

F AB
0 = F B

0

F A
0

1 − gA[p]
,

where gA[p] is the relative size of the GC in network A after the cascading failure, and F A
0 /(1 −

gA[p]) is the conditional probability that a node belongs to the boundary of the GC of network

A ,given that it is interconnected though an interdependent link with a node that belongs to the

boundary of the GC of network B.
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We next compute the new fraction of nodes that belong to the GC of each network

P A
∞,0 = gA[p] + γF AB

0 ,

P B
∞,0 = gB[gA[p]] + γF AB

0 , (S2)

and the fraction of functional nodes in each network after the recovery process by solving

gA[qA
0 ] = P A

∞,0 ,

gB[qB
0 ] = P B

∞,0 . (S3)

We next compute the fraction of nodes remaining in network A in the next step of the cascade

as in Ref. [? ]

pA
1 = pA

0

gB[qB
0 ]

gA[qA
0 ]

.

Hence the GC of A at n = 1 is given by

P A
∞,1 = gA[pA

1 ] ,

and then the fraction of remaining nodes in B is

pB
1 = pB

0

gA[pB
1 ]

gB[qB
0 ]

,

and the fraction of nodes in its GC can we written as

P B
∞,1 = gB[pB

1 ] .

Then the recovery process is applied again.

Analytical solutions for the fraction of nodes in the GC’s

In this section we show that in the steady state when there are no isolated nodes before the

initial failure the only possible values of the order parameter are 0 or 1, below and above the

threshold without intermediate states.

Note that using Eqs. (1)–(7) in the main text we can write the temporal evolution of the order

parameters as

P A
∞,n = P B

∞,n−1

(1 − GA
0 (1 − fA

∞,n))

(1 − GA
0 (1 − fA

∞,n−1)
,
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P B
∞

(n) = P B
∞,n−1

(1 − GA
0 (1 − fA

∞,n))(1 − GB
0 (1 − fB

∞,n))

(1 − GA
0 (1 − fA

∞,n−1))(1 − GA
0 (1 − fB

∞,n−1))
,

where fα
∞,n and fα

∞,n with α = A, B satisfy the trascendental equations

fA
∞,n = P B

∞,n−1

(1 − GA
1 (1 − fA

∞,n))

(1 − GA
0 (1 − fA

∞,n−1))
,

fB
∞,n = P B

∞,n−1

(1 − GA
0 (1 − fA

∞,n))(1 − GB
1 (1 − fB

∞,n))

(1 − GA
0 (1 − fA

∞,n−1))(1 − GB
0 (1 − fB

∞,n−1))
,

fA
∞,n = P A

∞,n

(1 − GA
1 (1 − fA

∞
, n))

(1 − GA
0 (1 − fA

∞,n))
,

fB
∞,n = P B

∞,n

(1 − GB
1 (1 − fB

∞,n))

(1 − GB
0 (1 − fB

∞,n))
.

and P α
∞,n = P α

∞,n + FABn, with α = A, B, where FABn is the shared boundary.

In the steady state at n = ns, P A
∞,ns

= P B
∞,ns

. It is straightforward to show that P A
∞,ns

= P B
∞,ns

=

0 is a solution of the previous system of equations. For P B
∞,ns

> 0 after some algebra it can be

shown that

fA
∞,ns−1 = fA

∞,ns
,

fB
∞,ns−1 = fB

∞,ns
.

Using these equalities we find

P B
∞,ns

= P B
∞,ns−1 .
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On the other hand, it is clear that at the steady state P A
∞,ns

= P A
∞,ns+1

. Using this relation and

the previous results we deduce

P B
∞,ns

= P B
∞,ns

.

Recalling that P B
∞,ns

= P B
∞,ns

+ γ FABns
, hence we have

γ FABns
= 0 .

Thus for γ > 0 the shared boundary in the steady state must be zero. Note that the condition

FABns
= 0 is trivially satisfied when P α

∞,ns
= 0. Moreover, it can be shown using L’Hôpital’s

rule that the condition is also fulfilled when P α
∞,ns

= P α
∞,−1, where P α

∞,−1 is the original fraction

of nodes in each GC before the initial failure. On one hand, if each initial GC equals the whole

network then P α
∞,ns

= 1. On the other hand, if before the initial random failure the probability of

existence of isolated nodes is not equal to zero (P (k = 0) ' 0), such as in ER networks, then the

initial fraction of nodes in each GC is not the entire newtork and thus P α
∞,ns

/ 1.

Deviations of the simulated threshold from the theoretical

The theoretical results adjust well to the simulation results, except for small deviations when

γ > 0. Using the phase diagrams in Fig. 4 in the main text, we compute these deviations as

relative errors between the theoretical and simulated values. The relative error is defined as

ǫr = 1 −
ps

c

pt
c

,

where pt
c and ps

c are the critical values obtained from theory and simulations, respectively. Note

that ps
c ≤ pt

c as explained in the Theoretical Approach section in the main text. In Table S1 the

relative deviations are listed for several values of γ and for the three types of network.

Note that the deviations do not exceed 3% for RR, 5% for ER, and 8% for SF. The numeri-

cal simulations give results that are very similar to those from theory, and we now explore the

interesting features derived primarily from theory.
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γ RR-RR ER-ER SF-SF

0.0 0.0 0.0 0.0

0.1 0.027 0.036 0.053

0.2 0.028 0.042 0.066

0.3 0.017 0.030 0.074

0.4 0.020 0.045 0.075

0.5 0.020 0.032 0.075

0.6 0.023 0.030 0.073

0.7 0.028 0.027 0.072

0.8 0.016 0.025 0.063

0.9 0.011 0.022 0.0067

1.0 0.008 0.020 0.062

TABLE S1: Relative deviation ǫr of the critical theshold pc for different values of γ for a system composed of two RR

networks (second column) with z = 5, two ER with 〈k〉 = 5 (third column) and two SF networks with 〈k〉 ≈ 5.11 (fourth

column).

Excess Degree of the Boundary

We next explain why the nodes on the boundary of the GC have higher degrees than dysfunc-

tional nodes that are not on the boundary. For simplicity we will drop the network indices A and

B in the main magnitudes. The boundary of the GC is the set of nodes that have at least one

connection with the GC. The equation that represents the relative fraction of nodes that belongs

to the GC is

P∞ =
kmax∑

k=kmin

p̃P (k)(1 − (1 − f∞)k) , (S4)

where f∞ is the root of the self-consistent Eq. (1) in the main text, and p̃ is the fraction of

remaining nodes before repairing process is initiated.

We can rearrange the coefficients of Eq. (S4) as P (k)(p̃ − p̃(1 − f∞)k), where p̃ is the fraction of

remaining nodes, and p̃(1 − f∞)k is the probability that a non-failed node does not belong to the

GC. Since for p̃ < 1, f∞ < 1, the probability that a node belongs to a finite cluster after failure

decreases with k. Hence it is more likely for a node to be part of the GC if its connectivity is

fairly high. The fraction of nodes that belongs to the boundary is obtained by simply replacing

in Eq. (S4) p̃ with 1 − p̃
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F =
kmax∑

k=kmin

(1 − p̃)P (k)(1 − (1 − f∞)k) .

Rearranging the coefficients we have P (k)((1 − p̃) − (1 − p̃)(1 − f∞)k where P (k)((1 − p̃) is the

probability that a node has failed and (1 − p̃)(1 − f∞)k holds for the probability that a node has

failed and is not connected to the GC. As explained above, this last term decreases as k increases.

Hence the probability that a node belongs to the boundary of the GC increases with its degree k.

Phase Diagrams

In Fig. S1 we show the phase diagrams in the γ − p plane obtained from theory for different

values of 〈k〉 for RR, ER and SF networks. As indicated in the main text, the recovery regions

determined by the critical values of γc for each p (solid line) and by the value of pc for γ = 0

(dashed line) shift to the left (lower p) when the mean connectivity increases, indicating that the

restoring process is more essential when the 〈k〉 values are lower.

Note that the recovery regions for the SF-SF networks are the broadest for the same value of 〈k〉,

i.e., of the three types of network they have the widest range of p values in which this restoring

strategy is effective. On the other hand, the RR-RR networks have the most narrow recovery

region. This difference is because the SF-SF networks have the largest degree dispersion and in

the RR-RR networks it is null. This corroborates that large heterogeneity implies high resilience
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FIG. S1: (Color online). Phase diagram in the plane γ − p for (a) RR networks with z = 3 (black), z = 4 (red), z = 5

(magenta), z = 7 (blue) and z = 10 (brown) (b) ER networks with 〈k〉 = 3 (black), 〈k〉 = 4 (red), 〈k〉 = 5 (magenta),

〈k〉 = 7 (blue) and 〈k〉 = 10 (brown). For SF networks we used λ = 3 and minimum degrees 2 (black) and 3 (red). The

recovery regions are enclosed by their respective curves. The curves were constructed from the theoretical values.


