Supporting Information for

UPLC-MS-ELSD-PDA as A Powerful Dereplication Tool to Facilitate Compound Identification from Small Molecule Natural Product Libraries

Table of Contents:

Figure S1: UPLC-MS-ELSD-PDA analysis of a mixture of authentic samples homoeriodictyol (1), hesperetin (2) and sterubin (3) with a different UPLC condition.

Figure S2: UPLC-MS-ELSD-PDA analysis of hit 78821-c4 containing homoeriodictyol (1), hesperetin (2) and sterubin (3) with a different UPLC condition.

Figures S3-S4: NMR spectra of the mixture of acetylated compounds 5a and 5b.

Figures S5-S9: NMR spectra of compound 9.

Figures S10-S13: NMR spectra of compound 10.

Figure S14: UPLC-MS data showing deoxypodorhizone as the major compound in 79684-c9 from the stem of *Thuja occidentalis*.

Figure S15: 400 MHz ¹H NMR spectrum of 79864-c9 indicating the presence of deoxypodorhizone.

Figure S16: HRESIMS Spectrum of Compound 9.

Figure S17: HRESIMS Spectrum of Compound 10.

 Table S1-S4: X-Ray data of compound 9.

Figure S1. UPLC-MS-ELSD-PDA analysis of a mixture of authentic samples homoeriodictyol (1), hesperetin (2) and sterubin (3). Compounds 1 and 2 were from the commercial source Indofine and compound 3 was from our NCNPR repository.

Figure S2. UPLC-MS-ELSD-PDA analysis of hit 78821-c4 cont aining homoeriodictyol (1), hesperetin (2) and sterubin (3).

MS Conditions:

Waters SQD MS with ESI source Operated in Positive/Negative mode with switching every 0.02 sec. Capillary Voltage: 4.0 KV Extractor Voltage: 44.0 V RF lens Voltage: 0.10 V Source Temperature: 150° C Desolvation Temperature: 250° C Desolvation Gas Flow (nitrogen): 500 L/Hr Cone Gas Flow (nitrogen): 30 L/Hr

UPLC Conditions:

Waters Acquity UPLC Classic Column: Waters BEH C18 - 1.7 um, 5 x 2.1 mm Column Temp: 50° C Mobile Phase A: Water/0.1% formic acid Mobile Phase B: Acetonitrile/0.1% formic acid **Gradient:**

<u>Time-min.</u>	Flow-ml/min	%A	%B
I	1.0	85	15
0.20	1.0	80	20
2.85	1.0	5	95
2.95	1.0	5	95
3.0	1.0	85	20

Data Acquisition: MassLynx Software

JY-1-25F/1 JY-1-25F -2500 -5.06 5.04 -5.04 -5.04 2.02 2.02 1.98 1.92 1.92 1.1300 1.1300 1.1300 1.1300 1.1300 1.1300 1.1300 1.10 -0.01 4.07 4.51 4.51 4.46 4.12 4.12 4.07 2.39 2.38 2.38 -2400 proton -2300 -2200 -2100 -2000 -1900 -1800 -1700 -1600 -1500 -1400 -1300 -1200 -1100 -1000 -900 -800 -700 -600 -500 ||-400 -300 ١. -200 'Ŵ -100 -0 --100 Т 3.03 3.95 4.63 1.16 1.16 5.24 5.145 6.74 5.62 7 6.74 5.62 8 2.96-8 8 έ. 86 -200 7.5 0.0 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 f1 (ppm)

Figure S3. 400 MHz ¹H NMR spectrum of acetylated mixture of compounds 5a and 5b in CDCl₃.

Figure S6. 100 MHz ¹³C NMR spectrum of of compound 9 in CDCl₃.

Figure S10. 400 MHz ¹H NMR spectrum of of compound 10 in CDCl₃.

Figure S11. 100 MHz ¹³C NMR spectrum of of compound 10 in CDCl₃.

f1 (ppm)

f1 (ppm)

Figure S15. 400 MHz ¹H NMR spectrum of 79864-c9 (0.4 mg) indicating the presence of doxypodorhizone.

x10⁶ +ESI Scan (0.049 min) Frag=125.0V JY-1-30D[Ranga Rao]_18 Oct 2013-(+).d 2.6-2.5-2.4-899.5151 2.3-2.2-2.1-,O Ac 2-HO 1.9-′′′0 Ac 1.8-1.7-1.6-<u>,</u>Н 1.5-1.4-1.3-1.2-1.1-\Ĥ ноос 1-461.2542 0.9-0.8-0.7-258.2809 0.6-0.5-0.4-0.3-0.2-654.6892 379.2493 0.1-767.5133 851.5316 0-200 250 300 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 100 150 350 400 450 500 550 Counts vs. Mass-to-Charge (m/z)

Figure S16. HRESIMS Spectrum of Compound 9.

+ESI Scan (0.088 min) Frag=125.0V JY-1-30B[Ranga Rao]_18 Oct 2013-(+).d x10⁶ 3.6-3.4-899.5097 3.2-3-2.8-2.6-2.4-OAc нο 2.2-OAc 2-LH. 1.8-1.6ς Π. 1.4ноос 461.2501 1.2-421.2586 1-0.8-230.2475 0.6-0.4-0.2-363.3358 851.5246 626.6519 767.5102 1019.2018 0-300 350 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200 1250 1300 200 250 400 450 1Ö0 150 500 Counts vs. Mass-to-Charge (m/z)

Figure S17. HRESIMS Spectrum of Compound 10.

	Х	у	Z	U(eq)
O(1)	3355(2)	5322(1)	9437(2)	32(1)
O(2)	1354(2)	5539(1)	11619(2)	27(1)
0(3)	817(2)	9658(1)	9641(2)	21(1)
O(4)	4810(2)	9338(1)	5597(2)	22(1)
O(5)	4577(2)	8406(1)	4839(2)	32(1)
O(6)	1223(2)	9760(1)	6171(2)	19(1)
O(7)	1010(2)	9416(1)	3318(2)	30(1)
C(1)	4245(3)	7069(1)	8856(3)	22(1)
C(2)	5266(3)	6504(1)	8498(3)	26(1)
C(3)	5845(3)	6205(1)	10268(3)	26(1)
C(4)	4189(3)	6095(1)	11527(3)	22(1)
C(5)	3169(3)	6680(1)	11861(2)	19(1)
C(6)	1639(3)	6661(1)	13301(2)	22(1)
C(7)	956(3)	7265(1)	13773(3)	24(1)
C(8)	295(3)	7561(1)	12047(2)	21(1)
C(9)	1851(3)	7616(1)	10676(2)	18(1)
C(10)	2529(2)	7004(1)	10077(2)	18(1)
C(11)	1364(3)	8033(1)	9105(2)	19(1)
C(12)	1326(3)	8644(1)	9879(2)	19(1)
C(13)	601(2)	9129(1)	8640(2)	18(1)
C(14)	1758(2)	9202(1)	6918(2)	17(1)
C(15)	3876(3)	9217(1)	7279(2)	20(1)
C(16)	-1476(3)	9051(1)	8092(3)	23(1)
C(17)	-1490(3)	7718(1)	11776(3)	26(1)
C(18)	2931(3)	5619(1)	10717(3)	23(1)
C(19)	5004(3)	5859(1)	13358(3)	29(1)
C(20)	926(3)	6699(1)	9005(2)	20(1)
C(21)	5055(2)	8884(1)	4480(3)	23(1)
C(22)	6032(3)	9062(1)	2787(3)	32(1)
C(23)	927(2)	9811(1)	4377(2)	20(1)
C(24)	468(3)	10413(1)	3829(3)	29(1)

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for compound_9. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S1.Crystal data and structure refinement for compound_9.

Identification code	shelx	
Empirical formula	C24 H38 O7	
Formula weight	438.54	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 7.0889(2) Å	$\alpha = 90^{\circ}$.
	b = 23.3669(5) Å	$\beta = 91.7930(10)^{\circ}.$
	c = 7.3183(2) Å	$\gamma = 90^{\circ}.$
Volume	1211.65(5) Å ³	
Z	2	
Density (calculated)	1.202 Mg/m ³	
Absorption coefficient	0.712 mm ⁻¹	
F(000)	476	
Crystal size	$0.400 \text{ x} 0.200 \text{ x} 0.190 \text{ mm}^3$	
Theta range for data collection	3.783 to 69.591°.	
Index ranges	-8<=h<=8, -27<=k<=27, -8<=1	l<=8
Reflections collected	9933	
Independent reflections	3954 [R(int) = 0.0209]	
Completeness to theta = 67.679°	98.4 %	
Absorption correction	Semi-empirical from equivaler	nts
Max. and min. transmission	0.8767 and 0.7639	
Refinement method	Full-matrix least-squares on F ²	2
Data / restraints / parameters	3954 / 1 / 288	
Goodness-of-fit on F ²	1.039	
Final R indices [I>2sigma(I)]	R1 = 0.0259, wR2 = 0.0693	
R indices (all data)	R1 = 0.0260, wR2 = 0.0694	
Absolute structure parameter	0.09(3)	
Extinction coefficient	0.0031(6)	
Largest diff. peak and hole	0.198 and -0.152 e.Å ⁻³	

O(1)-C(18)	1.212(2)
O(2)-C(18)	1.330(2)
O(2)-H(2)	0.8400
O(3)-C(13)	1.444(2)
O(3)-H(3)	0.8400
O(4)-C(21)	1.355(2)
O(4)-C(15)	1.444(2)
O(5)-C(21)	1.197(3)
O(6)-C(23)	1.329(2)
O(6)-C(14)	1.458(2)
O(7)-C(23)	1.208(2)
C(1)-C(2)	1.532(3)
C(1)-C(10)	1.539(3)
C(1)-H(1A)	0.9900
C(1)-H(1B)	0.9900
C(2)-C(3)	1.517(3)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-C(4)	1.536(3)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-C(18)	1.533(3)
C(4)-C(19)	1.545(3)
C(4)-C(5)	1.570(2)
C(5)-C(6)	1.536(2)
C(5)-C(10)	1.564(2)
C(5)-H(5)	1.0000
C(6)-C(7)	1.534(3)
C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900
C(7)-C(8)	1.501(3)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(8)-C(17)	1.327(3)
C(8)-C(9)	1.520(3)

Table S3.Bond lengths [Å] and angles [°] for compound_9.

C(9)-C(11)	1.538(2)
C(9)-C(10)	1.574(2)
C(9)-H(9)	1.0000
C(10)-C(20)	1.536(2)
C(11)-C(12)	1.537(2)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-C(13)	1.530(2)
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(13)-C(16)	1.525(2)
C(13)-C(14)	1.535(2)
C(14)-C(15)	1.517(2)
C(14)-H(14)	1.0000
C(15)-H(15A)	0.9900
C(15)-H(15B)	0.9900
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-H(17A)	0.9500
C(17)-H(17B)	0.9500
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(21)-C(22)	1.497(3)
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-C(24)	1.495(3)
C(24)-H(24A)	0.9800
C(24)-H(24B)	0.9800
C(24)-H(24C)	0.9800
C(18)-O(2)-H(2)	109.5

C(13)-O(3)-H(3)	109.5
C(21)-O(4)-C(15)	115.52(14)
C(23)-O(6)-C(14)	118.78(13)
C(2)-C(1)-C(10)	113.56(15)
C(2)-C(1)-H(1A)	108.9
C(10)-C(1)-H(1A)	108.9
C(2)-C(1)-H(1B)	108.9
C(10)-C(1)-H(1B)	108.9
H(1A)-C(1)-H(1B)	107.7
C(3)-C(2)-C(1)	111.60(16)
C(3)-C(2)-H(2A)	109.3
C(1)-C(2)-H(2A)	109.3
C(3)-C(2)-H(2B)	109.3
C(1)-C(2)-H(2B)	109.3
H(2A)-C(2)-H(2B)	108.0
C(2)-C(3)-C(4)	113.42(15)
C(2)-C(3)-H(3A)	108.9
C(4)-C(3)-H(3A)	108.9
C(2)-C(3)-H(3B)	108.9
C(4)-C(3)-H(3B)	108.9
H(3A)-C(3)-H(3B)	107.7
C(18)-C(4)-C(3)	109.61(15)
C(18)-C(4)-C(19)	105.84(15)
C(3)-C(4)-C(19)	107.95(15)
C(18)-C(4)-C(5)	115.25(15)
C(3)-C(4)-C(5)	108.21(15)
C(19)-C(4)-C(5)	109.76(15)
C(6)-C(5)-C(10)	113.25(14)
C(6)-C(5)-C(4)	114.82(14)
C(10)-C(5)-C(4)	114.47(14)
C(6)-C(5)-H(5)	104.2
C(10)-C(5)-H(5)	104.2
C(4)-C(5)-H(5)	104.2
C(7)-C(6)-C(5)	111.19(15)
C(7)-C(6)-H(6A)	109.4
C(5)-C(6)-H(6A)	109.4
C(7)-C(6)-H(6B)	109.4

C(5)-C(6)-H(6B)	109.4
H(6A)-C(6)-H(6B)	108.0
C(8)-C(7)-C(6)	109.03(15)
C(8)-C(7)-H(7A)	109.9
C(6)-C(7)-H(7A)	109.9
C(8)-C(7)-H(7B)	109.9
C(6)-C(7)-H(7B)	109.9
H(7A)-C(7)-H(7B)	108.3
C(17)-C(8)-C(7)	121.67(17)
C(17)-C(8)-C(9)	125.88(17)
C(7)-C(8)-C(9)	112.35(16)
C(8)-C(9)-C(11)	113.37(15)
C(8)-C(9)-C(10)	109.96(14)
C(11)-C(9)-C(10)	115.48(14)
C(8)-C(9)-H(9)	105.7
C(11)-C(9)-H(9)	105.7
C(10)-C(9)-H(9)	105.7
C(20)-C(10)-C(1)	109.59(14)
C(20)-C(10)-C(5)	113.12(14)
C(1)-C(10)-C(5)	108.62(14)
C(20)-C(10)-C(9)	109.60(15)
C(1)-C(10)-C(9)	108.99(14)
C(5)-C(10)-C(9)	106.81(14)
C(12)-C(11)-C(9)	108.62(14)
C(12)-C(11)-H(11A)	110.0
C(9)-C(11)-H(11A)	110.0
C(12)-C(11)-H(11B)	110.0
C(9)-C(11)-H(11B)	110.0
H(11A)-C(11)-H(11B)	108.3
C(13)-C(12)-C(11)	118.61(14)
C(13)-C(12)-H(12A)	107.7
C(11)-C(12)-H(12A)	107.7
C(13)-C(12)-H(12B)	107.7
C(11)-C(12)-H(12B)	107.7
H(12A)-C(12)-H(12B)	107.1
O(3)-C(13)-C(16)	108.74(14)
O(3)-C(13)-C(12)	107.81(13)

C(16)-C(13)-C(12)	111.84(15)
O(3)-C(13)-C(14)	105.63(13)
C(16)-C(13)-C(14)	109.48(14)
C(12)-C(13)-C(14)	113.05(14)
O(6)-C(14)-C(15)	106.86(13)
O(6)-C(14)-C(13)	105.57(13)
C(15)-C(14)-C(13)	114.25(14)
O(6)-C(14)-H(14)	110.0
C(15)-C(14)-H(14)	110.0
C(13)-C(14)-H(14)	110.0
O(4)-C(15)-C(14)	109.48(14)
O(4)-C(15)-H(15A)	109.8
C(14)-C(15)-H(15A)	109.8
O(4)-C(15)-H(15B)	109.8
C(14)-C(15)-H(15B)	109.8
H(15A)-C(15)-H(15B)	108.2
C(13)-C(16)-H(16A)	109.5
C(13)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(13)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(8)-C(17)-H(17A)	120.0
C(8)-C(17)-H(17B)	120.0
H(17A)-C(17)-H(17B)	120.0
O(1)-C(18)-O(2)	122.38(18)
O(1)-C(18)-C(4)	123.99(18)
O(2)-C(18)-C(4)	113.53(16)
C(4)-C(19)-H(19A)	109.5
C(4)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(4)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(10)-C(20)-H(20A)	109.5
C(10)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5

C(10)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
O(5)-C(21)-O(4)	123.72(17)
O(5)-C(21)-C(22)	125.65(18)
O(4)-C(21)-C(22)	110.62(17)
C(21)-C(22)-H(22A)	109.5
C(21)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(21)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
O(7)-C(23)-O(6)	123.76(17)
O(7)-C(23)-C(24)	124.19(17)
O(6)-C(23)-C(24)	112.05(16)
C(23)-C(24)-H(24A)	109.5
C(23)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
C(23)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
O (1)	37(1)	24(1)	35(1)	-10(1)	5(1)	-2(1)
O(2)	36(1)	18(1)	26(1)	-4(1)	2(1)	-9(1)
O(3)	32(1)	17(1)	14(1)	0(1)	0(1)	4(1)
O(4)	22(1)	22(1)	21(1)	2(1)	3(1)	-2(1)
O(5)	37(1)	24(1)	35(1)	-2(1)	11(1)	-1(1)
O(6)	25(1)	16(1)	15(1)	0(1)	0(1)	2(1)
O(7)	51(1)	22(1)	16(1)	0(1)	-3(1)	4(1)
C(1)	24(1)	20(1)	23(1)	1(1)	2(1)	-1(1)
C(2)	24(1)	24(1)	30(1)	-2(1)	7(1)	1(1)
C(3)	23(1)	21(1)	35(1)	-4(1)	0(1)	2(1)
C(4)	26(1)	16(1)	24(1)	1(1)	-4(1)	1(1)
C(5)	24(1)	14(1)	20(1)	-1(1)	-3(1)	-2(1)
C(6)	32(1)	17(1)	18(1)	2(1)	1(1)	-1(1)
C(7)	36(1)	19(1)	18(1)	0(1)	5(1)	0(1)
C(8)	28(1)	14(1)	20(1)	-2(1)	3(1)	-2(1)
C(9)	21(1)	16(1)	17(1)	0(1)	1(1)	-1(1)
C(10)	21(1)	16(1)	18(1)	0(1)	0(1)	-1(1)
C(11)	24(1)	17(1)	16(1)	1(1)	0(1)	1(1)
C(12)	22(1)	18(1)	16(1)	0(1)	0(1)	0(1)
C(13)	21(1)	16(1)	17(1)	-1(1)	1(1)	2(1)
C(14)	22(1)	14(1)	15(1)	1(1)	-1(1)	2(1)
C(15)	22(1)	20(1)	18(1)	2(1)	2(1)	-1(1)
C(16)	23(1)	24(1)	21(1)	3(1)	2(1)	2(1)
C(17)	28(1)	23(1)	29(1)	2(1)	6(1)	-1(1)
C(18)	30(1)	14(1)	23(1)	3(1)	-3(1)	2(1)
C(19)	36(1)	20(1)	31(1)	0(1)	-9(1)	5(1)
C(20)	23(1)	18(1)	19(1)	-1(1)	0(1)	-1(1)
C(21)	18(1)	28(1)	24(1)	-1(1)	2(1)	2(1)
C(22)	30(1)	41(1)	26(1)	0(1)	6(1)	-1(1)
C(23)	23(1)	21(1)	17(1)	0(1)	1(1)	-1(1)
C(24)	46(1)	22(1)	21(1)	2(1)	2(1)	7 (1)

Table S4.Anisotropic displacement parameters ($Å^2x \ 10^3$) for compound_9. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}$]