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1. Inclusive fitness of a focal Role 2 actor 

 

In the main text, equations (2)-(5) show how we set up the inclusive fitness function for a 

randomly chosen focal actor in Role 1 (w1). Here, we give the equations used to set up the 

corresponding function w2 for a randomly chosen focal actor in Role 2. 

 

The focal Role 2 actor plays x2 in a group of individuals playing x’2 and x’1. Each of these types 

of individuals acquires the following respective fractions of the group’s resources: 

 

𝑞2 =
𝑏𝑥2

𝑏(𝑥2 + (𝑛2 − 1)𝑥2
′ ) + 𝑛1𝑥1

′  

(S1a) 

 

𝑞2
′ =

𝑏𝑥2
′

𝑏(𝑥2 + (𝑛2 − 1)𝑥2
′ ) + 𝑛1𝑥1

′  

(S1b) 

 

𝑞1
′ =

𝑥1
′

𝑏(𝑥2 + (𝑛2 − 1)𝑥2
′ ) + 𝑛1𝑥1

′  

(S1c) 

 

The total cooperative effort of the focal individual’s group is:  

 

𝑐2 = (1 − 𝑥2) +  (𝑛2 − 1)(1 − 𝑥2
′ ) + 𝑛1(1 − 𝑥1

′ )    (S2) 

 

The fraction of resource obtained by this group (i.e. the group productivity) is as follows (c’ is 

given in equation 3b in the main text): 

 

𝑝2 =
𝑐2

𝑐2 + (𝑔 − 1)𝑐′
 

(S3) 
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Using equation 1 in the main text, we obtain the inclusive fitness of the focal Role 2 actor: 

 

𝑤2 =
𝜕𝑣𝑝2𝑞2

𝜕𝑥2
+ 𝑟(𝑛2 − 1)

𝜕𝑣𝑝2𝑞2
′

𝜕𝑥2
+ 𝑟𝑛1

𝜕𝑣𝑝2𝑞1
′

𝜕𝑥2
     (S4) 

 

 

 

 

 

2. Neighbor-modulated fitness and definitions of relatedness 

 

In the inclusive fitness model in the main text, we considered the effect of a slight change in the 

selfish strategy x of a randomly chosen focal actor on its group-mates playing strategy x’, 

following Taylor et al. ’s (2007) equation 19.  We defined r as the weight the focal actor gives to 

the fitness increments of each member of its group (Hamilton, 1964). Here, we present a 

neighbor-modulated or direct fitness model. This approach considers the alleles underlying the 

selfish strategies x’1 and x’2, tracking the effect of a mutation in each of these alleles (x1 and  

x2 respectively) on a randomly chosen focal recipient, and gives the same results as the inclusive 

fitness model in the main text (Taylor et al., 2007).  

 

In the following sections, we (a) show how the neighbor-modulated fitness function is 

constructed; (b) prove that the definition of relatedness that we use in the neighbor-modulated 

fitness model (the probability that a group member has the mutation, given that a focal individual 

has it) is the same as the relatedness coefficient that arises from the fitness function as 

the regression of the partner’s breeding value on the focal’s breeding value (Wenseleers et al., 

2004, 2010; Gardner et al., 2011); and (c) demonstrate that this also yields the definition of 

relatedness that we use in the inclusive fitness model (the weight given by the focal actor to its 

effect on each other individual’s fitness (Hamilton, 1964)). 

 

 

a. Neighbor-modulated fitness function 
 

We assume the selfish efforts of individuals in Role 1 and Role 2 are governed by alleles x’1 and 

x’2 respectively, and that each allele is at a separate locus. (If we instead assume that there is a 

single locus, with x’1 found only in Role 1 and x’2 only in Role 2, we obtain the same solutions; 

results not shown.) We consider a mutation in each allele: x1 and x2 respectively. We define r as 

the probability that the mutation is found in another group member, given that one individual has 

it.  We assume that individuals are haploid and that mutations are rare, such that no individuals 

have mutations at both loci. 

 

We first consider the mutant allele for Role 1 behavior (x1). If the mutation is found in a Role 1 

player, it plays x1, but if a Role 2 player has the mutation, it plays the non-mutant strategy x’2. 

The fractions of resource obtained by a focal Role 1 player and a Role 2 player each carrying the 

mutant Role 1 allele are: 
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𝑞11𝑁𝑀𝐹 =
𝑥1

𝑥1 + (𝑛1 − 1)(𝑟𝑥1 + (1 − 𝑟)𝑥1
′ ) + 𝑛2𝑏𝑥2

′  

(S5a) 

 

𝑞12𝑁𝑀𝐹 =
𝑏𝑥2

′

𝑛1(𝑟𝑥1 + (1 − 𝑟)𝑥1
′ ) + 𝑛2𝑏𝑥2

′  

(S5b) 

 

Below are the total cooperative efforts of a group where x1 is in Role 1 and a group where x1 is in 

Role 2 respectively:  

 

𝑐11𝑁𝑀𝐹 = (1 − 𝑥1) +  (𝑛1 − 1)(𝑟(1 − 𝑥1) + (1 − 𝑟)(1 − 𝑥1
′ )) + 𝑛2(1 − 𝑥2

′ )  (S6a) 

 

𝑐12𝑁𝑀𝐹 = 𝑛1(𝑟(1 − 𝑥1) + (1 − 𝑟)(1 − 𝑥1
′ )) + 𝑛2(1 − 𝑥2

′ )    (S6b) 

 

Using c’ from equation 3b in the main text, we find the group shares: 

 

𝑝11𝑁𝑀𝐹 =
𝑐11𝑁𝑀𝐹

𝑐11𝑁𝑀𝐹 + (𝑔 − 1)𝑐′
 

(S7a) 

 

𝑝12𝑁𝑀𝐹 =
𝑐12𝑁𝑀𝐹

𝑐12𝑁𝑀𝐹 + (𝑔 − 1)𝑐′
 

(S7b) 

 

The mutant allele x1 is in a Role 1 player with probability 
𝑛1

𝑛1+𝑛2
, and in a Role 2 player with 

probability 
𝑛2

𝑛1+𝑛2
. The expected direct fitness increment of an individual carrying this mutation 

(see Taylor et al.’s (2007) equation 17) is thus:  

 

𝑤1𝑁𝑀𝐹 =
𝑛1

𝑛1+𝑛2

𝜕𝑣𝑝11𝑁𝑀𝐹𝑞11𝑁𝑀𝐹

𝜕𝑥1
+

𝑛2

𝑛1+𝑛2

𝜕𝑣𝑝12𝑁𝑀𝐹𝑞12𝑁𝑀𝐹

𝜕𝑥1
     (S8) 

 

We now follow the same procedure to obtain an expression for w2NMF, the direct fitness 

increment of an individual carrying the mutant allele for the Role 2 strategy, x2. In this case, a 

Role 2 player with the mutation plays x2, and a Role 1 player with the mutation plays x’1. 

 

Individual shares of resource when x2 is found in a Role 1 and Role 2 player respectively: 

 

𝑞21𝑁𝑀𝐹 =
𝑥1

′

𝑛1𝑥1
′ + 𝑛2𝑏(𝑟𝑥2 + (1 − 𝑟)𝑥2

′ )
 

(S9a) 

 

𝑞22𝑁𝑀𝐹 =
𝑏𝑥2

𝑛1𝑥1
′ + 𝑏(𝑥2 + (𝑛2 − 1)(𝑟𝑥2 + (1 − 𝑟)𝑥2

′ ))
 

(S9b) 
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Group cooperative efforts: 

 

𝑐21𝑁𝑀𝐹 = 𝑛1(1 − 𝑥1
′ ) + 𝑛2(𝑟(1 − 𝑥2) + (1 − 𝑟)(1 − 𝑥2

′ ))  (S10a) 

 

𝑐22𝑁𝑀𝐹 = 𝑛1(1 − 𝑥1
′ ) + (1 − 𝑥2) + (𝑛2 − 1)( 𝑟(1 − 𝑥2) + (1 − 𝑟)(1 − 𝑥2

′ )) (S10b) 

 

Group shares: 

 

𝑝21𝑁𝑀𝐹 =
𝑐21𝑁𝑀𝐹

𝑐21𝑁𝑀𝐹 + (𝑔 − 1)𝑐′
 

(S11a) 

 

𝑝12𝑁𝑀𝐹 =
𝑐22𝑁𝑀𝐹

𝑐22𝑁𝑀𝐹 + (𝑔 − 1)𝑐′
 

(S11b) 

 

Expected direct fitness increment of an individual carrying the mutant allele x2:  

 

𝑤2𝑁𝑀𝐹 =
𝑛1

𝑛1+𝑛2

𝜕𝑣𝑝21𝑁𝑀𝐹𝑞21𝑁𝑀𝐹

𝜕𝑥2
+

𝑛2

𝑛1+𝑛2

𝜕𝑣𝑝22𝑁𝑀𝐹𝑞22𝑁𝑀𝐹

𝜕𝑥2
     (S12) 

 

We then simultaneously solve w1NMF=0 and w2NMF =0 for the optimal values x1* and x2* 

respectively, setting x1 = x’1 = x1* and x2 = x’2 = x2*, and checking that the derivatives (
𝜕𝑤1𝑁𝑀𝐹

𝜕𝑥1
 

and 
𝜕𝑤2𝑁𝑀𝐹

𝜕𝑥2
) are negative. The solutions for x1* and x2* were identical to those we got from the 

inclusive fitness functions, as shown in the attached Mathematica file. 

 

 

b. Relatedness in the neighbor-modulated fitness model 

 

Let the neighbor-modulated (direct) fitness be expressed as the following function: 

 

𝑓[𝑥, 𝑟(𝑛 − 1)𝑥 + (1 − 𝑟)(𝑛 − 1)𝑥′]     (S13) 

 

where the first argument refers to the selfish effort of a randomly chosen focal recipient carrying 

the mutant allele x, and the second argument refers to the summed efforts of all other n-1 

interactants in the group, each of which has a probability r of also possessing the mutant allele x, 

given that the focal recipient has it. 

 

The average neighbor modulated fitness of a member of the focal individual’s group is: 

 
𝑟(𝑛 − 1)𝑓[𝑥, 𝑟(𝑛 − 1)𝑥 + (1 − 𝑟)(𝑛 − 1)𝑥′] + (1 − 𝑟)(𝑛 − 1)𝑓[𝑥′, 𝑟(𝑛 − 1)𝑥 +  (1 − 𝑟)(𝑛 − 1)𝑥′]

(𝑛 − 1)
 

 

(S14) 
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This simplifies to: 

𝑟𝑓[𝑥, 𝑟(𝑛 − 1)𝑥 + (1 − 𝑟)(𝑛 − 1)𝑥′] + (1 − 𝑟)𝑓[𝑥′, 𝑟(𝑛 − 1)𝑥 +  (1 − 𝑟)(𝑛 − 1)𝑥′] 
(S15) 

 

The second arguments of the functions f in (S15) are the same, so we can simplify the notation 

by letting the focal’s fitness be equal to f and the fitness of any group member that does not carry 

the mutant allele be equal to f', the latter being taken as fixed and a constant for the population. 

 

The breeding value is the average effect of the allele on the phenotype in offspring. Let h be the 

effect of possession of the rare mutation causing selfish effort x, where h = x-x'. As we are 

assuming haploidy, all of the focal’s offspring inherit the mutation, so the focal’s breeding value 

is h. (Note that if individuals were diploid, the focal’s breeding value would instead be 
ℎ

2
. As we 

would then regress 
ℎ𝑟

2
 on  

ℎ

2
 instead of hr on h (see below), we obtain the same answer as for 

diploid individuals.) The expected breeding value of another member of the group is as follows. 

(Since breeding value is the average effect in offspring, this expression takes into account the 

number of offspring, which differs between partners who have the mutation and those who do 

not.) 

 

𝑟(𝑛 − 1)𝑓ℎ +  (1 − 𝑟)(𝑛 − 1)𝑓′. 0

𝑟(𝑛 − 1)𝑓 +  (1 − 𝑟)(𝑛 − 1)𝑓′
 

(S16) 

 

We want to regress the breeding value of another group member on the breeding value of the 

focal, h, across different values of h. At equilibrium, f = f', so the above expression for a group 

member’s breeding value simplifies to hr. We therefore regress hr on h for different values of h. 

 

This gives a regression coefficient of: 
𝐶𝑜𝑣[ℎ𝑟, ℎ]

𝑉𝑎𝑟[ℎ]
 

(S17) 

From the properties of covariance and variance, this yields: 

 
𝑟𝑉𝑎𝑟[h]

𝑉𝑎𝑟[h]
 

(S18) 

 

This simplifies to r. 

 

Thus, relatedness defined as the probability of a group member possessing the mutant allele, 

given the focal has it, is the same as relatedness given from the fitness function by regressing the 

expected breeding value of an interactant on the breeding value of the focal, which is the 

standard definition for relatedness in neighbor-modulated fitness (Wenseleers et al., 2004, 2010; 

Gardner et al., 2011). 
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c. Relatedness in the inclusive fitness model 

 

Let the neighbor-modulated fitness be expressed as the function f in S13 above: 𝑓[𝑥, 𝑟(𝑛 −
1)𝑥 + (1 − 𝑟)(𝑛 − 1)𝑥′]. This gives the effect on a randomly chosen focal recipient’s fitness of 

its carrying the mutant allele x in a group with relatedness r. Since the mutant allele is rare, r is 

just the proportion of other individuals that also have the mutant allele x; all others have the 

allele x’ (see section 2b above).  

 

We find the evolutionarily stable solution x* as normal (see section 2a above and main text) by 

seeking x = x’ = x* for which 
𝜕𝑓

𝜕𝑥
=0 (Maynard Smith, 1982; Taylor et al., 2007). This yields the 

solution equation: 

 

𝑓(1,0)[𝑥∗, (𝑛 − 1)𝑥∗] + 𝑟(𝑛 − 1)𝑓(0,1)[𝑥∗, (𝑛 − 1)𝑥∗] = 0   (S19) 

 

where f
(1,0) 

 refers to the first derivative of f with respect to x for the first argument only and f
(0,1) 

refers to the first derivative of f with respect to x for the second argument only. 

 

Inclusive fitness, which focuses on fitness effects dispensed to a focal actor rather than received 

by a focal recipient, is given by: 

 

𝐼 =  𝑓[𝑥, (𝑛 − 1)𝑥’]  +  𝑟(𝑛 − 1)𝑓[𝑥’, 𝑥 + (𝑛 − 2)𝑥’]   (S20) 

 

The first function represents the effects on the focal actor’s fitness of its selfish effort x (first 

argument) and its n-1 group members’ efforts x’ (second argument). The second function 

represents the effects on another group member’s fitness of its own selfish effort x’ (first 

argument) and those of all other individuals in the group (the focal, who invests x, and the n-2 

other group members, each of which invests x’). The focal individual weights each group 

member’s fitness by the same r that appears in the neighbor-modulated fitness expression. 

 

We find the evolutionarily stable solution x* as before, by seeking x = x’ = x* for which 
𝜕𝑓[𝑥,(𝑛−1)𝑥’]

𝜕𝑥
+  𝑟(𝑛 − 1)

𝜕𝑓[𝑥’,𝑥+(𝑛−2)𝑥’]

𝜕𝑥
 = 0. This leads to exactly the same solution equation as 

that for neighbor-modulated fitness above, showing that the definitions of relatedness are 

equivalent. 
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3. Mathematica code for numerical solutions 

 

Please see the two attached Mathematica files, in which we give the code we used to generate the 

numerical solutions, and demonstrate that the inclusive fitness and neighbor-modulated fitness 

methods are equivalent, yielding the same numerical solutions.  
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4. Figures for different values of g  

  

 
 

 
 

 

Figure S1. The effect of the number of competing groups, g, on: (a) The individual cooperative 

efforts, 1-x*, of a single individual in Role 1 (faded lines) and Role 2 (darker lines). (b) A 

group’s per capita cooperation: (n1(1-x1*)+n2(1-x2*)) / (n1+n2). (c) The combined cooperative 

efforts of all Role 2 individuals relative to the group’s total cooperation: n2(1-x2*) / (n1(1-x1*) 

+n2(1-x2*)). (d) The combined share of reproduction obtained by all Role 1 individuals relative 

to the total reproduction in the group: n1q1 / (n1q1 + n2q2). All panels show solutions for 

relatedness r=0.5 and resource value v=1, and use the same color scheme. Dot-dashed lines show 

b=0.1 (high asymmetry in relative competitive efficiency between the two roles) and dotted lines 

show b=0.9 (low asymmetry in relative competitive efficiency). Blue and cyan lines show groups 

with equal numbers of Role 1 and Role 2 individuals (n1=n2); red and orange lines show groups 

with a single Role 1 player and many Role 2 players (n1=1, n1<<n2). Darker colors (blue and red) 

show groups of total size 20 (n1+n2), and lighter colors (cyan and orange) show groups of total 

size 100.  

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Number of competing groups, g

In
d

iv
id

u
al

co
o

p
er

at
io

n
,
1
-

x

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Number of competing groups, g

P
e
r

c
a
p
it
a

c
o
o
p
er

a
ti
o
n

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Number of competing groups, g

R
at

io
o

f
al

l
R

o
le

2
to

to
ta

l
co

o
p
er

at
io

n

(1,99)

(1,19)

(50,50)

(10,10)b = 0.1

b = 0.9

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Number of competing groups, g

W
it
h
in

g
ro

u
p

sh
a
re

to
a
ll

R
o
le

1
,
n

1
q

1

a b 

c d 

Role 1 
Role 2 



Competition among asymmetrical groups  9 

 

5. Figures for different values of r 
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Figure S2. The effect of Role 2 relative competitive efficiency, b, for different values of 

relatedness, r. Panels on the left show r=0.1, and panels on the right show r=0.9; Fig. 1 in the 

main text shows r=0.5. (a) The individual cooperative effort of a single Role 1 player, 1-x1*. (b) 

The individual cooperative effort of a single Role 2 player, 1-x2*. (c) A group’s per capita 

cooperation: (n1(1-x1*)+n2(1-x2*)) / (n1+n2). (d) The combined cooperative efforts of all Role 2 

individuals relative to the group’s total cooperation: n2(1-x2*) / (n1(1-x1*) +n2(1-x2*)). (e) The 

combined share of reproduction obtained by all Role 1 individuals relative to the total 

reproduction in the group: n1q1 / (n1q1 + n2q2). All panels show resource value v=1, and use the 

same color scheme. Solid lines show the number of competing groups g=2 and dashed lines 

show g=10. Blue and cyan lines show groups with equal numbers of Role 1 and Role 2 

individuals (n1=n2); red and orange lines show groups with a single Role 1 player and many Role 

2 players (n1=1, n1<<n2). Darker colors (blue and red) show groups of total size 20 (n1+n2), and 

lighter colors (cyan and orange) show groups of total size 100. 
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