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1. Supplementary multi-state model statistical methods 

Most of the standard methods for analyzing time-to-event data (e.g., survival analysis, Cox models, and 

person-years methods) assume that the event times are known and thus are not applicable to data that were 

ascertained at scheduled intervals such as we have in the Mayo Clinic Study of Aging (MCSA). In our 

study we do not know the exact age at which a participant actually transitions from A−N− to A+N−, for 

example, only that the transition occurred sometime in the interval between their last A−N− visit and first 

A+N− one. For such data we use the multi-state Markov (MSM) model described below. The Markov 

assumption states that the rate of transition to a new state depends only on the current state and age. The 

Markov assumption — or “memoryless” property — is restrictive, but necessary in general to compute a 

likelihood for intermittently observed data.
1
 A natural alternative to making this memoryless assumption 

would be to include time in the current state as an additional predictor in the model. Unfortunately, with 

intermittently observed states, we do not actually know how long a participant has been in their current 

state, but only a range of possible values. However, the apparent restrictiveness of the Markov assumption 

is ameliorated to some measure in the current study by the presence of age as a central covariate: rates rise 

during the state due to aging.  

We label the six states in our study as 1=A−N−, 2=A+N−, 3=A−N+, 4=A+N+ (all non-demented), 

5=dementia, and 6=death and let 𝑣 be a six-element vector representing the initial frequency distribution 

over the states at age 50. Since being alive and not demented are enrollment criteria for the MCSA, we 

know that 𝑣[5] = 𝑣[6] = 0. The rates matrix, or transition intensity matrix, 𝑅𝑎,𝑠 for each integer age 𝑎 and 

sex 𝑠 is a 6 by 6 matrix describing the transition rates that apply to participants over that year. We note that 

the 𝑅 matrix depends on sex only because of sex-specific death rates. All other transitions rates are not 

different by sex. Our rates matrix was of the form 

𝑅𝑎,𝑠 = 

(

 
 
 
 

𝑟12 𝑟13 0 0 𝑑1𝑀𝑎,𝑠
𝑚 0 𝑟24 0 𝑑1𝑀𝑎,𝑠
𝑚 0 𝑟34 𝑟35 𝑑1𝑀𝑎,𝑠
0 𝑚 𝑚 𝑟45 𝑑1𝑀𝑎,𝑠
0 0 0 0 𝑑2𝑀𝑎,𝑠
0 0 0 0 0 )

 
 
 
 

 

 

Here the 𝑖𝑗th element of 𝑅𝑎,𝑠 represents the rate for the transition from state 𝑖 to state 𝑗. The rates for the 

transition from states 1–4 to death are denoted by 𝑑1𝑀𝑎,𝑠 and the rates for dementia to death are denoted by 

𝑑2𝑀𝑎,𝑠, where 𝑀𝑎,𝑠 is the tabulated Minnesota death rate for that age and sex.
2
  

As shown in the rate matrix above, four “backward transitions” are permitted in the model. These 

transitions include A+N− to A−N− (state 2 to 1), A−N+ to A−N− (state 3 to 1), A+N+ to A+N− (4 to 2), 

and A+N+ to A−N+ (4 to 3). We assume a common misclassification rate parameter denoted by 𝑚; this is 

assumed to be a technical misclassification error and so this rate does not depend on age.  

Rates of 0 in the above rate matrix correspond to transitions that are not allowed in our model. State 6 

(death) is an absorbing state and “backward” transitions from death are clearly not possible. Nor do we 

allow in our model transitions from state 5 (dementia) to any of the biomarker states 1–4. We note that 

direct transitions between biomarker states where both biomarkers change simultaneously (i.e., state 1 to 4, 

2 to 3, 3 to 2, or 4 to 1) are not allowed as the odds of both happening at the exact same time are 

infinitesimally small. For example, any participant who was observed to be A−N− at one visit and A+N+ at 

the next is assumed to have passed through an intermediate state of either A+N− or A−N+.  
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Rates denoted by 𝑟𝑖𝑗  in the matrix above are of the form exp(𝛽𝑖𝑗,0 + 𝛽𝑖𝑗,1age) with the exception that 

𝑟12 = exp(𝛽12,0 + 𝛽12,1age + 𝛽12,2age
′ + 𝛽12,3age″) . Here the single and double prime symbols denote 

functions of age required for a cubic spline model with knots at 55, 65, 75, and 90 years.
3
 The diagonal 

elements of 𝑅𝑎,𝑠 are chosen so that the rows sum to 0, a technical requirement of rate matrices. The values 

of 𝑚, 𝑑1, 𝑑2, and the 14-element vector 𝛽 are the parameters of the model.  

In a multi-state model, the state transition matrix gives the probability of transitioning between any two 

states and is a function of the rate matrix. The sex-specific state transition matrix 𝑇𝑠(𝑎, 𝑎 + 1) for age 𝑎 to 

𝑎 + 1 is expm(𝑅𝑎𝑠), where expm( ) is the exponential of a matrix. (Evaluation of the expm function 

requires special software as it can be numerically difficult to evaluate; see for instance the documentation 

and references for the expm package within R.) The 𝑇𝑠 matrix depends on sex only because transition rates 

to death vary by sex. The transition matrix between any two ages is a product, e.g. 𝑇𝑠(67.4,70.1) =

expm(0.6𝑅67,𝑠)𝑇𝑠(68, 69)𝑇𝑠(69, 70)expm(0.1𝑅70,𝑠). The state distribution vector at age 𝑎 will then be 

𝑝𝑎,𝑠 = 𝑣𝑇𝑠(50, 𝑎). A participant of sex 𝑠 who was enrolled in state 1 at age 72.1 with two follow-up 

observations of state 3 at age 73.6 and state 3 again at age 74.8 contributes three terms to the likelihood: 

• entry: 𝑝72.1,𝑠[1]/(𝑝72.1,𝑠[1] + 𝑝72.1,𝑠[2] + 𝑝72.1,𝑠[3] + 𝑝72.1,𝑠[4]) 

• first transition: 𝑇𝑠(72.1, 73.6)[1, 3] (the 1,3 element of the transition matrix) 

• second transtion: 𝑇𝑠(73.6, 74.8)[3, 3] 

The second two terms are identical to the calculations done by the R package msm.
1
 The manual for that 

package provides much more information about the formulas above, along with details about special 

handling of the death state. The contribution of the first entry term in our model reflects that the MCSA is a 

population-based sample and hence the initial enrollment state of a participant provides direct information 

about the population prevalence.  

Implicit in the discussion above, yet still worth pointing out directly, is that the transition matrix can be 

calculated between any two (unrounded) ages and therefore accommodates variation in the time between 

participant visits.  

The table below shows the set of transitions for all 12,160 paired visits in the data set. A participant with 

four visits, for instance, would contribute three pairs to the table. Seventy percent of the pairs 

(8,536/12,160) are on the diagonal, i.e., at their subsequent visit participants were in the same state as they 

had been at their prior visit. Non-demented participants who have a clinical visit without imaging are only 

known to be in the non-demented state, that is, one of {A−N−, A+N−, A−N+, A+N+}. In this case the 

likelihood contribution involves a sum over states 1–4; for mathematical details we again refer the reader to 

the msm package
1
. A participant who had a non-imaging visit between two imaging visits would contribute 

to both column 1 and row 1 of the table. Participants who had only one visit are shown in the last column of 

the table.  

 Subsequent visit state  

Prior visit state Non-

demented 

A−N− A+N− A−N+ A+N+ Dementia Death Participants with 

a single visit 

Non-demented 8082 375 213 210 314 217 780 0 

A−N− 508 58 18 16 1 1 4 177 

A+N− 232 3 50 0 7 0 8 22 

A−N+ 221 4 0 42 10 10 5 7 

A+N+ 256 0 2 3 87 19 24 3 

Dementia 0 0 0 0 0 217 163 0 

Supplementary Table 1. Prior visit state versus subsequent visit state for visit pairs 
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Because the rows of the 𝑇 matrix must sum to 1 (everyone has to go somewhere) all of the rates are 

interlinked, and every observation in the data set contributes to the estimate of all of the rates. The amount 

and focus of the contribution can nevertheless be very disparate. For instance, a pair of visits that were a 

very short interval apart without a change in state is nearly uninformative since that is exactly what we 

would expect for any but extreme rate values. A participant who transitions from non-demented with an 

unknown biomarker state to demented gives direct information about dementia rates but has only minimal 

influence on estimated rates within states 1–4. A substantial number of such transitions however, as seen in 

this data set, will have a definite impact and a joint fit that uses all of the data is essential. A non-demented 

participant who has only a single visit without imaging provides no information since they provide no 

information on transition rates nor cross-sectional prevalences; these were the only observations omitted 

from the analysis.  

The model parameters were estimated via maximum likelihood using the optim function in R. The 

estimated variance-covariance matrix was obtained from the inverse of the negative of the returned Hessian 

matrix. Confidence intervals for derived parameters such as the transition rates, differences in rates, and 

predicted frequencies were based on a parametric bootstrap, which drew 10,000 coefficient sets from a 

multivariate normal distribution, centered at the maximum likelihood estimate with variance equal to the 

estimated variance-covariance matrix. 

The transition rates summarized in Figures 2-5 are obtained from elements of the rates matrix 𝑅𝑎,𝑠 while 

the frequencies in Figures 6 are obtained from 𝑝𝑎,𝑠. The frequencies shown in supplementary figure 1 

below are from 𝑝𝑎,𝑠 = 𝑣𝑇𝑠(50, 𝑎) and are compared to estimates from a maximum likelihood fit of a 

multinomial model using baseline data from the current study with knots at 55, 65, 75, and 90, a method as 

previously described.
4
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2. Supplementary analyses 

All participants included in the study were randomly drawn from the Olmsted County population but only a 

subset agreed to participate in imaging. To assess whether those who agreed to imaging had a different 

overall trajectory, an important potential bias, we performed a sensitivity analysis. We fit a Cox 

proportional hazards model to predict dementia by imaging status (imaged versus not imaged) among 3632 

participants with clinical follow-up. Age was used for the time scale with the follow-up period defined as 

age at baseline visit until age at first visit with dementia or last follow-up. Imaged vs. non-imaged was 

included in the model as a time-dependent covariate. That is, participants with their first imaging visit 

occurring at some visit other than baseline were classified as non-imaged until their first imaging visit, and 

then classified as imaged thereafter. Participants who were never imaged or imaged at baseline were 

classified as non-imaged and imaged, respectively, for the entire follow-up period. 

The risk of dementia was found to be very similar for those who completed imaging studies compared to 

those who did not. Specifically, participation in imaging was associated with an 11% increase in hazard of 

dementia (hazard ratio: 1.11, 95% confidence interval: 0.81- 1.52, p=0.52). That imaging participants have 

similar rates of progression to dementia, a key late-stage outcome in our model of disease progression, 

provides supporting evidence in favor of the representativeness of the overall biomarker course of the 

MCSA imaging sample. 
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3. Supplementary Figure 

 

Supplementary Figure 1. Estimated biomarker frequency from the multi-state Markov model using all 

available data (solid lines) with 95% confidence intervals (shaded regions) compared to the estimated 

frequency from a cross-sectional multinomial model using only baseline data (dotted lines). Estimates of 

frequencies for the multi-state model were calculated from the transition rates among a cohort of non-

demented participants all assumed to be A−N− at age 50. Estimates were re-scaled and plotted among 

participants who remain alive and non-demented. Confidence intervals for the estimates were obtained by 

first randomly generating 10,000 multivariate normal variates centered at the maximum likelihood 

estimates with the variance-covariance matrix equal to the inverse of the negative of the Hessian matrix. 

Age-specific rates, and then frequencies, were calculated for each of the 10,000 variates. The 95% 

pointwise CIs were calculated as the 2.5
th

 and 97.5
th

 quantiles of these simulated frequencies. 
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