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A Theoretical value of AUC

Denoting X and Z as the two categorical risk factors of interest, for ease of exposition we

shall write the logistic regression model of Equation (1) as:

log

{
π

1− π

}
= µ+

L1∑
j=1

I(X = j)− pj√
px × (1− px)

βj +

L2∑
k=1

I(Z = k)− pk√
pk × (1− pk)

δk +

L1∑
j=1

L2∑
k=1

I(X = j)− pj√
px × (1− px)

× I(Z = k)− pk√
pk × (1− pk)

γjk . (A.1)

Here I(.) denotes the indicator function taking value 1 when the condition in the parentheses

is true and taking value 0 otherwise, pj is the prevalence of category j of X, and pk is the

prevalence of category k of Z.
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To calculate the theoretical value of AUC, we postulate a log normal distribution for disease

risk in the general population. Therefore log{π} is assumed to follow a normal distribution

with mean m and variance σ2. From Equation (A.1), given the parameters µ, βββ = {βj}L1

i=1,

δδδ = {δk}L2

k=1, and γγγ = {γjk}L1,L2

j,k=1 , we can write the mean of log{π} under the rare disease

assumption as E(log{π}) = µ. Its variance can be written as:

σ2 =
(
βββT δδδT γγγ

)
ΣΣΣ
(
βββT δδδT γγγ

)T
, (A.2)

where ΣΣΣ is the covariance matrix of the distribution of the risk factors. When the risk factors

are independent and scaled to have variance 1, ΣΣΣ is the identity matrix, and we can write:

σ2 =

L1∑
j=1

β2
j +

L2∑
k=1

δ2k +

L2∑
j=1

L2∑
k=1

γ2jk . (A.3)

From the results of Begg [2002] and Pharoah et al. [2002], when risk has a log-normal

distribution in the general population with mean µ and variance σ2, the distribution of risk

among the affected individuals is log-normal with mean µ + σ2 and variance σ2. Note that

AUC is the probability that disease risk among affected individuals is higher than that among

the unaffected individuals. Denote R1 and R0 as the risk among affected and unaffected

individuals. Then log{R1} and log{R0} are distributed independently as N(µ+ σ2, σ2) and

N(µ, σ2), respectively. Therefore, the theoretical value of AUC is:

AUC = P (R1 > R0)

= P (log{R1} > log{R0})

= P

(
log{R1} − log{R0} − σ2

√
2σ2

>
−σ2

√
2σ2

)
= Φ

(
σ√
2

)
, (A.4)

where Φ(.) is the cumulative probability of the standard normal distribution.
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B Resampling approach to test H0 : ∆AUC = 0 in rela-

tion to interactions

When a new biomarker is included in the model, a resampling procedure can be used to

test the null hypothesis H0 : ∆AUC = 0 [Seshan et al. 2013]. This approach retains

the outcome and all the other risk factors of each individual, and permutes the biomarker

value to calculate the null distribution of ∆AUC. Although the concept of permutation is

applicable in our setting, the method of Seshan et al. [2013] cannot be used directly. This

is because the definition of interaction depends upon the definition of a main effect [Finney

1948; Wang et al. 2010; Satagopan and Elston 2013]. In any regression setting, the estimates

of the main effects are weighted averages of the outcomes (for example, weighted averages

of log odds in logistic regression). The weights depend upon whether or not interaction

terms are included in the model. Therefore, under a naive permutation of the interaction

column of the design matrix, the main and interaction effects will no longer be interpretable

in this canonical sense. Therefore, we propose a novel resampling procedure for evaluating

the null distribution of ∆AUC when the new risk factor of interest is an interaction term.

We develop this approach when the interaction is between two categorical risk factors.

For binary disease traits, interactions have a unique interpretation in terms of the odds ratios

of association between the risk factors calculated separately in the affected and unaffected

individuals. Therefore, we will generate data under the null such that there is no interaction

between the two risk factors, but the association between the two risk factors in the unaffected

individuals will be the same as that in the observed data.

For each individual, denote Y as the binary disease trait taking value 1 when the person

is affected (i.e., has the event of interest) and taking value 0 otherwise. Let X and Z

denote the two categorical risk factors having L1 and L2 levels, respectively. The association

between the two risk factors in the affected and unaffected individuals can be measured via
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the conditional probability P (X = j|Z, Y ). Setting Y = 1 (or 0) provides the association in

affected (or unaffected) individuals. It is easy to see that:

P (X = j|Z, Y = 1)

P (X = j|Z, Y = 0)
=

P (Y = 1|X = j, Z)

P (Y = 0|X = j, Z)
× P (Y = 0|Z)

P (Y = 1|Z)
. (B.1)

From Equation (1) of the paper, it follows that the first term on the right hand side of

Equation (B.1) is equal to

exp

{
µ+ βj +

L2∑
k=1

δkI(Z = k) +

L2∑
k=0

γjkI(Z = k)

}
.

We posit a logistic regression model for Y given Z, and write the second term on the right

hand side of Equation (B.1) as: exp
{
−
(
µ̃+

∑L2

k=0 δ̃kI(Z = k)
)}

, where µ̃ and δ̃k are the

parameters of this model. Therefore, the right hand side of Equation (B.1) can be written

as:

P (X = j|Z, Y = 1)

P (X = j|Z, Y = 0)
= exp

{
µ∗ + βj +

L2∑
k=1

δ∗kI(Z = k) +

L2∑
k=1

γjkI(Z = k)

}
.

When the risk factor X is held at its baseline level of 0, we have:

P (X = 0|Z, Y = 1)

P (X = 0|Z, Y = 0)
= exp

{
µ∗ +

L2∑
k=1

δ∗kI(Z = k)

}
.

The odds that X = j among the affected individuals relative to the odds among the unaf-

fected individuals can be written using the above equations as:

P (X = j|Z, Y = 1)

P (X = 0|Z, Y = 1)
× P (X = 0|Z, Y = 0)

P (X = j|Z, Y = 0)
= exp

{
βj +

L2−1∑
k=1

γjkI(Z = k)

}
. (B.2)

This motivates a polytomous logistic regression model for the j-th level of risk factor X
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relative to its baseline level, given by:

log

{
P (X = j|Z, Y )

P (X = 0|Z, Y )

}
= mj + βjY +

L2−1∑
k=1

djkI(Z = k) +

L2−1∑
k=1

γjkY I(Z = k) , (B.3)

where mj measures the frequency of the j-th level of the risk factor X among the unaffected

individuals when Z is held at its baseline level, βj is the association between the j-th level of

X and disease when Z is held at its baseline level, djk is the log odds ratio for the association

between the j-th level of X and the k-th level of Z in the unaffected individuals, and djk+γjk

denotes the association between the j-th level of X and the k-th level of Z in the affected

individuals. Under the null hypothesis of no interaction, we have γjk = 0 for all j and k. This

model motivates a resampling procedure for estimating the null distribution of ∆AUC. Our

model is derived for obtaining the null distribution of ∆AUC under the requirements that:

(i) the association between the risk factors among the unaffected individuals must remain

the same as that in the observed data; and (ii) their association among affected individuals

must be the same as that in the unaffected individuals. Equation (B.3) has parallels to the

conditional distribution of genetic factors given environmental factors and disease status,

described by Han et al [Han et al. 2012], which was developed to obtain the null distribution

of a test statistic for interactions under monotonicity constraints.

Our proposed resampling procedure based on Equation (B.3) proceeds as follows.

1. First, calculate ∆AUC for the observed data. Denote this as ∆AUCobs.

2. Now begin the resampling procedure as follows. Fit the polytomous logistic regression

model of Equation (B.3) under the null hypothesis (i.e., by setting γjk = 0 for all j

and k) using the observed data.

3. Get the estimated parameters of the model.
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4. For each individual, retain their observed values of Y and Z, and calculate the con-

ditional probability that X = j by plugging the estimated parameters into the right

hand side of Equation (B.3).

5. Use this probability to sample X for each individual.

6. Fit 2 models to this null data set. The first model will be Equation (1) of the paper

that includes interactions. The second model will be an additive logistic regression

model i.e., Equation (1) but with γjk = 0 for all j and k.

7. Calculate the AUCs of these 2 models and obtain ∆AUC.

8. Repeat Steps 5 to 8 for a total of B times (we used B = 1000).

9. The resulting vector of ∆AUCs provides the required null distribution.

10. Calculate the p-value as the proportion of the null ∆AUCs that are greater than

∆AUCobs.

C Simulation setup

We simulated N independent individuals (N1 affected and N0 = N −N1 unaffected individ-

uals), each having two categorical risk factors: X taking values 1, 2, · · · , L1 and Z taking

values 1, 2, · · · , L2. We assumed that X and Z conferred disease risk when they exceed some

threshold i.e., when X ≥ C1 and Z ≥ C2. This choice is motivated by threshold models that

are commonly postulated for complex diseases such as cancer, whereby disease risk increases

considerably when an underlying risk factor (for example, RNA or protein expression, body

mass index, or cholesterol level) exceeds a certain limit.

Setting P (X ≥ C1) = px, we assumed P (X = j) = px/(L1−C1+1) for j = C1, C1+1, · · · , L1.

Further, we assumed that P (X = j) = (1 − px)/(C1 − 1) for j = 1, · · · , C1 − 1. Similarly,
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setting P (X ≥ C2) = pz, we assumed P (Z = k) = pz/(L2 −C2 + 1) for k = C2, · · · , L2, and

P (Z = k) = (1− pz)/(C2 − 1) for k = 1, · · · , C2 − 1.

We assumed the two risk factors to have correlation ρ, given by

ρ =
px × {P (Z ≥ C2|X ≥ C1)− pz}√

px(1− px) pz(1− pz)
. (C.1)

Let Y be the binary disease status, with Y = 1 and 0 denoting affected and unaffected

statuses, respectively. Given the two risk factors and the thresholds, disease risk was assumed

to follow a logistic regression model given by:

log

{
P (Y = 1|X,Z)

P (Y = 0|X,Z)

}
= log

{
π

1− π

}
+ β × {I(X ≥ C1)− px)}√

px(1− px)
+ δ × {I(Z ≥ C1)− pz)}√

pz(1− pz)
+

γ × {I(X ≥ C1)− px)} × {I(Z ≥ C2)− pz)}√
px(1− px) pz(1− pz)

, (C.2)

where π denotes baseline disease risk when the frequencies of X and Z exceeding the thresh-

old are at their average levels; I(.) is the indicator function taking value 1 when the condition

within parentheses is true and taking value 0 otherwise; β and δ are interpreted as the main

effects of the two risk factors; and γ is interpreted as the interaction effect.

We set π = 0.05, px = 0.50, pz = 0.70, L1 = 3, C1 = 2, L2 = 2, C2 = 1, and simulated 100

data-sets under the following configurations for each data-set.

Sample Size: N1 = N0 = 500 and 200.

Correlation: ρ = {0, 0.25, 0.50}.

Effects under the null: We set δ = K1 × β and γ = K2 × β, with K1 = 0.50. To

examine type I errors of the three tests based on the likelihood ratio statistic, ∆AUC,

and RERI, we simulated data under the null by setting K2 = 0 (i.e., γ = 0). Note

that when the risk factors are independent, the AUC based on Equation (C.2) is
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Φ

{√
β2 + δ2 + γ2√

2

}
= Φ

{
β ×

√
1 +K2

1 +K2
2√

2

}
. We simulated β such that the AUCs

under the null (i.e., AUC0) were 0.55, 0.60, and 0.65.

Non-null effects: To examine the power of the three tests, we generated non-null data by

setting K2 such that ∆AUC = {0.05, 0.10, 0.15}.

Table S1 shows various parametric configurations used in our simulations.
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Table S1: Values of model parameters used for simulations

β δ γ AUC0 AUC1
Quantitative Interactions
0.15 0.1 0.3 0.55 0.60
0.15 0.1 0.7 0.55 0.70
0.35 0.1 0.6 0.60 0.69
0.55 0.1 0.5 0.65 0.70
0.55 0.1 1.1 0.65 0.80
0.75 0.1 0.9 0.70 0.80
0.95 0.1 0.7 0.75 0.80
Qualitative Interactions
0.15 0.1 -0.3 0.55 0.60
0.15 0.1 -0.7 0.55 0.70
0.35 0.1 -0.7 0.60 0.71
0.55 0.1 -0.5 0.65 0.70
0.55 0.1 -1.05 0.65 0.80
0.75 0.1 -0.9 0.70 0.80
0.75 0.6 -0.75 0.75 0.81
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Figure S1: A visual representation of quantitative and qualitative interactions.
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Figure S2: Odds ratios (left column) and empirical distribution of RERI obtained via
bootstrap (right column) for the three melanoma data applications. Rows 1, 2, and 3 show
the results for sun exposure corresponding to beach and water activities from age 15, average
annual lifetime ambient UV, and early life ambient UV, respectively. In the right column,
the vertical bold black line shows the estimated RERI, the black dashed lines are the 95%
confidence intervals, and the dashed red line denotes the benchmark value of RERI = 0.
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