Appendix 5 GRADE Evidence Profile for prospective cohort studies of saturated-fatty acids and health outcomes [posted as supplied by author] | Outcome | Participants
(# studies) | Risk
of bias | Inconsistency | Indirectness | Imprecision | Publication
bias | Overall
quality
of
evidence | Study event rate (%) | Dose-
Respons
e | Most-
adjuste
d
MV RR | Absolu
te –
adjuste
d (per
10,000) | Least-
adjuste
d MV
RR | Importanc
e | |------------------------|--|--|--|-------------------------|--------------------------------------|---|--------------------------------------|--------------------------|-----------------------|---|--|----------------------------------|----------------| | All-cause
mortality | 99,906 (5
studies; 7
comparisons) ² | Serious
risk of
bias ³ | No serious inconsistency ⁴ | No serious indirectness | No serious imprecision ⁵ | Not assessed ⁶ | ⊕OOO
VERY
LOW ⁷ | 14,090/99,906
(14.1%) | No ⁸ | RR: 0.99
(0.91,
1.09) | fewer (from 103 fewer to 103 more) | RR:
0.99
(0.91 to
1.08) | CRITICAL | | CHD
mortality | 101,712 (11
studies, 15
comparisons) ⁹ | Seriou
s risk
of
bias ¹⁰ | Serious
inconsistency ¹¹ | No serious indirectness | Serious
imprecision ¹² | Possible publication bias 13 | ⊕OOO
VERY
LOW ¹⁴ | 2,970/101,712
(2.9%) | No ¹⁵ | 1.15
(0.97 to
1.36) | 3 more
(from 6
fewer
to 73
more)
25 | 1.20
(1.02 to
1.41) | CRITICAL | | CHD total | 267,416 (12
studies, 17
comparisons) ¹⁶ | No
serious
risk of
bias ¹⁷ | Serious
inconsistency ¹⁸ | No serious indirectness | Serious
imprecision ¹⁹ | No serious publication bias ²⁰ | ⊕OOO
VERY
LOW ²¹ | 6,383/267,416
(2.4%) | No | 1.06
(0.95 to
1.17) | more
(from
21
fewer
to 72
more)
13 | 1.12
(1.00 to
1.26) | CRITICAL | | CVD
Mortality | 90,501 (3
studies; 5
comparisons) ²² | Seriou
s risk
of
bias ²³ | No serious inconsistency ²⁴ | No serious indirectness | Serious
imprecision ²⁵ | Not assessed ²⁶ | ⊕OOO
VERY
LOW ²⁷ | 3,792/90,501
(4.2%) | No | 0.97
(0.84 to
1.12) | fewer
(from
67
fewer
to 50
more) | 0.97
(0.84 to
1.12) | CRITICAL | | Ischemic
Stroke | 339,090 (12
studies; 15
comparisons) ²⁸ | Seriou
s risk
of
bias ²⁹ | Serious
inconsistency ³⁰ | No serious indirectness | Serious
imprecision ³¹ | No serious publication bias ³² | ⊕OOO
VERY
LOW ³³ | 6,226/339,090
(1.8%) | No | 1.02
(0.90 to
1.15) | 1 more
(from 7
fewer
to 11
more)
28 | 1.03
(0.91 to
1.16) | CRITICAL | | Type 2 diabetes | 237,454 (8
studies; 8
comparisons) ³⁴ | No
serious
risk of
bias ³⁵ | No serious inconsistency ³⁶ | No serious indirectness | Serious
imprecision ³⁷ | Not
assessed ³⁸ | ⊕OOO
VERY
LOW ³⁹ | 8,739/237,454
(3.7%) | No | 0.95
(0.88 to
1.03) ⁴⁰ | fewer (from 67 fewer to 17 more) | 1.23(0.9
8 to
1.52) | CRITICAL | Explanatory Notes: ¹Absolute risk was estimated using a procedure called Method of Variance Estimates Recovery (MOVER) proposed by Newcombe et al. (*Evid Based Med* 2014;19;6-8). Estimates of baseline risk and associated 95% confidence levels, were obtained from the Emerging Risk Factors Consortium (*Lancet* 2010 Jun 26;375(9733):2215-22) which included 691,872 people from 102 prospective studies. Overall, the mean age of participants at entry was 52 (SD 13) years, and 297,081 (43%) were women. (96%) were in Europe, North America, and Australasia, with the remainder in Japan or the Caribbean. These risks were 11.4% (11.2% to 11.6%) for total mortality; 2.0% (1.9% to 2.2%) for CHD mortality, 4.2% (4.1% to 4.4%) for total CHD: 0.7% (0.5% to 0.8%) for ischemic stroke; and 5.6% (5.5% to 5.8%) for type 2 diabetes. ²The meta-analysis pooled estimate Included data from 5 prospective cohort studies (7 comparisons), with average duration of follow-up ranging from 6.6 to 19.3 y (median=13.3), enrolling participants from 5 different countries (UK, USA, Sweden, Taiwan, and Japan). Also reviewed in the text but not included in the meta-analysis was the Seven Countries Study, which followed 12,763 men from 7 different countries (USA, Finland, Netherlands, Italy, Croatia, Serbia, Greece, and Japan) for 25 years, and observed 5,973 deaths (31.9%) ³Possibility of residual confounding always must be considered in observational studies. Newcastle-Ottawa score for 6 studies range from 6 to 8 (median=7). Main study limitations included incomplete adjustment for confounders, and measurement error related to saturated fat intake. ⁴Though not included in the meta-analysis, our review identified the findings of the 7 Countries' study (Kromhout et al.) which supported a continuous dose-response association for reduced SFA: a 5% reduction in %E from saturated fat was associated with 4.7% reduction in total mortality risk; however meta-analysis of 5 prospective cohort studies (7 comparisons) consistent with no effect of increased SFA on mortality (I²=33%; P_{het}=0.17). Not downgraded. ⁵Optimal information size met (n=14,090 events); summary RR crosses 1.0, but bounds of 95% CL >0.8 and <1.2. Not downgraded. ⁶Due to small number of studies (n<10) risk of publication bias not formally assessed. ⁷Data from cohort studies begin with a grade of "LOW". Downgraded for serious risk of bias. Though not included in the meta-analysis, the 7 Countries' study (Kromhout et al.) found a continuous dose-response association for reduced SFA: a 5% reduction in %E from saturated fat associated with 4.7% reduction in total mortality risk); no dose-response noted by Mann et al., Tucker et al., Chien et al., Wakai et al., or Leosdottir et al. ⁹Included data from 11 prospective cohort studies (15 comparisons), with a duration of follow-up from 6 to 23 y (median=16), enrolling participants from 6 different countries. ¹⁰Possibility of residual confounding always must be considered in observational studies. Newcastle-Ottawa score for 11 studies ranged from 6 to 9 (median=7). Main study limitations included incomplete adjustment for confounders, high attrition, and uncertain outcome confirmation. Fully-adjusted models yield weaker effects than minimally-adjusted models, suggesting that these variables captured some important confounders. $^{11}\Gamma^2$ =70%; P_{her} <.0001; 9 studies had point estimates > 1.0 and 5 had point estimates < 1.0; 1 study had point estimate=1.0. ¹²Optimal information size met (n=2,970 events); summary RR crosses 1.0: lower bound of 95% CI >0.8 but upper bound > = 1.36, which exceeds the threshold for important harm. ¹³funnel plot asymmetry suggestive of publication bias; Egger's test P=0.191 and Begg's test P=0.138. Trim-and-fill analysis identified 2 "missed" studies. "Filled" random-effects RR: 1.09 (95% CI: 0.91 to 1.30; P=0.361; P_{het}<0.001) [eFigure 66] ¹⁴Data from cohort studies begin with a grade of "LOW". Downgraded for serious risk of bias, serious inconsistency, serious imprecision, and possible publication bias 15 No evidence of dose-response association in 2 studies which directly measured it (Xu et al., Ascherio et al.; n=367 observed events in 46,335 individuals, combined, followed for 6-7 years). ¹⁶Included data from 12 prospective cohort studies (17 comparisons), with a duration of follow-up from 1 to 20 y (median=11.1), enrolling participants from 7 different countries. ¹⁷Possibility of residual confounding always must be considered in observational studies. Newcastle-Ottawa score for 9 assessable studies range from 6 to 9 (median=8). Main study limitations included incomplete adjustment for confounders (most commonly family history), uncertain outcome validation, and use of a single 24-h recall to represent long-term diet. Fully-adjusted models yield weaker effects than minimally-adjusted models, suggesting that these variables captured some important confounders. Not downgraded. $^{18}I^2=47\%$; $P_{he}=.02$; 8 studies had point estimates >1.0 and 9 had point estimates <1.0. - ¹⁹Optimal information size met (n=6,383 events); summary RR crosses 1.0, however both bounds of 95% >0.8 and <1.2. - ²⁰Funnel plot revealed no asymmetry; neither test of publication bias approached P<0.10; "filled" random-effects RR: 1.03 (95% CI: 0.92 to 1.15; P=0.586; P_{het}=0.003). [eFigure 67] - ²¹Data from cohort studies begin with a grade of "LOW". Downgraded for serious inconsistency. - ²²Included data from 3 prospective cohort studies (5 comparisons), with a duration of follow-up of 6.6 to 19.3 y (median=14), enrolling participants from Sweden and Japan. - ²³Possibility of residual confounding always must be considered in observational studies. Newcastle-Ottawa scores for 3 studies ranged from 5 to 8 (median=7). Main limitations related to potential for measurement error of saturated fat; and incomplete adjustment for confounders. Downgraded. - $^{24}I^2 = 19\%$; $P_{het} = .29$; 4 of 5 point estimates < 1.0 - ²⁵Optimal information size met (n=3,792 events); summary RR crosses 1.0, but lower bound of 95% CI = 0.84 and upper bound of 95% CI = 1.12. Not downgraded. - ²⁶Due to small number of studies (n<10) risk of publication bias not formally assessed. - ²⁷Data from cohort studies begin with a grade of "LOW". Downgraded for serious risk of bias. - ²⁸Included data from 12 prospective cohort studies (15 comparisons), with a duration of follow-up from 7.6 to 32 y (median=14), enrolling participants from 6 different countries. - ²⁹Possibility of residual confounding always must be considered in observational studies. Newcastle-Ottawa score for 12 studies ranged from 5 to 8 (median=7). Main study limitations included incomplete adjustment for confounders (most commonly family history, and socioeconomic status), and failure to document losses to follow-up, and unclear outcome validation. - 30 I²=59%; P_{het} =.002; 8 studies had point estimates >1.0 and 7 had point estimates <1.0. - ³¹Optimal information size met (n=6,226 events); summary RR crosses 1.0, however both bounds of 95% >0.8 and <1.2. - ³²Funnel plot revealed no asymmetry; neither test of publication bias approached P<0.10. Trim-and-fill identified no "missed" studies. [eFigure 68] - ³³Data from cohort studies begin with a grade of "LOW". Downgraded for serious risks of bias, serious inconsistency. - ³⁴Included data from 8 prospective cohort studies (8 comparisons), with a duration of follow-up from 5 to 14 y (median=9.9), enrolling participants from 3 different countries (USA, Finland, Australia). - ³⁵Possibility of residual confounding always must be considered in observational studies. Fully-adjusted models yield weaker effects than minimally-adjusted models, suggesting that these variables captured some important confounders. Newcastle-Ottawa score for 8 studies range from 5 to 9 (median=6.5). Main study limitations included incomplete adjustment for confounders (most commonly family history and socioeconomic status), uncertain outcome validation. - $^{36}I^2$ =0%; P=.61; 1 study had RR >1.0, 7 had RR<1.0. - ³⁷Optimal information size met (n=8,739 events); summary RR crosses 1.0, however both bounds of 95% >0.8 and <1.2. - ³⁸Due to small number of studies (n<10) risk of publication bias not formally assessed. - ³⁹Data from cohort studies begin with a grade of "LOW". Downgraded for serious imprecision. - ⁴⁰When we pool prospective cohort studies and nested case-control studies (n=2; 1,019 cases; pooled mvRR=1.49; 95% CI: 0.99 to 2.23), the pooled effect is 1.00 (95% CI: 0.90 to 1.12; I^2 =41% P_{het} =.08)