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ABSTRACT

This supplementary material contains some additional details regarding the velocity distribution in the molecular dynamics
simulation, the power spectrum of the Fourier transform of the graphene samples, further details concerning the fractal
dimension, the Left-passage probability test within the SLE theory, and finally some remarks on other atomistic membranes.

Maxwell-Boltzmann distribution
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Figure S1. Velocity distribution of carbon atoms of a quadratic graphene sheet of size 400 Å after 200 ps simulation. The red
line is the Maxwell-Boltzmann distribution at T = 300 K.

Power spectrum
We study some further properties of the graphene sheets, and especially its power spectrum. From the power spectrum of a
graphene membrane of size 800 Å at 300 K, we obtain an estimate of the Hurst exponent α (see Fig. S2) in agreement with the
one obtained from the height-height correlation function, see Fig. 2 of the main text.

Fractal dimension at higher temperatures
We perform an additional study to see if the fractal dimension of the iso-height contour lines keeps being independent of the
system size for higher temperatures. Indeed, Fig. S3 confirms the temperature independence of the system size for temperatures
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Figure S2. Power spectrum of a given graphene sheet. One recovers the expected power law behavior. The solid line is a
guide to the eye of a slope of −2(α +1) with α = 0.68±0.05.

much higher than 600 K.

Fractal dimension of the area
The fractal dimension da of the area that the contour lines enclose has also been measured (see Fig. S4), finding a value of
da = 1.82±0.01, which is also independent of the temperature. Our results show that the iso-height contour lines and the area
enclosed by them possess scale invariant properties. We have also studied the fractal dimension of the watershed (defined in
Ref.1) of each graphene sample. A temperature invariant fractal dimension of those lines is found to be d f = 1.07±0.01. This
result strengthens the analogy of graphene membranes with other landscapes at criticality.2

Left-passage probability
In order to have a further numerical evidence of the compatibility of the statistics of iso-height lines on graphene surfaces with
SLE, we study a further property of the SLE paths. Their left-passage probabilities should follow the so-called Schramm’s
formula of Eq. (1) for chordal SLE curves. Such curves start at the origin and grow towards infinity. Therefore, they split the
upper half-plane in two domains: the points that are at the left of the curve, and the ones that are at the right. Schramm provided
an expression for the probability that the curve goes at the left of a given point in the upper half-plane, i.e. the point is on the
right side of the curve:
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where Γ is the Gamma function and 2F1 is the hypergeometric function. Here we show that this formula is satisfied by the
iso-height lines of graphene using the following method. We first define a set of sample points S, for which we estimate the
probability of being at the right of our curves that have been mapped to infinity.3 To estimate κ , we minimize the mean square
deviation Q(κ) defined as:

Q(κ) =
1
|S|∑z∈S

[P(z)−Pκ(φ)]
2 , (2)

where |S| is the cardinality of the set S, and P(z) the measured left-passage probability at the point z. The value of κ for which
the minimum of Q is attained gives us an estimate of the diffusion coefficient of our iso-height lines. In Fig. S5, we can see that
the results are in agreement with our previous estimates of κ = 2.27±0.08, and also show that the left-passage probability
satisfies Schramm’s formula.
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Figure S3. Fractal dimension of the iso-height contour lines computed with the yardstick method for different temperatures
and fixed system size of 800 Å.
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Figure S4. Fractal dimension of the area enclosed by the iso-height contour lines measured with the box-counting method.
Main panel: The fractal dimension for different system sizes at T = 300 K. Inset: The fractal dimension for different
temperatures for a system size of 800 Å.
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Figure S5. (color online) Measured rescaled mean square deviation Q(κ)/Qmin as a function of κ being Qmin the minimum
value of Q, for temperatures T = 100 K, T = 300 K, and T = 600 K. Inset: the measured left-passage probabilities are
compared with Schramm’s formula for κ = 2.24 (displayed as the solid line).

Other atomistic membranes
Fig. S6 shows a simulation performed with silicon atoms in a honeycomb lattice. We can see that the suspended structure
crumples and does not form a stable two-dimensional-like crystal, in contrast to graphene membranes (see inset of Fig. S6).
The stability of the suspended graphene membrane is not found for the chemically similar suspended silicene membrane.
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Figure S6. Main panel: Simulation of suspended silicene, a two-dimensional honeycomb lattice with silicon atoms. The
simulation has been performed with the Tersoff potential applied to silicon.4 Inset panel: Graphene membrane simulated with
the Tersoff potential.
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