Antioxidant Lignans and Neolignans from Acorus tatarinowii

Yuanyuan Lu,^{1,2} Yongbo Xue,¹ Shenjie Chen,¹ Hucheng Zhu,¹ Jinwen Zhang,² Xiao-Nian Li,³ Jianping Wang,¹ JunJun Liu,¹ Changxing Qi,¹ Guang Du^{2,*} & Yonghui Zhang^{1,*}

¹Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China

²Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
³State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China

* Corresponding Authors

* Tel./fax: +86-027-83692892

Emails: zhangyh@mails.tjmu.edu.cn (Y.Z.);

tjyxb@sina.com (G.D.)

Figure S1. (+)-HR-ESI-MS spectrum of 1 (1a/1b)	1
Figure S2. IR spectrum of 1 (1a/1b)	1
Figure S3. UV spectrum of 1 (1a/1b)	2
Figure S4. ¹ H NMR spectrum of 1 (1a/1b) in CDCl ₃	2
Figure S5. ¹³ C NMR spectrum of 1(1a/1b) in CDCl ₃	3
Figure S6. HSQC spectrum of 1 (1a/1b) in CDCl ₃	3
Figure S7. HMBC spectrum of 1 (1a/1b) in CDCl ₃	4
Figure S8. ¹ H- ¹ H COSY spectrum of 1 (1a/1b) in CDCl ₃	4
Figure S9. NOESY spectrum of 1 (1a/1b) in CDCl ₃	5
Figure S10. (+)-HR-ESI-MS spectrum of 2 (2a/2b)	5
Figure S11. IR spectrum of 2 (2a/2b)	6
Figure S12. UV spectrum of 2 (2a/2b)	6
Figure S13. ¹ H NMR spectrum of 2 (2a/2b) in CDCl ₃	7
Figure S14. ¹³ C NMR spectrum of 2 (2a/2b) in CDCl ₃	7
Figure S15. HSQC spectrum of 2 (2a/2b) in CDCl ₃	8
Figure S16. HMBC spectrum of 2 (2a/2b) in CDCl ₃	8
Figure S17. 1 H- 1 H COSY spectrum of 2 (2a/2b) in CDCl ₃	9
Figure S18. NOESY spectrum of 2 (2a/2b) in CDCl ₃	9
Figure S19. (+)-HR-ESI-MS spectrum of 3 (3a/3b)	10
Figure S20. IR spectrum of 3 (3a/3b)	10
Figure S21. UV spectrum of 3 (3a/3b)	11
Figure S22. ¹ H NMR spectrum of 3 (3a/3b) in CD ₃ OD	11
Figure S23. ¹³ C NMR spectrum of 3 (3a/3b) in CD ₃ OD	12
Figure S24. HSQC spectrum of 3 (3a/3b) in CD ₃ OD	112
Figure S25. HMBC spectrum of 3 (3a/3b) in CD ₃ OD	13
Figure S26. ¹ H- ¹ H COSY spectrum of 3 (3a/3b) in CD ₃ OD	13
Figure S27. NOESY spectrum of 3 (3a/3b) in CD ₃ OD	14
Figure S28. (+)-HR-ESI-MS spectrum of 4	14
Figure S29. IR spectrum of 4	15
Figure S30. UV spectrum of 4	15

Figure S31. ¹ H NMR spectrum of 4 in CDCl ₃	
Figure S32. ¹³ C NMR spectrum of 4 in CDCl ₃	
Figure S33. HSQC spectrum of 4 in CDCl ₃	
Figure S34. HMBC spectrum of 4 in CDCl ₃	
Figure S35. ¹ H- ¹ H COSY spectrum of 4 in CDCl ₃	
Figure S37. ECD spectrum of 4 in MeOH	
Figure S38. (+)-HR-ESI-MS spectrum of 5	
Figure S39. IR spectrum of 5	
Figure S40. UV spectrum of 5	
Figure S41. ¹ H NMR spectrum of 5 in CD ₃ OD	
Figure S42. ¹³ C NMR spectrum of 5 in CD ₃ OD	
Figure S43. HSQC spectrum of 5 in CD ₃ OD	
Figure S44. HMBC spectrum of 5 in CD ₃ OD	
Figure S45. ¹ H- ¹ H COSY spectrum of 5 in CD ₃ OD	
Figure S46. NOSEY spectrum of 5 in CD ₃ OD	
Figure S47. ECD spectrum of 5 in MeOH	
Figure S48. (+)-HR-ESI-MS spectrum of 6	
Figure S49. IR spectrum of 6 (6a/6b)	
Figure S50. UV spectrum of 6	
Figure S51. ¹ H NMR spectrum of 6 in CD ₃ OD	
Figure S52. ¹³ C NMR spectrum of 6 in CD ₃ OD	
Figure S53. HSQC spectrum of 6 in CD ₃ OD	
Figure S54. HMBC spectrum of 6 in CD ₃ OD	
Figure S55. ¹ H- ¹ H COSY spectrum of 6 in CD ₃ OD	
Figure S56. NOESY spectrum of 6 in CD ₃ OD	
Figure S57. ECD spectrum of 6 in MeOH	
Figure S58. (+)-HR-ESI-MS spectrum of 7	
Figure S59. IR spectrum of 7	
Figure S60. UV spectrum of 7	
Figure S61. ¹ H NMR spectrum of 7 in CD ₃ OD	

Figure S62. ¹³ C NMR spectrum of 7 in CD ₃ OD
Figure S63. HSQC spectrum of 7 in CD ₃ OD
Figure S64. HMBC spectrum of 7 in CD ₃ OD
Figure S65. ¹ H- ¹ H COSY spectrum of 7 in CD ₃ OD
Figure S66. NOESY spectrum of 7 in CD ₃ OD33
Figure S67. ECD spectrum of 7 in MeOH
Figure S68. (+)-HR-ESI-MS spectrum of 8
Figure S69. IR spectrum of 8
Figure S70. UV spectrum of 8
Figure S71. ¹ H NMR spectrum of 8 in CD ₃ OD
Figure S72. ¹³ C NMR spectrum of 8 in CD ₃ OD
Figure S73. HSQC spectrum of 8 in CD ₃ OD
Figure S74. HMBC spectrum of 8 in CD ₃ OD
Figure S75. 1 H- 1 H COSY spectrum of 8 in CD ₃ OD
Figure S76. NOESY spectrum of 8 in CD ₃ OD
Figure S77. ECD spectrum of 8 in MeOH
Figure S78. (+)-HR-ESI-MS spectrum of S-MTPA-7 ester
Figure S79. (+)-HR-ESI-MS spectrum of <i>R</i> -MTPA-7 ester
Figure S80. ¹ H NMR spectrum of R/S -MTPA-7 ester in CD ₃ OD40
Figure S81. ECD spectra calculation
Figure S82. Five lowest energy conformers of the isomer 7S,7'R,8S,8'S and five
lowest energy conformers of the 7 <i>R</i> ,7′ <i>S</i> ,8 <i>R</i> ,8′ <i>R</i> isomer of compound 1 41
Table S1 . Relative free energies (ΔG) and equilibrium populations (P) of the
conformers of the (7 <i>S</i> ,7′ <i>R</i> ,8 <i>S</i> ,8′ <i>S</i>)-1 and (7 <i>R</i> ,7′ <i>S</i> ,8 <i>R</i> ,8′ <i>R</i>)-142

Figure S1. (+)-HR-ESI-MS spectrum of 1 (1a/1b)

Figure S2. IR spectrum of 1 (1a/1b)

Figure S3. UV spectrum of 1 (1a/1b)

Figure S4. ¹H NMR spectrum of 1 (1a/1b) in CDCl₃

Figure S5. ¹³C NMR spectrum of 1(1a/1b) in CDCl₃

Figure S6. HSQC spectrum of 1 (1a/1b) in CDCl₃

Figure S7. HMBC spectrum of 1 (1a/1b) in CDCl₃

Figure S8. ¹H-¹H COSY spectrum of 1 (1a/1b) in CDCl₃

Figure S10. (+)-HR-ESI-MS spectrum of 2 (2a/2b)

Figure S11. IR spectrum of 2 (2a/2b)

Figure S12. UV spectrum of 2 (2a/2b)

Figure S14.¹³C NMR spectrum of 2 (2a/2b) in CDCl₃

Figure S15. HSQC spectrum of 2 (2a/2b) in CDCl₃

Figure S17. ¹H-¹H COSY spectrum of 2 (2a/2b) in CDCl₃

Figure S18. NOESY spectrum of 2 (2a/2b) in CDCl₃

Figure S19. (+)-HR-ESI-MS spectrum of 3 (3a/3b)

Figure S20. IR spectrum of 3 (3a/3b)

Figure S21. UV spectrum of 3 (3a/3b)

Figure S22. ¹H NMR spectrum of 3 (3a/3b) in CD₃OD

Figure S23.¹³C NMR spectrum of 3 (3a/3b) in CD₃OD

Figure S24. HSQC spectrum of 3 (3a/3b) in CD₃OD

Figure S26. ¹H-¹H COSY spectrum of **3** (**3a/3b**) in CD₃OD

Figure S27. NOESY spectrum of 3 (3a/3b) in CD₃OD

Figure S29. IR spectrum of 4

Figure S32. ¹³C NMR spectrum of 4 in CDCl₃

ò -10

Figure S33. HSQC spectrum of 4 in CDCl₃

Figure S34. HMBC spectrum of 4 in CDCl₃

Figure S35. ¹H-¹H COSY spectrum of 4 in CDCl₃

Figure S36. NOESY spectrum of **4** in CDCl₃

Figure S37. ECD spectrum of 4 in MeOH

Figure S39. IR spectrum of 5

Figure S44. HMBC spectrum of 5 in CD₃OD

Figure S46. NOSEY spectrum of 5 in CD₃OD

Figure S47. ECD spectrum of 5 in MeOH

Figure S49. IR spectrum of 6 (6a/6b)

Figure S52. ¹³C NMR spectrum of 6 in CD₃OD

27

7.0

6.5

6. 0

5.5

5.0

4.5

-100 -110

-120 -130 -140 -150

1. 0

0bi

2.5

3.0

3. 5

4.0 f2 (ppm) 2.0

1.5

Figure S55. ¹H-¹H COSY spectrum of 6 in CD₃OD

Figure S56. NOESY spectrum of 6 in CD₃OD

Figure S57. ECD spectrum of 6 in MeOH

Figure S58. (+)-HR-ESI-MS spectrum of 7

Figure S59. IR spectrum of 7

Figure S60. UV spectrum of 7

Figure S61. ¹H NMR spectrum of 7 in CD₃OD

31

Figure S64. HMBC spectrum of 7 in CD₃OD

Figure S65. ¹H-¹H COSY spectrum of 7 in CD₃OD

Figure S66. NOESY spectrum of 7 in CD₃OD

Figure S67. ECD spectrum of 7 in MeOH

Figure S68. (+)-HR-ESI-MS spectrum of 8

Figure S69. IR spectrum of 8

Figure S70. UV spectrum of 8

Figure S71. ¹H NMR spectrum of 8 in CD₃OD

Figure S72. ¹³C NMR spectrum of 8 in CD₃OD

Figure S74. HMBC spectrum of 8 in CD₃OD

Figure S75. ¹H-¹H COSY spectrum of **8** in CD₃OD

Figure S77. ECD spectrum of 8 in MeOH

Figure S78. (+)-HR-ESI-MS spectrum of S-MTPA-7 ester

Figure S79. (+)-HR-ESI-MS spectrum of *R*-MTPA-7 ester

Figure S80. ¹H NMR spectrum of *R/S*-MTPA-7 ester in CD₃OD

Figure S81. ECD spectra calculation

The conformational analyses were carried out for compounds **1a/1b** using BALLOON11 and confab12 programs. The theoretical calculation of ECD was performed using time-dependent density functional theory (TDDFT) at the B3LYP/6-31G (d, p) level in methanol with a PCM model. The calculated ECD curve was generated using SpecDis 1.51.

Figure S82. Five lowest energy conformers of the isomer 7S, 7'R, 8S, 8'S and five lowest energy conformers of the 7R, 7'S, 8R, 8'R isomer of compound **1**.

a-e: Five lowest energy conformers of the 7S, 7'R, 8S, 8'S isomer.

a'-e': Five lowest energy conformers of the 7R, 7'S, 8R, 8'R isomer.

Table S1. Relative free energies (ΔG) and equilibrium populations (P) of the conformers of the (7*S*,7'*R*,8*S*,8'*S*)-1 and (7*R*,7'*S*,8*R*,8'*R*)-1

conformer	isomer 7 <i>S</i> ,7′ <i>R</i> ,8 <i>S</i> ,8′ <i>S</i>		conformer	Isomer 7 <i>R</i> ,7′ <i>S</i> ,8 <i>R</i> ,8′ <i>R</i>	
	ΔG (kcal/mol)	P (%)	- conformer	ΔG (kcal/mol)	P(%)
а	0.7975	9.96%	a'	1.4749	3.98%
b	1.5650	2.73%	b′	0.0000	47.89%
с	0.6379	13.05%	c'	1.4666	4.03%
d	0.0000	38.27%	d'	0.2589	30.94%
e	0.0365	35.99%	e'	0.7650	13.17%