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Appendix S1

Proof of Theorem 1

Without loss of generality, we assume that Y andX are centered. For testing H0 : β = 0,

the Wilk’s Lambda test statistic is detE/det(H+E) = det( 1
n
E)/det( 1

n
H+ 1

n
E) , where

H = β̂(X ′X)β̂
′
, E = Y ′Y − β̂(X ′X)β̂

′
, n is the number of unrelated individuals, and

β̂ = Y ′X(X ′X)−1 is the least squares estimate of the vector of genetic effects β. Note

that X ′X =
∑n

i=1X
2
i is a random variable (not a matrix), where E(X2

i ) = 2f(1− f) =

Var(Xi) ∀ i. Using our distributional assumptions about centered X and E , it can be

shown that 1
n
H

P→ 2f(1− f)ββ′ and 1
n
E

P→ Σ as n→∞. Here,
P→ denotes convergence

in probability as n→∞.

For the CS residual covariance matrix Σ, we know that the eigen vector corresponding

to the largest eigenvalue λ1 = σ2{1 + (K − 1)ρ} is v1 ∝ 1, while the eigen vectors

corresponding to λ2 = ... = λK = σ2(1 − ρ) are respectively v2, ...,vK such that 1′vk =

0 ∀ k = 2, ..., K. For the eigen vectors to be orthonormal, we must have v1 = cK1 where

c2K = 1/K. Thus, we can write, Σ = λ1c
2
K11′ +

∑K
i=2 λiviv

′
i and Σ−1 = 1

λ1
c2K11′ +∑K

i=2
1
λi
viv

′
i.

Consider the testing of H0 : β = 0 against two possible alternatives: Ha,u : β1 = ... =

βu 6= 0, βK−u = ... = βK = 0 (partial association) and Ha,K : β1 = ... = βK 6= 0 (complete
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association). Under the alternative Ha,K (complete association), |I +HE−1| is given by

∣∣∣∣∣I +
HK

n

(
E

n

)−1∣∣∣∣∣ P→
n→∞

∣∣∣∣∣IK + (2f(1− f)β2
111′)

(
1

λ1
c2K11′ +

K∑
i=2

1

λi
viv

′
i

)∣∣∣∣∣
= 1 +

2f(1− f)β2
1

λ1
K

Under the alternative Ha,u (partial association),

|I +HE−1| Ha,u
= |I + Hu

n

(
E
n

)−1 |
P→

n→∞

∣∣∣∣∣∣∣IK + 2f(1− f)

β2
11u1

′
u 0

0′ O


 Σ11(u×u) Σ12(u×K−u)

Σ′
12(K−u×u) Σ22(K−u×K−u)


−1∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣I + 2f(1− f)

β2
11u1

′
u 0

0′ O


Σ11 Σ12

? ?


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣I + 2f(1− f)

A B

0′ O


∣∣∣∣∣∣∣

= |Iu + 2f(1− f)A|

= 1 +
2f(1− f)β2

1

σ2(1− ρ)

1 + (K − u− 1)ρ

1 + (K − 1)ρ
u

where Σ11 = σ2(1 − ρ)Iu + σ2ρ1u1
′
u, Σ22 = σ2(1 − ρ)IK−u + σ2ρ1K−u1

′
K−u, Σ12 =

σ2ρ1u1
′
K−u, Σ11 = (Σ11 −Σ12Σ

−1
22 Σ′12)

−1, Σ12 = −Σ−111 Σ12(Σ22 −Σ′12Σ
−1
11 Σ12)

−1,

A = β2
11u1

′
u

(
Σ11 −Σ12Σ

−1
22 Σ′12

)−1
, B = −β2

11u1
′
uΣ
−1
11 Σ12(Σ22 −Σ′12Σ

−1
11 Σ12)

−1

So, |I +HuE
−1| − |I +HKE

−1| P→
n→∞

2f(1−f)β2
1

σ2{1+(K−1)ρ}

(
1+(K−u−1)ρ

1−ρ u−K
)
> 0 under the

condition u
K
> σ2{1−ρ}

σ2{1+(K−u−1)ρ} . It may be noted that the condition simplifies to ρ > 1
u+1

,

which explains why we observe higher power for partial association and lower for complete

association for K = 2 traits once the within trait correlation ρ exceeds 1/2. �

Proof of Theorem 2

Without loss of generality, let us assume that Y and X are centered. In particular, for

K = 2, 1
n
H

P→ 2f(1− f)

 β2
1 β1β2

β1β2 β2
2

 and 1
n
E

P→ σ2

1 ρ

ρ 1

 as n→∞.
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Let us now consider the alternatives Ha1 : β1 6= 0, β2 = 0 (only 1 trait is associated),

and Ha2 : β1 6= β2 6= 0 (both traits are associated). Under Ha1, the H/n matrix becomes

1
n
H1

P→ 2f(1− f)

β2
1 0

0 0

 for large n. Let H2 be the H matrix under Ha2. So,

det

(
H1

n
+
E

n

)
− det

(
H2

n
+
E

n

)
P→

∣∣∣∣∣∣∣
σ2 + 2f(1− f)β2

1 ρσ2

ρσ2 σ2

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
σ2 + 2f(1− f)β2

1 ρσ2 + 2f(1− f)β1β2

ρσ2 + 2f(1− f)β1β2 σ2 + 2f(1− f)β2
2

∣∣∣∣∣∣∣
= 2f(1− f)β2σ

2(2ρβ1 − β2)

> 0 if {β2 < 2ρβ1 & β2 > 0} or {β2 > 2ρβ1 & β2 < 0}

This means, we expect the statistic |E|/|H1 +E| under Ha1 (when only 1 trait is associ-

ated) to be closer to 0 than the statistic |E|/|H2 +E| under Ha2 when {0 < β2 < 2ρβ1}

or {0 > β2 > 2ρβ1}. Thus, for K = 2, MANOVA is expected to have more power when 1

trait is associated than when both traits are associated if 0 < β2 < 2ρβ1 or 0 > β2 > 2ρβ1.

�
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Appendix S2

Acceptance Region for MANOVA based on Z

Consider the MMLR model

Y n×K = Xn×1β
′
1×K + En×K (1)

where β′ = (β1, ..., βK) is the vector of fixed unknown genetic effects corresponding to

the K correlated traits, and E is the matrix of random errors. For testing that the SNP

is not associated with any of the K traits, the null hypothesis of interest is H0 : β = 0.

Assume E is a normal data matrix from NK(0,Σ). The log-likelihood l(β,Σ) of the

trait matrix Y is given by

l(β,Σ) = −1

2
n log |2πΣ| − 1

2
tr
{
Σ−1(Y −Xβ′)′(Y −Xβ′)

}
(2)

where Σ is a positive definite matrix representing residual covariance among the traits.

The MLE of β and Σ are β̂ = Y ′X(X ′X)−1 and Σ̂ = 1
n
Y ′(IK − X(X ′X)−1X ′)Y

respectively. Under the null, β = 0 and the MLE of Σ is Σ̂0 = 1
n
Y ′Y . The likelihood

ratio test (LRT) of H0 based on the MMLR model with matrix normal errors is equivalent

to MANOVA statistic Λ (Wilk’s Lambda):

−2 log Λ = 2
(
l(β̂, Σ̂)− l(0, Σ̂0)

)
= n log

|Σ̂0|
|Σ̂|

= −n log
|E|

|H +E|
(3)

where H and E are the hypothesis and the error sum of squares and cross product

(SSCP) matrices respectively.

Let us now consider the following notations: l̇(β) = ∂
∂β
l(β,Σ); l̈(β) = ∂2

∂β2 l(β,Σ).

The Fisher Information matrix under H0 is I(0) = −Eβ=0(̈l(β)). Using Taylor’s Expan-

sion upto order 2, we can write the LRT statistic as

−2 log Λ = 2

{
0 +

1

2

√
n(β̂ − 0)′

(
− 1

n
l̈(β∗)

)
(β̂ − 0)

}
, where |β∗ − 0| ≤ |β̂ − 0|
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Observe that
√
n(β̂−0)′

D→ Z ∼ NK(0, I−1(0)). If a particular component of the true β

is large (small), we expect the corresponding component of β̂ and hence of Z to be large

(small). Thus for Z to be larger than 0, we need to have the true β larger than 0. We

can then write the asymptotically equivalent form of MANOVA Wilk’s Lambda statistic

in terms of a statistic involving Z:

−2 log Λ
D→ Z ′I(0)Z

a∼ χ2
K

Instead of drawing the acceptance region of Wilk’s Lambda statistic, one can draw the

acceptance region of the test statistic Z ′I(0)Z. The ellipse representing acceptance

region for MANOVA is asymptotically equivalent to

Ec(z;S, z̄) ≡
{
z : (z − z̄)′S−1(z − z̄) ≤ c2

}
where S = (n−1)−1

∑n
i=1(zi−z̄)(zi−z̄)′ and c2 is the 95-th percentile of the distribution

of Z. The boundary of the ellipse Ec is computed as a transformation of the unit circle,

U = (sin θ, cos θ) for θ ∈ (0, 2π). Let A = S1/2 be the Choleski square root of S in

the sense that S = AA′. Then, Ec = z̄ + cAU is an ellipse centered at the mean

z̄ = (z̄1, z̄2). The size of the ellipse reflects the standard deviations of z1 and z2 while

the shape reflects their correlation. Z has a NK(0, I(0)−1) distribution due to which we

expect z̄ ≈ 0 and S ≈ 1
n

∑
zz′

P→ I(0)−1 = 1
2p(1+p)

Σ where p is the m.a.f. of the genetic

variant. Thus, for drawing the theoretical acceptance region of MANOVA, we use the

facts that Z̄
P→ 0 and S

P→ 1
2p(1+p)

Σ. For Figure 1 in the main manuscript, we assumed

Σ = σ2{(1− ρ)IK + ρ11′} with K = 2. The theoretical acceptance region for MANOVA

will then be asymptotically equivalent to Ec
(
z; Σ

2p(1+p)
,0
)
≡
{
z : z′

(
Σ

2p(1+p)

)−1
z ≤ c2

}
.
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Appendix S3

Details of the approximate p-value calculation for USAT

Let TM = −2 log Λ
a∼ χ2

K be the MANOVA test statistic based on Wilk’s lambda and

TS
approx∼ aχ2

d + b be the SSU test statistic based on score vector from marginal normal

models. For USAT, we first consider the weighted statistic Tω = ωTM + (1 − ω)TS,

where ω ∈ [0, 1] is the weight. Both MANOVA and SSU are special cases of the class of

statistics Tω. Under H0, for a given weight ω, Tω is approximately a linear combination

of chi-squared distributions. The computation of p-value pω of the test statistic Tω does

not require independence of the statistics TM and TS. A detailed explanation of the

determination of pω is provided below.

Observe that one can write TM = U ′I(0)−1U , where U is the score vector under

H0 : β = 0 from the MMLR model (1) and I(0) = −Eβ=0

(
∂
∂β
l(β,Σ)

)
= Cov(U)|β=0

is the Fisher Information matrix under H0. On the other hand, TS = U ′MUM , where

UM is the marginal score vector under H0 from the marginal models in equation (2) of

main paper. As derived in the main manuscript, UM = Y ′X/σ̂2
0, where Y is the n×K

phenotype matrix, X is the n × 1 genotype matrix and σ̂2
0 is the MLE of σ2 under H0.

Similarly, one can show that U = Σ̂
−1
0 Y

′X, where Σ̂0 = Y ′Y /n is the MLE of Σ in

MMLR model (1) under H0. The estimated variance of the score vector U under H0 is

given by Cov(U )|β=0 = I(0) = (X ′X)Σ̂
−1
0 . For a given weight ω, one can thus write

Tω = ωTM + (1− ω)TS

= ω
(
Σ̂
−1
0 σ̂2

0UM

)′
I(0)−1

(
Σ̂
−1
0 σ̂2

0UM

)
+ (1− ω)U ′MUM

= U ′M

(
ωσ̂4

0(X ′X)−1Σ̂
−1
0 + (1− ω)IK

)
UM

where IK is the identity matrix of order K. Denote A = ωσ̂4
0(X ′X)−1Σ̂

−1
0 + (1− ω)IK ,

which is a K × K symmetric, non-negative definite matrix. Note that marginal score

vector UM has mean 0, estimated variance Cov(UM) = X ′XY ′Y /(nσ̂4
0), and has an

asymptotic K-variate normal distribution. Let P be a K ×K orthonormal matrix that
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converts B = Cov(UM)1/2ACov(UM)1/2 = ωIK + (1−ω)Cov(UM) to the diagonal form

Γ = diag(λ1, ...λK), where λ1 ≥ 0, ..., λK ≥ 0. The weighted statistic Tω can, then, be

expressed as a non-negative quadratic form:

Tω = U ′MAUM = V ′MΓV M =
K∑
j=1

λjχ
2
hj

(δj) (4)

where V M = PCov(UM)−1/2UM
a∼ N(0, IK), and hj = 1, δj = 0 for all j = 1, 2, ..., K.

For a given ω ∈ [0, 1], the p-value pω of the statistic Tω can, thus, be calculated by Liu

et al. (2009) algorithm as:

pω = P (Tω > tω) ≈ P
(
χ2
l (δ) > t∗ωσχ + µχ

)
(5)

where tω is the observed value of Tω statistic, t∗ω = (tω − E(Tω))/
√

Var(Tω), µχ =

E (χ2
l (δ)) = l + δ, σχ =

√
Var (χ2

l (δ)) =
√

2(l + 2δ). The parameters δ and l are chosen

such that the skewness of Tω and χ2
l (δ) are same and the difference between the kurtoses

of Tω and χ2
l (δ) is minimized.

Apriori the optimal weight ω is not known. We propose our unified test USAT as

TUSAT = min
0≤ω≤1

pω

Thus, the USAT test statistic is not exactly the best weighted combination of MANOVA

and SSU. It is the minimum of the p-values of the different weighted combinations. For

practical implementations of USAT, a grid of 11 ω values were considered: {ω1 = 0, ω2 =

0.1, ..., ω10 = 0.9, ω11 = 1}.

To find the p-value of our USAT test statistic, we need the null distribution of USAT.

We propose an approximate p-value calculation using a one-dimensional numerical inte-

gration, which makes USAT suitable for application on a GWAS scale. Observe that the

p-value of statistic TUSAT is

pUSAT = P (TUSAT ≤ tUSAT ) = 1− P (TUSAT ≥ tUSAT )
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= 1− P
(

min
ω
pω ≥ tUSAT

)
= 1− P

(
1−min

ω
pω < 1− tUSAT

)
= 1− P

(
max
ω

(1− pω) < 1− tUSAT
)

= 1− P ({1− pω1 < 1− tUSAT}, . . . , {1− pω11 < 1− tUSAT})

= 1− P
(
{(1− pω1)

th quantile < (1− tUSAT )th quantile}, . . . ,

{(1− pω11)
th quantile < (1− tUSAT )th quantile}

)
= 1− P (Tω1 < qmin(ω1), ..., Tω11 < qmin(ω11))

= 1− P
(
TS < min

ω

qmin(ω)− ωTM
1− ω

)
= 1−

∫
FTS |TM

(
δω(x)|x

)
fTM (x)dx

where tUSAT is the observed value of USAT test statistic for a given dataset, qmin(ωb) is

the (1− tUSAT )-th percentile of the distribution of Tωb
for a given ω = ωb, FTS |TM (.|x) is

the conditional cdf of SSU statistic TS given MANOVA statistic TM , fTM (.) is the pdf of

MANOVA test statistic TM , and δω(x) = minω∈{ω1,...,ω11}
qmin(ω)−ωx

1−ω .

Recall that TS and TM are two quadratic forms (QF), which are not independently

distributed. The exact joint distribution of TS and TM is too complicated to compute

(Khatri et al., 1977; Khatri, 1980). Our literature search did not yield any computa-

tionally feasible method for approximating the distribution FTS |TM (.|TM = x) required to

calculate pUSAT . In such a scenario, a simple and straightforward approximation seems

to be the assumption of independence and thereby we get the approximate p-value

pUSAT ≈ 1−
∫ ∞
0

FTS
(
δω(x)|x

)
fTM (x)dx

where FTS(.) is the cdf of SSU test statistic TS. This approximation of distribution

[TS|TM ] by [TS] can yield conservative p-values at heavier tails of the null distribution of

USAT test statistic. However, for extreme tails (regions in which we are interested when

applying USAT at GWAS level), this conservativeness is not an issue (as demonstrated

by USAT type I error analysis in main manuscript). Detailed study on the accuracy of

this approximation is provided in the next section. In this context, it is worth noting

that we have not assumed TS and TM to be independent throughout. For example, the
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information on their dependence has been incorporated in the calculation of pω (p-value

of weighted statistic Tω). The independence assumption has been made only in the last

step of USAT p-value calculation.

Implementation of the approximate p-value method

For the integral
∫∞
0
FTS
(
δω(x)

)
fTM (x)dx, we first need to evaluate

FTS
(
δω(x)

)
= P (TS ≤ δω(x)) ≈ P

(
aχ2

d + b ≤ δω(x)
)

= P

(
χ2
d ≤

δω(x)− b
a

)

This can be easily evaluated using function pchisq() in R (R Development Core Team,

2014). The integrand as a function of x can then be coded as pchisq((delta.x-b)/a,

df=d, ncp=0)*dchisq(x, df=K). The integration has been performed numerically using

R function integrate(). When the optimal choice of ω lies near the boundary (i.e., close

to 0 or 1) and the corresponding statistic (TS or TM depending upon whether optimal ω

is close to 0 or 1) is highly significant (i.e., corresponding p-value is of the order of 10−8),

the function integrate can have low accuracy and can give rise to an integral value

exceeding 1. In such a scenario, R function quadinf() from package pracma (Borchers,

2012) can give very accurate results. The cost of accuracy is longer computation time:

quadinf takes almost twice as much time compared to integrate. For our simulated

datasets as well as real dataset, we found the two functions giving very similar results in

most situations except in the afore-mentioned scenario where integrate gave negative

p-values for USAT. In such rare situations, we implemented the numerical integration

using quadinf.

Details on the accuracy of the approximation involving independence assumption

Since the exact distribution of [TS|TM ] is not known, we studied the accuracy of our ap-

proximation (independence assumption in the last step of pUSAT calculation) using Monte

Carlo samples. For this purpose, we first simulated two independent sets of N = 10, 000

marginal score vectors UM from multivariate NK(0,C), where C is the score covariance
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matrix that directly depends on the trait covariance structure Σ. Both CS(ρ) and AR1(ρ)

correlation structures were considered for ρ = 0.2, 0.5, 0.8. We took three different choices

of K as in our simulation studies: K = 5, 10, 20. For each set, we calculated the statis-

tics TS and TM (i.e., we have samples of SSU and MANOVA statistics from their null

distributions). Let us denote T
(j)
S and T

(j)
M to be the SSU and the MANOVA statistics

from the j-th set of Monte Carlo samples, j = 1, 2. Note that the statistics T
(j)
S and T

(j′)
M

are correlated for j = j′ and uncorrelated for j = j′. Thus, for a given value of tUSAT , the

Monte Carlo estimate (MCE) of the true probability pUSAT = P(TS > δω(tUSAT , TM)) is

ptrueUSAT =
1

N

N∑
i=1

I
(
T

(1),i
S > δω

(
tUSAT , T

(1),i
M

))

where I(.) is the indicator function, T
(1),i
S is the SSU statistic based on i-th sample in

the 1st set, T
(1),i
M is similarly defined, and δω(.) is as defined earlier. The MCE of the

approximate pUSAT (where independence of TS and TM was assumed) can be obtained as

papproxUSAT =
1

N

N∑
i=1

I
(
T

(1),i
S > δω

(
tUSAT , T

(2),i
M

))

Note that one can also obtain this approximate pUSAT using our p-value calculation

method directly. Next we plotted these three different estimates of pUSAT against a range

of values of tUSAT . In the following Figures S1−S4, the black solid curve corresponds to

ptrueUSAT (MCE of true p-value), blue solid curve corresponds to papproxUSAT (MCE of approxi-

mate p-value) and the red solid curve corresponds to pUSAT computed directly from our

approximate p-value calculation approach.

Figures S1 and S2 show the plots of these different estimates of pUSAT against tUSAT in

[0, 1] range using weights ω = 0, 0.1, 0.2, ..., 0.9, 1 for CS and AR1 correlation structures

respectively. As expected, the approximate p-values from Monte Carlo samples and

the approximate p-values from our method are similar (the blue and the red curves

are overlapping). We also observe that our approximation causes the USAT p-values

to be conservative, more so at the heavier tails of the null distribution of USAT. With

increase in strength of correlation parameter ρ or increase in the number of traits K, this
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conservativeness decreases. For very small values of tUSAT (the region we are interested

in when applying USAT on a genome-wide scale), our approach does not seem to be

conservative.

To study the effect of approximation at the extreme tail (near 0), we considered

tUSAT values in the range of [0, 10−3]. Precisely, the chosen tUSAT values were 0, 10−5, 2×

10−5, ..., 10−3. In order to consider tUSAT values of the order of 10−5, we simulated two

independent sets of N = 107 Monte Carlo samples of TS and TM . Using these samples,

we calculated ptrueUSAT and papproxUSAT as before. Generating 107 samples for as many as 20

traits is computationally intensive. To reduce computation time, we considered only a

minimal set of weights: ω =
{

0, 1
4
, 1
2
, 3
4
, 1
}

. Figures S3 and S4 show the plots of true

and approximate pUSAT against tUSAT for CS(ρ) and AR1(ρ) correlation structures re-

spectively. The approximate p-value curve (blue) seems to lie below the true p-value

curve (black) for higher values of K and ρ, indicating that the approximation is slightly

inflated at the extreme tail. The magnitude of inflatedness seems to depend on the corre-

lation structure as well. USAT is less inflated at stringent error levels for AR1 correlation

structure compared to a CS structure. In Table 2 of main manuscript, although USAT

maintains correct type I error for low error levels, we observe slightly inflated type I error

for K = 20 traits at α = 10−4.

More on the performance of the p-value approximation method: The following Table S1

(an extension of Table 2 of main manuscript) provides estimated type I error rates of

USAT for K = 5 traits for a stringent error level of α = 10−5. To reduce computational

burden, we considered only 3× 106 datasets and hence provided 100(1− α)% confidence

intervals for the error estimates. Although we saw that USAT generally maintains proper

type I error rate at moderately low error levels (Table 2), here we observe that USAT

produces somewhat inflated type I errors at stringent value of level α.

To have an idea about the effect of approximation on power in a real GWAS, Table S2

provides approximate USAT p-values along with empirical p-values for a few SNPs from

the ARIC Study (refer Section 3.5 of main manuscript). For a given SNP, the empirical
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Table S1: Estimated type I errors of the approximate p-value calculation approach for our USAT test.
The p-values were calculated using 3× 106 null datasets with 10, 000 unrelated individuals.
Type I error rate was calculated as the proportion of datasets that had approximate p-value
≤ α. The 100(1− α)% confidence intervals for the estimates are provided in square braces.

K 5
ρ 0.2 0.4 0.6

2.96× 10−5 2.51× 10−5 2.07× 10−5

α = 10−5 [1.56× 10−5, [1.22× 10−5, [0.90× 10−5,
4.35× 10−5] 3.80× 10−5] 3.24× 10−5]

Table S2: Empirical USAT p-values alongwith approximate USAT p-value (calculated from the ap-
proximate p-value method in Section 2.5) for a few randomly chosen SNPs from the ARIC
data. For a given SNP, the empirical USAT p-value is calculated using 108 permutations of
the ARIC data.

USAT Empirical
chr SNP position m.a.f. p USAT p
6 rs7753319 106997646 0.421 0.30× 10−5 1.65× 10−5

7 rs7793197 147499191 0.175 0.45× 10−5 2.10× 10−5

18 rs11660607 33269184 0.287 0.96× 10−4 1.55× 10−4

20 rs3790223 19405611 0.322 0.60× 10−5 2.45× 10−5

USAT p-value is calculated by considering 108 permuted datasets. Table S2 corroborates

our findings from Table S1.
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Plot of pUSAT= Pr(TS > δω(tUSAT,TM)) vs tUSAT
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Figure S1: Comparison of approximate and true p-value of USAT based on Monte Carlo samples for
CS(ρ) correlation structure. The different parameter values are: N = 10, 000 samples,
weight ω ∈ {0, 0.1, ..., 0.9, 1}, tUSAT ∈ {0, 0.01, 0.02, ..., 0.99, 1}, K ∈ {5, 10, 20} traits and
ρ ∈ {0.2, 0.5, 0.8}. The black solid curve corresponds to ptrueUSAT (MCE of true p-value),
blue solid curve corresponds to papproxUSAT (MCE of approximate p-value) and the red solid
curve corresponds to pUSAT computed directly from our approximate p-value calculation
approach. The approximate curves lie above the true curve indicating conservativeness of
the approximation.
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Plot of pUSAT= Pr(TS > δω(tUSAT,TM)) vs tUSAT
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Figure S2: Comparison of approximate and true p-value of USAT based on Monte Carlo samples for
AR1(ρ) correlation structure. The different parameter values are: N = 10, 000 samples,
weight ω ∈ {0, 0.1, ..., 0.9, 1}, tUSAT ∈ {0, 0.01, 0.02, ..., 0.99, 1}, K ∈ {5, 10, 20} traits and
ρ ∈ {0.2, 0.5, 0.8}. The black solid curve corresponds to ptrueUSAT (MCE of true p-value),
blue solid curve corresponds to papproxUSAT (MCE of approximate p-value) and the red solid
curve corresponds to pUSAT computed directly from our approximate p-value calculation
approach. The approximate curves lie above the true curve indicating conservativeness of
the approximation.

14



Plot of pUSAT= Pr(TS > δω(tUSAT,TM)) vs tUSAT
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Figure S3: Comparison of approximate and true p-value of USAT based on Monte Carlo samples for
CS(ρ) correlation structure. The different parameter values are: N = 107 samples, weight
ω ∈ {0, 1/4, 1/2, 3/4, 1}, tUSAT ∈ {0, 10−5, 2×10−5, ..., 10−3}, K ∈ {5, 10, 20} traits and ρ ∈
{0.2, 0.5, 0.8}. The black solid curve corresponds to ptrueUSAT (MCE of true p-value) and the
blue solid curve corresponds to papproxUSAT (MCE of approximate p-value). Curve corresponding
to pUSAT computed directly from our approximate p-value calculation approach is not
plotted to avoid clutter. In some situations, the approximate curve lies below the true
curve indicating slight inflatedness of the approximation at the extreme tail.
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Plot of pUSAT= Pr(TS > δω(tUSAT,TM)) vs tUSAT
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Figure S4: Comparison of approximate and true p-value of USAT based on Monte Carlo samples for
AR1(ρ) correlation structure. The different parameter values are: N = 107 samples, weight
ω ∈ {0, 1/4, 1/2, 3/4, 1}, tUSAT ∈ {0, 10−5, 2 × 10−5, ..., 10−3}, K ∈ {5, 10, 20} traits and
ρ ∈ {0.2, 0.5, 0.8}. The black solid curve corresponds to ptrueSAT (MCE of true p-value) and the
blue solid curve corresponds to papproxUSAT (MCE of approximate p-value). Curve corresponding
to pUSAT computed directly from our approximate p-value calculation approach is not
plotted to avoid clutter. In most situations, the approximate curve lies above the true
curve indicating conservativeness of the approximation. However, for strongly correlated
traits, we observe inflatedness at the extreme tail.

16



Appendix S4

Simulation 4: Other correlation structures

Apart from the compound symmetry (CS) structure, we also considered AR1(ρ) and

other structures for correlation in our simulation studies. Details on how the datasets

were simulated can be found in Section 3 of our main paper.

Correlation Structure I: uncorrelated traits : We assumed that none of the traits

was correlated with another. From Figure S5, we see that performances of all methods

are similar except minP/TATES. All the methods, including MANOVA, have steadily

rising power curves with increase in proportion of associated traits. This confirms that

MANOVA’s lack of power in detecting pleiotropy in certain situations is primarily due

to the correlatedness of all the traits.
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Figure S5: Correlation structure I (uncorrelated): Empirical power curves of the different asso-
ciation tests for K = 5, 10, 20 traits and within trait correlation ρ = 0 based on N = 500
datasets. The correlation structure assumes all traits to be uncorrelated. Same direction
and same size effects (effect size of 0.395; proportion of variance explained is 0.5%) are used
when 2 or more traits are associated. The power is plotted along y-axis while the fraction
of traits associated with the genetic variant is plotted along x-axis.

Correlation Structure II : Here we assumed that first 80% of the K traits were corre-

lated (with a compound symmetry structure) and the rest 20% were uncorrelated. For

our simulation study, we considered K = 5, 10, 20 traits and positive correlation param-
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Figure S6: Correlation structure II: Empirical power curves of the different association tests for
K = 5, 10, 20 traits and different within trait correlation values ρ = 0.2, 0.4, 0.6 based on
N = 500 datasets. This correlation structure assumes that the first 80% of the traits are
correlated (Compound Symmetry structure with correlation ρ) and the last 20% of the traits
are independent of the others. Same direction and same size effects (effect size of 0.395;
proportion of variance explained is 0.5%) are used when 2 or more traits are associated.
The power is plotted along y-axis while the fraction of traits associated with the genetic
variant is plotted along x-axis. Upto the point 0.8 on the x-axis, all the traits are correlated.
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eter ρ = 0.2, 0.4, 0.6. In such a situation we noticed that as correlation increased among

the associated traits, the power of MANOVA dropped. Figure S6 shows that the lowest

point in the MANOVA power curve occurs at 0.8 on the axis, which means MANOVA

has the least power in detecting association when all the correlated traits are associated.

At point 1.0 on the x-axis, when all the traits are associated but not all are correlated,

the performance of MANOVA improves but not as good as the methods that do not

explicitly consider the covariance matrix in the test statistic.

An important observation from Figure S6 is that MANOVA is not expected to suffer

from power loss at ‘complete association’ (when all traits are associated) if all associated

traits are not correlated (refer Appendix S5 for theoretical result).

Correlation Structure III: AR1(ρ) : For given K traits, we assumed the covariance

structure Σ = σ2R(ρ) = σ2



1 ρ ρ2 . . . ρK−1

ρ 1 ρ . . . ρK−2

...
. . .

...

ρK−1 ρK−2 ρK−3 . . . 1


. Figure S7 shows that

for a given ρ, MANOVA performs better with increase in K and with increase in the

fraction of associated traits. This is so because at a higher fraction (on the x-axis),

the AR1 correlation among traits becomes negligible and the latter traits are effectively

uncorrelated (the behavior we saw in Figures S5 & S6). Observe that for a given ρ, the

power at or near ‘complete association’ (where all traits are associated) increases with

increase in K since for the latter traits, the correlation rapidly goes towards 0. With

increase in the parameter ρ and for small K, we start observing MANOVA’s lack of

power as the latter pairwise correlations are not effectively zero.
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Figure S7: Correlation structure III (AR1): Empirical power curves of the different association
tests based on N = 500 datasets for K = 5, 10, 20 traits and AR1(ρ) correlation structure
with ρ = 0.2, 0.4, 0.6. Same direction and same size effects (effect size of 0.395; proportion
of variance explained is 0.5%) are used when 2 or more traits are associated. The power is
plotted along y-axis while the fraction of traits associated with the genetic variant is plotted
along x-axis.
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Appendix S5

Figure S6 shows that if all the traits are not correlated, MANOVA does not experience

power loss for testing H0 even when all the traits are associated. This behavior is theo-

retically explained by the following theorem for the special case of CS residual correlation

structure for the correlated traits.

Theorem. Without loss of generality, let Y and X be the centered phenotype matrix and

the centered genotype vector respectively. Consider the MMLR model

Y n×K = Xn×1β
′
1×K + En×K , vec(E) ∼ NnK(0, In ⊗Σ)

where ΣK×K =

Σ11(m×m) Σ12

Σ21 Σ22

, Σ11 = σ2 ((1− ρ)Im + ρ11′), σ2 > 0, ρ (> 0) is

the within trait correlation such that Σ11 is a positive definite covariance matrix, Σ12 =

Σ′21 = Om×(K−m), Σ22 = σ2IK−m and β′ = (β1, ..., βK) is the vector of genetic effects.

Assume that the genetic effects of the associated traits are equal in size and positive.

Consider two scenarios of association: ‘partial association’ (when the SNP is associated

with u (< K) traits), and ‘complete association’ (when all K traits are associated).

For testing H0 : β = 0, MANOVA is not expected to suffer from power loss at ‘com-

plete association’ compared to ‘partial association’ with u (> m) associated traits.

Proof. For the m × m CS residual covariance sub-matrix Σ11, we know that the eigen

vector corresponding to the largest eigenvalue λ(m)1 = σ2{1 + (m − 1)ρ} is v1 ∝ 1,

while the eigen vectors corresponding to λ(m)2 = ... = λ(m)m = σ2(1− ρ) are respectively

v2, ...,vm such that 1′vk = 0 ∀ k = 2, ...,m. For the eigen vectors to be orthonormal, we

must have v1 = cm1 such that
√
c2m + ...+ c2m = 1 ⇐⇒ c2m = 1/m. Thus, we can write,

Σ11(m×m) = λ(m)1c
2
m11′ +

m∑
i=2

λ(m)iviv
′
i and Σ−111 =

1

λ(m)1

c2m11′ +
m∑
i=2

1

λ(m)i

viv
′
i

Consider the 2 alternatives Ha,u : β1 = ... = βu 6= 0, βK−u = ... = βK = 0 (partial

association) and Ha,K : β1 = ... = βK 6= 0 (complete association) against the null
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hypothesis H0 : β1 = ... = βK = 0. Here, for the partial association case, u (> m) is the

number of traits associated and m is the number of correlated traits. In the following,

the notation
P→ denotes convergence in probability as n→∞.

Under the alternative Ha,K (complete association), it can be shown that

∣∣∣∣∣I +
HK

n

(
E

n

)−1∣∣∣∣∣ P→

∣∣∣∣∣∣∣IK + (2pqβ2
1)

 1m1′m 1m1′K−m

1K−m1′m 1K−m1′K−m


Σ−111 O

O 1
σ2IK−m


∣∣∣∣∣∣∣

=
∣∣(Im + a1m1′m)− (b1m1′K−m)(IK−m + b1K−m1′K−m)−1(a1K−m1′m)

∣∣
×|IK−m + b11′|

= |(Im + a1m1′m)− ac(K −m)1m1′m| × |IK−m + b11′|

= 1 + b(K −m) + am

where a =
2pqβ2

1

σ2{1+(m−1)ρ} , b =
2pqβ2

1

σ2 , (IK−m + b1K−m1′K−m)−1 = I − c11′, c = b
1+(K−m)b

.

For u(> m) associated traits, let us now partition the residual covariance matrix as

ΣK×K =

S11(u×u) S12

S′12 S22

 where S11 =

Σ11(m×m) O

O σ2Iu−m

 ,S12 = Ou×(K−u),S22 = σ2IK−u

Under the alternative Ha,u (partial association) where 0 < m < u < K, one can show

that

∣∣∣∣∣I +
Hu

n

(
E

n

)−1∣∣∣∣∣ P→

∣∣∣∣∣∣∣IK + 2pq

β2
11u1

′
u O

O O


S−111 O

O 1
σ2IK−u


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣Iu + 2pqβ2
11u1

′
u

Σ−111 O

O 1
σ2Iu−m


∣∣∣∣∣∣∣

= 1 + b(u−m) + am, where a =
2pqβ2

1

σ2{1 + (m− 1)ρ}
, b =

2pqβ2
1

σ2

∴
∣∣IK +HKE

−1∣∣− ∣∣IK +HuE
−1∣∣ P→ b(K − u) > 0

�
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Appendix S6

Details on ARIC Study phenotypes and covariate choices

ARIC has collected measures on many type 2 diabetes (T2D) related traits at 4 separate

visits over a 9-year period. A diagnosis of T2D is considered positive if fasting plasma

glucose concentration is ≥ 126 mg/dL, or casual plasma glucose level is ≥ 200 mg/dL, or

2-hour plasma glucose value after a standard glucose challenge is ≥ 200 mg/dL (WHO,

2003). All analytes were determined at central laboratories according to standard proto-

cols: plasma glucose by a hexokinase assay, and insulin by radioimmunoassay (125Insulin

Kit; Cambridge Medical Diagnosis, Billerica, MA). Sedentary lifestyle and obesity are

major risk factors for T2D. In addition to general obesity, the distribution of body fat (or

abdominal obesity, as estimated by waist-to-hip circumference ratio) contributes to T2D

risk. For our analysis, we focused on the Caucasian participants and the following 3 T2D

related quantitative traits measured at visit 4 (1996−98): fasting glucose; 2-hour glucose

from an oral glucose tolerance test; fasting insulin. The pairwise correlations among these

3 traits were within (0.2, 0.35). These traits are substantially affected by treatment with

diabetes medications, and so statistical analysis results are not generally interpretable in

the same way they can be interpreted in non-diabetic individuals. Other available traits

were Body Mass Index (BMI) and waist circumference (WC). WC was measured at the

umbilical level. BMI was calculated as weight/height2 (kg/m2), and obesity was defined

as a BMI ≥ 30 kg/m2. BMI, being a major risk factor for T2D, is traditionally adjusted

as a covariate in association analysis of glycemic traits (Manning et al., 2012; Scott et al.,

2012; Dupuis et al., 2010, for example). Manning et al. (2012) notes that “adiposity may

also hinder the identification of genetic variants influencing insulin resistance by intro-

ducing variance in the outcome that is not attributable to genetic variation, suggesting

that adjustment for adiposity per se may be necessary”.

Due to a high pairwise correlation of 0.9 between WC and BMI, we chose to adjust

BMI only. When BMI is adjusted, inclusion of WC or any other adiposity trait in the

multivariate response makes it difficult to interpret analysis results. We chose not to
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include the adiposity traits (BMI, WC, waist-hip ratio, hip circumference) along with the

glycemic traits (fasting glucose, 2-hour glucose, fasting insulin) in the response vector

because not many SNPs have been reported to jointly influence both adiposity traits and

glycemic traits. As in most studies of T2D, BMI was used as a covariate along with age

and sex. Individuals with diagnosed or treated diabetes at visit 4 were removed. Since

USAT requires complete phenotype data, individuals with missing traits were excluded

too, leaving 5, 816 in our analytic sample.
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Appendix S7

Covariate Adjustment for USAT

The ARIC data analysis using USAT required covariate adjustment (predictors other

than SNP). This version of USAT requires covariate adjustment for both SSU test and

MANOVA. Once the adjusted MANOVA and SSU test statistics are available, one can

easily compute approximate p-value for USAT (refer section 2.5 of the main paper for

the p-value calculation method). Let Zn×q be the matrix of q covariates (other than

SNP) for n unrelated individuals. Without loss of generality, the phenotype matrix Y ,

the genotype vector X and the covariate matrix Z are centered (but not scaled). The

following paragraphs outline the details of such covariate adjustment.

MANOVA with covariate adjustment

The MMLR model for the association test of K traits and the SNP (after adjusting for

other covariates):

Y n×K = Xn×1β
′
1×K + 1′ ⊗ZΦ + En×K

where β′ = (β1, ..., βK) is the vector of fixed unknown genetic effects corresponding to

the K correlated traits, and E is the matrix of random errors. For testing that the SNP

is not associated with any of the K traits, the null hypothesis of interest is H0 : β = 0.

For testing H0, the LRT is equivalent to the MANOVA test statistic, which is the ratio

of generalized variances Λ = |E|/|H +E|. Here, H + E is the covariance matrix of

the K residual vectors where the k-th residual vector is obtained by fitting the model

for k-th trait under H0. E is the covariance matrix of the K residual vectors where the

k-th residual vector is obtained by fitting the full model for k-th trait. Under H0, Wilk’s

Lambda −2 log Λ has an approximate asymptotic χ2
K distribution under H0.

SSU Test with covariate adjustment
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For k-th trait vector, we assume the marginal normal model :

Y k = βkX +ZΦ + εk, εk ∼ Nn(0, σ2In)

βk is the parameter associated with the SNP effect on the k-th trait. Φ is the q×1 vector

of parameters associated with the q covariates. The null hypothesis associated with k-th

marginal model is H0k : βk = 0. We need to obtain the MLE Φ̂ under the global null

H0 : ∩Kk=1H0,k. Under H0,k, the k-th marginal model is

Y k = ZΦ + εk, εk ∼ Nn(0, σ2In)

The MLE of Φ from k-th model is Φ̂(k) = (Z ′Z)−1Z ′Y k. Thus, MLE of Φ under H0 is

Φ̂ =
1

K

K∑
k=1

(Z ′Z)−1Z ′Y k

The MLE of σ2 under H0 is given by

σ̂2
0 =

1

nK

K∑
k=1

(Y k −ZΦ̂)′(Y k −ZΦ̂)

The log-likelihood for the k-th genetic effect from the k-th marginal model is given by

l(βk) ∝ −
1

2σ2
(Y k − βkX −ZΦ)′(Y k − βkX −ZΦ)

Marginal score for parameter βk under H0k:

Uk = l̇(βk)

∣∣∣∣
H0

=
1

σ2
(Y k − βkX −ZΦ)′X

∣∣∣∣
H0

=
1

σ̂2
0

(Y k −ZΦ̂)′X

Under the null, the variances and covariances of the marginal scores are:

Var(Uk) =
1

σ4
X ′Var(Y k)X

∣∣∣∣
H0

=
1

σ2
X ′X

∣∣∣∣
H0
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Cov(Uk, Uj) =
1

σ4
E(Y ′kX × Y ′jX)

∣∣∣∣
H0

=
1

σ4
X ′ E(Y kY

′
j)X

∣∣∣∣
H0

=
ρ

σ2
X ′X

∣∣∣∣
H0

∀ j 6= k

Thus, under H0, the score vector from the marginal normal model for Y is

UM =
(
Y − 1′ ⊗ZΦ̂

)′
X/σ̂2

0

with covariance

Cov(UM) =
1

σ4
(X ′X)Σ

∣∣∣∣
H0

=
1

σ̂4
0

(X ′X)Σ̂0 =
1

σ̂4
0

(X ′X)

(
Y − 1′ ⊗ZΦ̂

)′ (
Y − 1′ ⊗ZΦ̂

)
n

The SSU test based on the marginal normal score vector UM is

TS = U ′MUM
approx∼ aχ2

d + b

where parameters a, b, d are estimated as

a =

∑
δ3i∑
δ2i
, b =

∑
δi−

(
∑
δ2i )

2∑
δ3i

, d =
(
∑
δ2i )

3

(
∑
δ3i )

2
, {δi}Ki=1 are the ordered eigenvalues of Cov(UM)
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Appendix S8

Table S3: List of all SNPs that exceed the genome-wide significance threshold 5 × 10−8 for the mul-
tivariate methods USAT and MANOVA. SNPs with m.a.f. < 5% were screened out. It is
to be noted that most of these SNPs are in high linkage disequilibrium (LD). p values for
the univariate analysis of the individual traits are also provided. SNPs in bold are the ones
detected solely by MANOVA but not by USAT. The abbreviations used are FG (Fasting
Glucose), 2-hr GL (2-hour glucose from an oral glucose tolerance test), FI (Fasting Insulin)

MANOVA USAT Univariate Analysis p

chr SNP position p p FG 2-hr GL FI

2 rs1260326 27584444 3.77× 10−15 4.44× 10−15 1.24× 10−4 6.26× 10−6 1.24× 10−5

2 rs780094 27594741 9.99× 10−16 1.67× 10−15 7.34× 10−5 7.10× 10−6 4.65× 10−6

2 rs780093 27596107 9.99× 10−16 1.67× 10−15 7.34× 10−5 7.10× 10−6 4.65× 10−6

2 rs1260333 27602128 4.72× 10−11 8.14× 10−11 4.99× 10−4 3.84× 10−4 7.59× 10−5

2 rs2911711 27604050 4.72× 10−11 8.14× 10−11 4.99× 10−4 3.84× 10−4 7.59× 10−5

2 rs4665987 27609329 9.67× 10−10 2.31× 10−9 1.56× 10−2 4.49× 10−6 1.46× 10−2

2 rs4665991 27619788 1.23× 10−9 2.57× 10−9 1.75× 10−2 4.83× 10−6 1.44× 10−2

2 rs4665382 27637305 1.20× 10−9 2.54× 10−9 1.52× 10−2 5.13× 10−6 1.60× 10−2

2 rs10208529 27639692 1.20× 10−9 2.54× 10−9 1.52× 10−2 5.13× 10−6 1.60× 10−2

2 rs4665383 27645059 1.20× 10−9 2.54× 10−9 1.52× 10−2 5.13× 10−6 1.60× 10−2

2 rs1919127 27654997 1.20× 10−9 2.54× 10−9 1.52× 10−2 5.13× 10−6 1.60× 10−2

2 rs1919128 27655263 1.20× 10−9 2.54× 10−9 1.52× 10−2 5.13× 10−6 1.60× 10−2

2 rs12478841 27665226 1.06× 10−9 2.40× 10−9 1.63× 10−2 4.96× 10−6 1.31× 10−2

2 rs6760250 27665756 9.94× 10−10 2.34× 10−9 1.49× 10−2 6.01× 10−6 1.07× 10−2

2 rs13022873 27669014 9.94× 10−10 2.34× 10−9 1.49× 10−2 6.01× 10−6 1.07× 10−2

2 rs12467476 27679219 9.86× 10−10 2.33× 10−9 1.53× 10−2 6.00× 10−6 1.02× 10−2

2 rs2384656 27685559 9.86× 10−10 2.33× 10−9 1.53× 10−2 6.00× 10−6 1.02× 10−2

2 rs4666002 27694144 8.64× 10−10 1.43× 10−9 1.61× 10−2 5.56× 10−6 9.02× 10−3

2 rs3749147 27705422 6.52× 10−9 1.31× 10−8 3.65× 10−2 6.56× 10−6 1.86× 10−2

2 rs13002853 27706749 6.52× 10−9 1.31× 10−8 3.65× 10−2 6.56× 10−6 1.86× 10−2

2 rs13431652 169461661 1.85× 10−13 5.48× 10−13 2.24× 10−12 9.57× 10−1 2.85× 10−1

2 rs12475700 169461922 4.52× 10−8 8.76× 10−8 1.07× 10−8 3.62× 10−1 6.73× 10−1

2 rs1402837 169465600 4.91× 10−9 1.15× 10−8 2.78× 10−10 5.18× 10−2 8.07× 10−1

2 rs573225 169465787 4.55× 10−14 5.81× 10−14 9.75× 10−13 9.83× 10−1 2.33× 10−1

2 rs560887 169471394 5.55× 10−16 1.33× 10−15 1.24× 10−14 8.87× 10−1 2.93× 10−1

2 rs563694 169482317 1.54× 10−14 2.91× 10−14 4.12× 10−14 3.50× 10−1 3.54× 10−1
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. . . continued

MANOVA USAT Univariate Analysis p

chr SNP position p p FG 2-hr GL FI

2 rs537183 169482892 1.54× 10−14 2.91× 10−14 4.12× 10−14 3.50× 10−1 3.54× 10−1

2 rs502570 169483205 1.54× 10−14 2.91× 10−14 4.12× 10−14 3.50× 10−1 3.54× 10−1

2 rs475612 169484992 3.54× 10−13 7.12× 10−13 3.74× 10−13 3.63× 10−1 5.12× 10−1

2 rs557462 169485841 1.54× 10−14 2.91× 10−14 4.12× 10−14 3.50× 10−1 3.54× 10−1

2 rs478333 169487402 8.61× 10−10 1.42× 10−9 3.33× 10−10 4.16× 10−1 6.41× 10−1

2 rs496550 169487958 8.61× 10−10 1.42× 10−9 3.33× 10−10 4.16× 10−1 6.41× 10−1

2 rs473351 169488142 2.58× 10−11 6.05× 10−11 1.38× 10−11 2.75× 10−1 5.29× 10−1

2 rs575671 169489064 2.58× 10−11 6.05× 10−11 1.38× 10−11 2.75× 10−1 5.29× 10−1

2 rs519887 169489131 8.50× 10−10 1.41× 10−9 3.45× 10−10 4.40× 10−1 6.41× 10−1

2 rs486981 169490395 2.72× 10−14 4.05× 10−14 1.15× 10−13 6.17× 10−1 3.89× 10−1

2 rs484066 169490727 2.01× 10−12 2.32× 10−12 6.10× 10−12 8.54× 10−1 4.87× 10−1

2 rs569805 169491126 2.72× 10−14 4.05× 10−14 1.15× 10−13 6.17× 10−1 3.89× 10−1

2 rs579060 169491285 2.45× 10−14 3.77× 10−14 9.95× 10−14 6.04× 10−1 3.93× 10−1

2 rs17540154 169492739 3.46× 10−9 6.48× 10−9 3.41× 10−10 2.33× 10−1 9.19× 10−1

2 rs508506 169493201 3.55× 10−14 4.86× 10−14 8.64× 10−14 5.74× 10−1 4.97× 10−1

2 rs503931 169493695 8.50× 10−10 1.41× 10−9 3.45× 10−10 4.40× 10−1 6.41× 10−1

2 rs551754 169495932 8.50× 10−10 1.41× 10−9 3.45× 10−10 4.40× 10−1 6.41× 10−1

2 rs497692 169497262 8.41× 10−10 1.41× 10−9 3.27× 10−10 4.24× 10−1 6.46× 10−1

2 rs494874 169497552 1.42× 10−13 5.06× 10−13 1.70× 10−13 5.38× 10−1 6.48× 10−1

2 rs552976 169499684 1.55× 10−13 5.19× 10−13 1.87× 10−13 5.31× 10−1 6.37× 10−1

2 rs472614 169500667 1.26× 10−8 2.65× 10−8 3.55× 10−9 5.72× 10−1 8.17× 10−1

2 rs565412 169502529 9.14× 10−9 1.57× 10−8 4.16× 10−9 7.18× 10−1 7.34× 10−1

2 rs567074 169502677 3.45× 10−10 5.76× 10−10 1.51× 10−10 6.13× 10−1 8.04× 10−1

2 rs479682 169502933 7.13× 10−9 1.37× 10−8 3.33× 10−9 6.89× 10−1 7.06× 10−1

2 rs480562 169503017 7.46× 10−9 1.40× 10−8 3.43× 10−9 6.84× 10−1 7.07× 10−1

2 rs2685803 169504531 7.46× 10−9 1.40× 10−8 3.43× 10−9 6.84× 10−1 7.07× 10−1

2 rs2544367 169504534 4.54× 10−9 7.54× 10−9 2.46× 10−9 7.19× 10−1 6.85× 10−1

2 rs2685805 169505306 4.54× 10−9 7.54× 10−9 2.46× 10−9 7.19× 10−1 6.85× 10−1

2 rs1581397 169505898 4.05× 10−9 7.05× 10−9 2.40× 10−9 7.37× 10−1 6.66× 10−1

2 rs2685814 169506865 3.62× 10−9 6.63× 10−9 2.19× 10−9 7.48× 10−1 6.71× 10−1

2 rs6709087 169507256 3.87× 10−8 8.13× 10−8 2.55× 10−9 2.67× 10−1 6.74× 10−1

2 rs853789 169509734 2.00× 10−15 2.66× 10−15 8.50× 10−15 6.36× 10−1 4.84× 10−1
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. . . continued

MANOVA USAT Univariate Analysis p

chr SNP position p p FG 2-hr GL FI

2 rs860510 169509874 3.62× 10−9 6.63× 10−9 2.19× 10−9 7.48× 10−1 6.71× 10−1

2 rs853788 169510151 3.62× 10−9 6.63× 10−9 2.19× 10−9 7.48× 10−1 6.71× 10−1

2 rs853787 169510498 2.00× 10−15 2.66× 10−15 8.50× 10−15 6.36× 10−1 4.84× 10−1

2 rs853786 169510556 3.62× 10−9 6.63× 10−9 2.19× 10−9 7.48× 10−1 6.71× 10−1

2 rs862662 169510575 1.52× 10−10 2.42× 10−10 1.01× 10−10 6.80× 10−1 7.17× 10−1

2 rs853785 169510840 3.62× 10−9 6.63× 10−9 2.19× 10−9 7.48× 10−1 6.71× 10−1

2 rs853784 169511920 5.48× 10−9 1.21× 10−8 3.37× 10−9 8.18× 10−1 7.11× 10−1

2 rs853783 169513757 5.48× 10−9 1.21× 10−8 3.37× 10−9 8.18× 10−1 7.11× 10−1

2 rs853781 169514567 3.43× 10−10 5.74× 10−10 2.19× 10−10 7.37× 10−1 7.53× 10−1

2 rs853780 169515728 7.62× 10−9 1.42× 10−8 4.68× 10−9 7.98× 10−1 6.76× 10−1

2 rs1101533 169516768 7.62× 10−9 1.42× 10−8 4.68× 10−9 7.98× 10−1 6.76× 10−1

2 rs853779 169517918 4.39× 10−9 7.39× 10−9 2.88× 10−9 7.91× 10−1 6.67× 10−1

2 rs853778 169519470 1.28× 10−9 2.62× 10−9 1.52× 10−9 9.11× 10−1 5.79× 10−1

2 rs853773 169522593 1.63× 10−9 2.96× 10−9 2.44× 10−9 8.12× 10−1 7.64× 10−1

15 rs17271144 59920213 4.47× 10−8 8.71× 10−8 6.21× 10−2 4.17× 10−6 1.06× 10−1

15 rs3743297 59937076 4.59× 10−8 8.84× 10−8 1.09× 10−2 2.87× 10−5 2.49× 10−1

15 rs1981916 59958771 3.14× 10−8 7.42× 10−8 8.50× 10−3 2.89× 10−5 2.56× 10−1

15 rs2414755 59959721 3.14× 10−8 7.42× 10−8 8.50× 10−3 2.89× 10−5 2.56× 10−1

15 rs2042608 60019672 3.02× 10−8 7.29× 10−8 1.71× 10−3 1.16× 10−4 0.59

15 rs7170293 60023665 1.98× 10−8 6.28× 10−8 5.77× 10−3 3.20× 10−5 2.68× 10−1

15 rs1425270 60025002 2.25× 10−8 6.54× 10−8 1.25× 10−2 1.28× 10−5 2.68× 10−1

15 rs7166891 60026596 1.98× 10−8 6.28× 10−8 5.77× 10−3 3.20× 10−5 2.68× 10−1

15 rs7172145 60026989 1.98× 10−8 6.28× 10−8 5.77× 10−3 3.20× 10−5 2.68× 10−1

15 rs4587915 60029254 1.44× 10−8 2.82× 10−8 9.60× 10−3 1.12× 10−5 3.28× 10−1

15 rs8027751 60035012 3.81× 10−8 8.07× 10−8 8.78× 10−3 2.73× 10−5 3.33× 10−1

15 rs3784634 60046929 2.52× 10−8 6.81× 10−8 1.54× 10−2 9.17× 10−6 3.40× 10−1

15 rs8034335 60074748 1.19× 10−8 2.59× 10−8 1.43× 10−2 5.58× 10−6 3.35× 10−1

15 rs8034216 60074820 1.19× 10−8 2.59× 10−8 1.43× 10−2 5.58× 10−6 3.35× 10−1

15 rs17271305 60120272 6.87× 10−9 1.35× 10−8 6.29× 10−3 1.17× 10−5 2.86× 10−1

15 rs17271340 60135177 8.99× 10−9 1.55× 10−8 1.68× 10−2 3.71× 10−6 3.08× 10−1

15 rs8039105 60146377 8.71× 10−9 1.53× 10−8 1.65× 10−2 3.75× 10−6 3.05× 10−1

15 rs4502156 60170447 3.38× 10−8 7.65× 10−8 1.31× 10−4 1.62× 10−3 0.20
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. . . continued

MANOVA USAT Univariate Analysis p

chr SNP position p p FG 2-hr GL FI

15 rs7163757 60178900 1.68× 10−8 5.98× 10−8 7.98× 10−4 3.52× 10−4 4.88× 10−2

15 rs7173964 60184234 2.06× 10−8 6.36× 10−8 1.15× 10−3 3.04× 10−4 4.47× 10−2

15 rs8037894 60181556 8.20× 10−9 1.48× 10−8 4.09× 10−4 4.89× 10−4 3.12× 10−2

15 rs6494307 60181982 1.68× 10−8 5.98× 10−8 7.98× 10−4 3.52× 10−4 4.88× 10−2

15 rs7167878 60183481 1.68× 10−8 5.98× 10−8 7.98× 10−4 3.52× 10−4 4.88× 10−2

15 rs7172432 60183681 1.68× 10−8 5.98× 10−8 7.98× 10−4 3.52× 10−4 4.88× 10−2
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Appendix S9

Table S4: List of interesting SNPs that barely missed the genome-wide threshold (5×10−8) for USAT.
SNPs with m.a.f. < 5% were screened out. The MANOVA and the univariate analyses p-
values are also provided. The SNPs listed here are the ones left after LD screening. In a group
of highly correlated SNPs (i.e., SNPs with estimated absolute pairwise correlation coefficient
> 0.8 with another SNP), one SNP was kept as a representative. The abbreviations used
are FG (Fasting Glucose), 2-hr GL (2-hour glucose from an oral glucose tolerance test), FI
(Fasting Insulin).
For convenience, the optimal ω has been reported. It represents the adaptive weight given to
MANOVA statistic by the USAT approach. One must note that when SSU and MANOVA
p-values are close, the optimal weight ω in USAT is not really identifiable. One can expect
SSU and MANOVA to behave similarly at ‘partial association’ when number of traits is few
and they are weakly correlated (refer Figure 4).

MANOVA USAT Univariate Analysis p

chr SNP m.a.f. p p ω FG 2-hr GL FI

1 rs12095642 0.282 6.10× 10−4 4.71× 10−5 0.00 6.30× 10−1 8.08× 10−2 9.07× 10−5

1 rs10920639 0.166 1.36× 10−3 4.63× 10−5 0.00 1.15× 10−1 4.66× 10−1 9.77× 10−5

2 rs12622958 0.249 9.61× 10−4 9.61× 10−5 0.00 3.61× 10−1 4.37× 10−2 1.69× 10−4

3 rs9836499 0.367 1.26× 10−3 9.76× 10−5 0.00 4.26× 10−1 8.81× 10−1 3.51× 10−4

3 rs2336664 0.366 1.21× 10−3 9.50× 10−5 0.00 4.24× 10−1 8.94× 10−1 3.36× 10−4

3 rs6790846 0.095 5.68× 10−3 9.32× 10−5 0.00 9.06× 10−1 3.29× 10−1 6.69× 10−4

5 rs3798012 0.062 1.27× 10−4 7.84× 10−6 0.55 2.92× 10−1 7.81× 10−1 6.37× 10−6

5 rs7718567 0.132 4.49× 10−4 9.02× 10−5 0.70 5.85× 10−1 2.93× 10−1 1.23× 10−4

5 rs10213852 0.059 5.00× 10−4 9.05× 10−5 0.50 8.00× 10−1 5.32× 10−1 6.33× 10−5

5 rs10515261 0.097 3.00× 10−3 4.89× 10−5 0.00 2.31× 10−2 3.93× 10−1 6.29× 10−4

5 rs11135532 0.199 6.84× 10−4 4.90× 10−5 0.00 3.83× 10−2 1.30× 10−1 8.48× 10−5

5 rs1438733 0.255 1.72× 10−3 5.02× 10−5 0.00 8.32× 10−1 9.95× 10−1 1.47× 10−4

6 rs7753319 0.421 7.68× 10−4 3.13× 10−6 0.00 7.00× 10−1 2.20× 10−1 3.42× 10−4

6 rs6906163 0.139 2.21× 10−3 9.41× 10−5 0.00 3.66× 10−1 7.61× 10−1 2.24× 10−4

7 rs7793197 0.175 3.07× 10−3 4.56× 10−6 0.00 6.43× 10−1 1.06× 10−1 4.77× 10−4

10 rs2671692 0.367 6.96× 10−4 5.05× 10−6 0.00 5.83× 10−1 7.66× 10−1 6.15× 10−5

10 rs4376833 0.219 9.40× 10−4 8.93× 10−5 0.00 5.54× 10−1 4.47× 10−1 5.73× 10−5

12 rs7962136 0.186 1.38× 10−3 5.00× 10−5 0.00 4.53× 10−1 1.31× 10−1 1.36× 10−4

12 rs11829673 0.051 2.39× 10−4 8.91× 10−5 0.65 3.78× 10−1 6.08× 10−1 9.11× 10−5

13 rs7998882 0.122 1.60× 10−4 9.71× 10−5 0.85 8.86× 10−1 1.45× 10−1 9.18× 10−5

15 rs16957165 0.094 1.98× 10−4 9.43× 10−5 0.80 2.29× 10−2 5.81× 10−3 1.45× 10−4

15 rs931892 0.102 2.03× 10−4 8.59× 10−5 0.75 1.65× 10−2 2.21× 10−2 6.78× 10−5

16 rs11149640 0.374 1.50× 10−3 3.39× 10−5 0.00 5.93× 10−1 9.09× 10−1 1.21× 10−4
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. . . continued

MANOVA USAT Univariate Analysis p

chr SNP m.a.f. p p ω FG 2-hr GL FI

18 rs1443598 0.092 1.81× 10−4 2.80× 10−6 0.65 6.91× 10−1 9.61× 10−1 2.62× 10−5

18 rs11660607 0.287 3.16× 10−3 9.59× 10−5 0.00 4.26× 10−1 5.07× 10−1 2.03× 10−4

18 rs12604897 0.139 1.05× 10−3 4.61× 10−5 0.00 2.19× 10−1 3.27× 10−1 6.23× 10−5

33



Appendix S10

Figure S8: Empirical power curves of the different existing association tests for K = 2 traits and
different within trait correlation values ρ = −0.8,−0.6,−0.4,−0.2, 0.2, ..., 0.8 based on N =
500 datasets with n = 4, 000 unrelated subjects. Opposite direction but same size genetic
effect used when both traits are associated (i.e., datasets are generated from an alternative
model Ha2,2 : β1 = −β2 > 0). Effect size of 0.25 (proportion of variance explained is 0.2%)
is used for the associated traits. The power is plotted along y-axis while the fraction of
traits associated with the genetic variant is plotted along x-axis.
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Appendix S11

Figure S9: Asymptotic power curves of the SSU and MANOVA tests along with our novel approach
USAT for AR1(ρ) within-trait correlation structure. K = 5, 10, 20 traits have been simu-
lated at different within trait correlation values ρ = 0.2, 0.4, 0.6. For each value of K and
ρ, there were N = 500 datasets of n = 400 unrelated individuals. Same effect size of 0.395
(proportion of variance explained is 0.5%) was used for the traits that are associated. The
power is plotted along y-axis while the fraction of traits associated with the genetic variant
is plotted along x-axis.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ = 0.2; K = 5
fraction of traits associated

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ = 0.2; K = 10
fraction of traits associated

po
w

er

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

ρ = 0.2; K = 20
fraction of traits associated

po
w

er

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ = 0.4; K = 5
fraction of traits associated

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ = 0.4; K = 10
fraction of traits associated

po
w

er

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ = 0.4; K = 20
fraction of traits associated

po
w

er

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ = 0.6; K = 5
fraction of traits associated

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ = 0.6; K = 10
fraction of traits associated

po
w

er

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ = 0.6; K = 20
fraction of traits associated

po
w

er

0.0 0.2 0.4 0.6 0.8 1.0

●MANOVA SSU USAT

35



Appendix S12

Figure S10: Empirical power curves of the SSU and MANOVA tests along with our novel approach
USAT for CS(ρ) within-trait correlation structure. K = 5, 10, 20 traits have been simulated
at different within trait correlation values ρ = 0.2, 0.4, 0.6. For each value of K and ρ, there
were N = 500 datasets of n = 400 unrelated individuals. A single SNP with minor allele
frequency (m.a.f.) 0.05 was simulated. Same effect size of 0.725 (proportion of variance
explained is 0.5%) was used for the traits that are associated. The power is plotted along
y-axis while the fraction of traits associated is plotted along x-axis. This figure shows that
the relative behavior of MANOVA and the SSU test does not vary much with change in
m.a.f. Since our proposed test USAT is derived from an optimal weighted combination of
MANOVA and the SSU test, the performance of USAT compared to MANOVA or SSU
also does not vary much with change in m.a.f.
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