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1 Behavioral Results

1.1 Prolonged Effect of Outliers

To estimate the duration of the outlier effect, we conducted additional analyses on the behavioral data. Data for outlier

trials as well as for the 5 trials following an outlier were averaged across participants (trials labeled “0” to “5” in Fig. S1).

Data in all other trials were averaged to form the baseline (trial labeled “-1”). If a second outlier occurred before 5 trials

elapsed, the trial counter was reset to 0. Thus only the trial labeled “0” contains outliers. The Bayesian solution is also

shown for the learning rate.

Participants followed the Bayesian prescription by increasing the learning rate in response to outliers in the fundamental

treatment and by reducing it in the transitory treatment (Fig. S1a). However, the positive and negative adjustments

were less pronounced when compared to the Bayesian solution. Thus participants were “conservative” when reacting to

outliers. Setting aside the outlier trials, one notices that the learning rate was always lower than the Bayesian solution.

Thus participants were also “conservative” when reacting to the target movements. Concerning the duration of the change

following outliers, the effect became relatively small two trials after it occurred. For the prediction error, the effect

progressively diminished until the fifth trial (Fig. S1b). The deliberation time returned more abruptly to the baseline (and

the outlier effect was delayed in the transitory condition, Fig. S1c).
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Figure S1: Learning rate, prediction error and deliberation time in the fundamental (red) and transitory (blue) treatment. The Bayesian

solution is shown for the learning rate (green). The vertical gray line indicates the occurrence of an outlier.
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1.2 Individual Differences and Training Effect

Mixed linear models were fitted to the behavioral data to predict the learning rate as a function of the trial type (Regular,

Outlier, or Post-Outlier/Reversal, see manuscript for a definition). The contrast “Outlier minus Regular” measured the

impact of outliers on the learning rate (Table S1 and S3). Adding the random effects to the fixed effects for this contrast

allowed us to assess individual differences (Fig. S2a). After observing an outlier, almost all participants increased the

learning rate in the fundamental treatment (28 blue points above the gray line) and decreased it in the transitory treatment

(28 red points bellow the gray line). Thus most of the 31 participants learned to adjust their learning rate in the correct

direction.

A factor with a level for each block of 40 trials was added to the mixed linear model to assess how fast participants learned

to adjust the learning rate. The regression coefficients for the contrast Outlier-Regular are displayed for each block of 40

trials and each treatment in Figure S2b. In both treatments the impact of outlier on the learning rate was positive in the

first 40 trials (however the effect was not significant, p = .23 and p = .14 for the fundamental and transitory treatments

respectively). This trend supports the hypothesis that – a priori – people anticipate fundamental changes. In the transitory

treatment, the positive impact of outliers increased rapidly after the first 40 trials. In the transitory treatment, the impact

became negative with training, but the change was slower compared to the fundamental treatment. All contrasts after the

first 40 trial block were significant (p < .01).
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Figure S2: (a) Individual differences for the impact of outliers on the learning rate. (b) Progression of the learning rate across blocks

of 40 trials.
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2 Ideal-Observer Model

2.1 What Does The Ideal Observer Know?

A Bayesian model was developed to calculate the learning rate an agent should adopt to optimally respond to outliers

in the fundamental and transitory treatments. We opted to approximate the infinite-range and continuous-state nature of

the task with a finite-range, discrete-state, Markov state transition model. This simplified computations of the Bayesian

updating: as will become clear later, Bayesian posterior and probabilities could be obtained from straightforward matrix

multiplications.

In deriving optimal learning rates (i.e., how much the decision maker is to catch up with the target after a target move),

and consistent with the literature on Kalman filtering, we assumed that the decision maker knew the parameters of the

processes, and whether he/she was in the fundamental or transitory treatment. Later, this last assumption will be relaxed

for the Bayesian model. A reinforcement learning model will also be presented for which no knowledge about the process

parameters or the treatment is necessary.

2.2 Finding the Position of the Hidden Target

First, because our state-space model potentially (though rarely) generates target moves of more than one circle (more than

2π radians), we started from a state space that covered 4 circles. That is, the state space ran from 0 to 8π radians. Second,

we discretized the state space in 2880 segments of 8π/2880 radians each. Moves could be clockwise (increase in radians)

or counter-clockwise (decrease in radians).

We then determined the transition probability matrix P of the hidden target X. P[i, j] gives the probability that the target

will move to segment i at time t +1 knowing that it was at segment j at time t. Figure S3a shows a subset of the transition

probability matrix for each treatment. P is calculated with the Algorithm 1. k serves to formalize the possibility that

the target can reach the new segment directly or after several rotations on the hyper-circle (up to 3 rotations). In the

fundamental treatment, σ1 = 0.25, σ2 = 2 and p2 = 0.15. Thus the hidden target is subject to rare but large movements.

In the transitory treatment, σ1 = σ2 = 0.25 and p2 = 0. Thus the target movements are Gaussian.

Algorithm 1 Transition Probabilities

1: for j = 1 : 2880 do // Go through all departure segments

2: for i = 1 : 2880 do // Go through all arrival segments

3: Initialize the transition probabilities: P[i, j] = 0

4: for k =−3,−2,−1,0,1,2,3 do // The distance can be larger than 1 hyper-circle

5: Calculate the movement size: d = 8π
2880

(i− j)+ 8πk

6: Density of the 1st Gaussian at d: f1 = e

−d2

2σ2
1 /

√

2πσ2
1

7: Density of the 2nd Gaussian at d: f2 = e

−d2

2σ2
2 /

√

2πσ2
2

8: Transition probability (mixture): P[i, j] = P[i, j]+ (1− p2) f1 + p2 f2

9: end for

10: end for

11: Normalize: P[., j] = P[., j]/∑i P[i, j])
12: end for

The likelihood matrix L defines the relation between the hidden target X and the observed target Y. L[i, j] gives the

probability that X is at segment j knowing that Y is at segment i. Figure S3b shows a subset of the likelihood matrix for

each treatment. L is calculated with Algorithm 2. In the fundamental treatment, σ1 = σ2 = 0.25 and p2 = 0. This implies

that the distance between the observed and the hidden target follows a Gaussian distribution. In the transitory treatment,

σ1 = 0.25, σ2 = 2 and p2 = 0.15. Thus the observed target is sometimes very far away from the hidden target.

Algorithm 3 calculates the posterior belief after observing the target movement. The vector b quantifies the belief on the

hidden target position. bt [i] gives the probability that X is at segment i at time t. The posterior belief is stored in b′t . yt is

the segment at which Y was observed at time t. l[i] with l = L[yt , .] gives the probability of observing Y at the segment yt
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Figure S3: (a) Transition probabilities. Given a hidden target positioned at segment i = 1440, the plot shows the probability that the

hidden target was at segment j in the previous time step. Large movement of the hidden target are plausible in the fundamental treatment

but almost impossible in the transitory condition. (b) Likelihood. Given an observed target at segment i = 1440, the plot shows the

probability that the hidden target is currently at segment j. Large distance between the hidden and observed target are plausible in the

transitory treatment, but almost impossible in the fundamental treatment.

knowing that the hidden target X is at segment i. ct is the probability of observing Y at the segment yt regardless of where

X is hidden.

The next algorithm uses the posterior belief to estimate the uncertainty of the belief (entropy) and the expected position

of the hidden target (Alg. 4). This position is an unsigned number ranging from 1 to 2880 and points to a unique segment

on the hyper-circle. This number needs to be converted into a signed value with no boundaries. Indeed, the process

controlling the position of the hidden target is a random walk and produces values that are unbounded. The algorithm

takes care of converting the unsigned position xt (∈ 1, . . . ,2880) into a signed position xs
t (∈ Z).

When the change in position from t− 1 to t is very high (> 1203 segments), it indicates that the hidden target has moved

counter-clockwise through the junction of the hyper-circle. This junction directly connects segment 2880 to segment 1

(closing of the hyper-circle). This would happen for instance if X moved from segment 1 to segment 2880 and thus

produced a displacement d of 2879. Simulation shows that positive differences > 1203 are impossible and d is thus

converted to an innovation term v equals to -1 segment (counter-clockwise movement). An opposite example is if X

moved from segment 2880 to segment 1 and thus produced a displacement d of -2879. Such a low negative difference is

impossible and is thus converted to an innovation v equals to 1 segment (clockwise movement). The innovation v is added

to the previous signed position of the hidden target xs
t−1 to obtain the new signed position xs

t (signed index of a segment).

This strategy allows us to recover the position of the hidden target on an unbounded space. It requires a discrete sate space

that covers enough radians, hence the use of a hyper-cycle of 8π . Otherwise it is impossible to decide if X moved through

the junction or not.

In the decision making task program, the current position of the observed target was given in radians and is called yr
t in

the algorithm. It is transformed into ys
t , the signed index of a segment. This value can be compared to the signed index

of the previous hidden target position xs
t−1 in order to calculate the prediction error δ . The optimal (Bayesian) learning

rate r is calculated by dividing the innovation v by the prediction error. This division leads to infinite or undefined values

5



Algorithm 2 Likelihood

1: for j = 1 : 2880 do // Go through all hidden target segments

2: for i = 1 : 2880 do // Go through all observed target segments

3: Initialize the likelihood: L[i, j] = 0

4: for k =−3,−2,−1,0,1,2,3 do // The distance can be larger than 1 hyper-circle

5: Calculate the target distance: d = 8π
2880

(i− j)+ 8πk

6: Density of the 1st Gaussian at d: f1 = e

−d2

2σ2
1 /

√

2πσ2
1

7: Density of the 2nd Gaussian at d: f2 = e

−d2

2σ2
2 /

√

2πσ2
2

8: Likelihood (mixture): L[i, j] = L[i, j]+ (1− p2) f1 + p2 f2

9: end for

10: end for

11: Normalize: L[., j] = L[., j]/∑i L[i, j])
12: end for

Algorithm 3 Bayesian Inference

1: Set the initial belief: b′0[i] = 1/2880; i = 1, . . . ,2880

2: for t = 1 : 200 do // Go through all time steps in the run

3: Compute the prior belief using the transition probabilities: bt = Pb′t−1

4: Normalize the prior belief: bt [i] = bt [i]/∑ j bt [ j]; i = 1, . . . ,2880

5: Likelihood of seeing Y: l = L[yt , .]
6: Compute the posterior belief: b′t [i] = l[i]b[i]; i = 1, . . . ,2880

7: Probability of seeing Y: ct = ∑ j b′t [ j]
8: Normalize the posterior belief: b′t [i] = b′t [i]/ct ; i = 1, . . . ,2880

9: end for

Algorithm 4 Prediction Error and Learning Rate

1: Set the initial position of the hidden target: x0 = 1

2: Set the signed position of the hidden target: xs
0 = 1

3: for t = 1 : 200 do // Go through all time steps in the run

4: Expected position on the hyper-circle: xt = argmaxi b′t [i]
5: Calculate the entropy: ht = h(b′t)
6: Change in position: d = xt − xt−1

7: if d > 1203 then // The change in position is too high, it must be counter-clockwise

8: Calculate the signed innovation: v =−(2880− d)
9: else if d <−1203 then // The change in position is too low, it must be clockwise

10: Calculate the signed innovation: v = 2880+ d

11: else // The change in position is possible

12: Calculate the signed innovation: v = d

13: end if

14: New signed position: xs
t = xs

t−1 + v

15: Signed position of the observed target (integer division): ys
t = 1+ yr

t \ (8π/2880)
16: Prediction error: δt = ys

t − xs
t−1

17: Learning rate: rt = v/δt

18: end for
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when the prediction error equals 0 segment. This limit is inherent to the finite state space. Infinite and undefined values

were replaced by missing values (NA). The Bayesian learning rate was missing for less than 1% of the trials. The optimal

learning rate for each trial type was calculated by averaging the learning rate r obtained for all the Regular, Outlier, and

Post-Outlier/Reversal movements of the observed target y.

It might be worth stressing here that the prediction errors and the learning rates do not drive the learning process in the

Bayesian model. These variables are byproducts of the probabilistic inference and are calculated to compare the Bayesian

model with the behavioral data and the reinforcement learning model developed later in the SI.

The accuracy of the Bayesian inference is illustrated in Figure S4. In the fundamental treatment (Fig. S4a), large move-

ments of the observed target (red) are associated with large movements of the hidden target (green). In the transitory

treatment (Fig. S4b), large movements of the observed target (red) are due to errors and are not associated to underlying

movements of the hidden target (green). It can be seen that the inferred position (blue) tracks the position of the hidden

target. It follows the large movements of the observed target in the fundamental treatment and successfully ignores them

in the transitory treatment.
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Figure S4: Ability of the Bayesian model to track the position of the hidden target. (a) Fundamental treatment. (b) Transitory

treatment.

2.3 Relation between Prediction Error, Learning Rate, and Uncertainty

Figure S5 shows how the learning rate increases with the prediction error, consistent with the idea that large target moves

(outliers) are most likely to be caused by the leptokurtic driving process of the state variable, and hence, demand substan-

tial belief adjustment. The uncertainty in the origin of the target moves (noise; state changes) translates into corresponding

entropy of the posterior belief. Entropy is lower for tiny and large target moves. This also implies that learning is most

intense after medium-sized target moves. Results of the Bayesian inference were smoothed to obtain the figure.

In contrast Figure S6 shows how the learning rate decreases with the prediction error in the transitory treatment, consistent
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Figure S5: Fundamental Treatment. (a) Learning rate as a function of the prediction error (difference between the observed target

location and the prior inferred position). (b) Entropy (inverse of precision) of posterior beliefs of the hidden target location as a function

of prediction error.

with the idea that large target moves (outliers) are most likely to be caused by leptokurtic noise, and hence, require little

belief adjustment. There is a slight non-monotonicity: tiny target moves are more likely to be generated by leptokurtic

noise as well (the noise distribution exhibits both fat tails and more peakedness than the Gaussian distribution). Conse-

quently, the learning rate actually decreases slightly as the prediction error becomes tiny. The uncertainty in the origin

of the target moves (noise; state changes) translates into corresponding posterior belief entropy. Entropy is lower for tiny

and large target moves. This also implies that learning is most intense after medium-sized target moves (near the outlier

frontier).

2.4 Knowing Which Regime One Is In

In the ideal-observe model presented in the previous section, we made the assumption that the Bayesian agent knew which

treatment he/she was in. This simplification is acceptable only if the agent can discover rapidly the treatment currently in

place. To test this assumption, we looked at the evolution of beliefs at the beginning of a new block of trials. In this model,

the Bayesian agent knows the distributions that generate the observed target in each treatment (like in the ideal-observer

model), but starts with a neutral prior regarding the treatment at play. At any given trial, the likelihood to see yt is given

by ct (see Alg. 3). This likelihood can be computed under the hypothesis of being in the fundamental (cF
t ) or transitory

treatment (cT
t ). The posterior probability of being in the transitory treatment pT

t is given by the Bayes law:

pT
t =

cT
t pT

t−1

cT
t pT

t−1 + cF
t (1− pT

t−1)
(1)

Before the first observation, the initial probability of being in the transitory treatment is set at pT
0 = 0.5. Figure S7 shows

the evolution of beliefs in each treatment. The belief changes abruptly after the observation of an outlier (vertical gray

line) and gets close to 0 in the fundamental treatment and close to 1 in the transitory treatment. It can be concluded that

the Bayesian agent discovers in which treatment he/she is immediately after the occurrence of an outlier.
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Figure S6: Transitory Treatment. (a) Learning rate as a function of the prediction error (difference between the observed target location

and the prior inferred position). (b) Entropy (inverse of precision) of posterior beliefs of the hidden target location as a function of

prediction error.
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Figure S7: Evolution of the belief of being in the transitory treatment across the first 8 trials of a block. The vertical gray line

corresponds to the occurrence of an outlier. (a) The Bayesian agent is in the fundamental treatment. (b) The Bayesian agent is in the

transitory treatment.
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3 Reinforcement Learning

3.1 Model Description

The Bayesian model was necessary to discover the optimal reaction to outliers in each treatment. However, this model

requires full knowledge of the distributions used to generate the target moves. This is rarely the case in a natural environ-

ment. The Bayesian model is also demanding in terms of computation. Given the limits of human cognition, participants

might rely on a simpler model to learn the correct learning rate (meta learning). We thus developed a reinforcement learn-

ing model that is cognitively more realistic. We call it “Contrarian Reinforcement Learning” (Contrarian RL) because the

learning rate can decrease when the prediction error increases.

The central idea of this new model is to take advantage of the prediction error autocorrelation to control the reaction to

outliers. Adjustment of the learning rate as a function of autocorrelation is an attempt to make beliefs form a martingale

because Bayesian beliefs do so (Doob, 1948). Hence, the contrarian RL model is an attempt to emulate Bayesian learning.

The principle of using the autocorrelation has been presented before to accelerate learning (Sutton, 1992). However, in

our model, the autocorrelation does not directly influence the learning rate, it influences the relation between the learning

rate and the prediction error. This gives our new algorithm the unique ability to momentarily inhibit a response when the

change in the environment is too drastic (e.g a sudden sell-off in the stock market).

The autocorrelation carries diagnostic information on how to react to large changes. Indeed, if the autocorrelation is

positive, this means the agent under-reacts to outliers. In this case, the autocorrelation is used to set a positive relation

between the prediction error and the learning rate (like in Fig. S5). If the prediction error is large, the learning rate

will increase in that particular trial and the agent will follow the outlier. This is the correct strategy in the fundamental

treatment. If the autocorrelation is negative, this means the agent over-reacts to outliers. In this case, the autocorrelation is

used to set a negative relation between the prediction error and the learning rate (like in Fig. S6). If the prediction error is

large, the learning rate will decrease in that particular trial and the agent will resist the change (contrarian attitude). This

is the correct strategy if large moves reflect observational errors like in the transitory condition. The detailed Contrarian

RL algorithm is presented first (Alg. 5) and its various components are then reviewed.

Algorithm 5 Contrarian Reinforcement Learning

1: Set the free parameters θ ,a, f ,s
2: Initialize the inferred position of the target: z = 0

3: Initialize the prediction error autocovariance: c = 0

4: Initialize the past prediction error: δ0 = 0

5: for t = 1 : 2000 do // Go through all time steps

6: Calculate the new prediction error: δ = yt − z

7: if t = 1 then // First time step

8: Initialize the prediction error variance: v = δ 2

9: end if

10: Update the prediction error variance: v = v+θ (δ 2− v)
11: Update the prediction error autocovariance: c = c+θδδ0

12: Get the scaled-unsigned prediction error: δ+ = |δ |/√v

13: Get the prediction error autocorrelation: r = c/v

14: if δ+ < f then // The prediction error is within the outlier frontier

15: The learning rate is constant: α = a

16: else // The prediction error is large

17: Adjust the learning rate as a function of the autocorrelation and error: α = a+ sr(δ+− f )
18: end if

19: Bound the learning rate in [0,1]: α = min(max(0,α),1)
20: Update the inferred position of the target: z = z+αδ

21: Record the current prediction error: δ0 = δ

22: end for

z is the inferred position of the hidden target and y is the observed target position (in radians). The key variable in the

algorithm is the learning rate α that determines the reaction to the target movement on a trial to trial basis. To adjust this

variable, the algorithm needs to estimate two quantities: The prediction error variance v and its covariance c. The meta
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learning rate θ is a free parameter that controls the estimation of the prediction error variance and covariance. Dividing

the covariance and the prediction error by the variance makes the model immune to an arbitrary change of units. Dividing

by the variance, one obtains the autocorrelation r and the unsigned-scaled prediction error δ+. A second free parameter

f defines the outlier frontier. If the prediction error is smaller than this frontier, the learning rate equals the value of a

third free parameter a. That is, for small target movements, the learning rate remains constant. If the prediction error is

larger than the frontier, the learning rate becomes a function of the (scale-unsigned) prediction error: It increases with the

prediction error if the autocorrelation is positive (activation) and decreases if the autocorrelation is negative (inhibition).

The strength of this relationship (not its direction) is controlled by a fourth free parameter s.

In contrast with the Bayesian model, the learning rate and prediction error in the Contrarian RL are not byproducts because

they drive the learning process. Another characteristic of the algorithm is that it learns to follow or resist outliers using

the same set of free parameters. Thus it does not need to know in which treatment it is operating. It also learns without

knowing the full distributions generating the stimuli. Instead it uses the prediction error autocorrelation. It is important

to note that it is not the number of free parameters that gives the Contrarian RL the flexibility to momentarily activate or

inhibit a response, but the way the autocorrelation is factored in the algorithm.

3.2 Model Performance

The performance of the Contrarian RL was tested against three models: a) the benchmark Bayesian model (Ideal-Observer

Model, see Section 2), b) the reinforcement learning model written by Sutton (1992), and c) a simple update rule. The

Bayesian model has no free parameter but it requires full knowledge of the generating distributions (and in which regime

it is). The model by Sutton (1992) has one meta learning rate θ and the learning rate depends on the correlation between

present and past adjustments. Finally, the simple update rule has one free parameter, a constant learning rate α:

z← z+αδ (2)

To estimate the free parameters, the error was measured by the distance between the inferred (z) and the true hidden target

position (z∗). We chose the RMSE for the loss function. The hidden target position was known because we used stimulated

target movements. The loss function was minimized with constrained optimization in R. For the new contrarian model,

the constrains were θ > 0, f > 0, 0 < a < 1, and s > 0. For Sutton’s model, the constrain was θ > 0. For the simple

update rule, it was α > 0. All models were fitted on 2000 trials per treatment.

The estimated value for the constant learning rate a in the Contrarian RL model was 0.57. The outlier frontier f was

0.91, a value close to one standard deviation. Beyond this value, the learning rate α depends on the product between the

(unsigned-scaled) prediction error and the autocorrelation. The value of s was 0.57, meaning that this product needs to be

scaled. The non-zero value also suggests that this product improves the model. The meta learning rate for the variance

and covariance was θ = 0.012. Results also show that the learning rate alpha increases in response to outliers in the

fundamental treatment and decreases in the transitory treatment (purple lines, Fig. S8a). This pattern follows the optimal

Bayesian solution (green line).

The meta learning rate in Sutton’s algorithm was θ = 0.023. Results show that the learning rate α is high in the funda-

mental treatment and low in the transitory treatment (orange lines, Fig. S8a). Unlike the Contrarian and the Bayesian

models, the learning rate remains unchanged when an outlier occurs. The learning rate for the simple update rule was

estimated at 0.61 and remained constant across trials (black dashed line, Fig. S8a). The researcher might have no access

to the position of the hidden target. However, similar estimates were found after minimizing the prediction error. The

prediction error can always be computed because it is based on the inferred position and not the true position of the hidden

target.

For the four models we found that the RMSE was larger in the transitory compared to the fundamental treatment (Fig.

S8b). This result is in line with the larger errors made by participant in the former condition (see behavioral data in Fig.

S1b). Joining the two treatments, the RMSE was smallest for the Bayesian model (0.23), followed by the Contrarian RL

(0.28), Sutton’s model (0.36), and the simple update rule (0.47). To take into account the number of free parameters in

each model, the BIC was calculated based on the MSE (a lower BIC is better). The BIC was −11591 for the optimal

Bayesian model,−10256 for the Contrarian RL, −8143 for Sutton’s model, and −6017 for the simple update rule. These

results show that the novel RL model performs better in the fundamental and transitory treatment when compared to the

11



a

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Contrarian RL

Trial

Le
ar

ni
ng

 R
at

e

O
ut

lie
r

Optimal Bayes
Contrarian RL
Sutton92
Simple RL

b

Model Comparison

R
M

S
E

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Optimal Bayes Contrarian RL Sutton92 Simple RL

Fundamental
Transitory

Figure S8: The RL models parameters were estimated by minimizing the distance between the inferred and true target position. The

Bayesian model has no free parameter to estimate. (a) Adjustment of the learning rate in response to outliers in the fundamental (upper

colored lines) and transitory treatments (lower colored lines). The Simple RL model has the same learning rate in the two treatments

(black dashed line). (b) RMSE for each model in the fundamental and transitory treatments. Lower is better.

other RL algorithms.

4 Regressions

Mixed linear models were defined with the learning rate (Tables S1, S3), the unsigned prediction error (Tables S8, S9),

or the deliberation time (Tables S16, S17) as the dependent variable. Regressions were estimated separately for the

fundamental and transitory treatment. On the right-hand-side of the regression, a single factor was entered to label the

type of trials. In the fundamental treatment, the labels were: Regular, Outlier, and Post-Outlier. In the transitory treatment,

the labels were Regular, Outlier, and Reversal. To estimate the difference between the types of trials, the contrasts Outlier-

Regular (i.e., Outlier minus Regular) and PostOutlier-Outlier were defined for the fundamental treatment. The contrasts

Outlier-Regular and Reversal-Outlier were defined for the transitory treatment. Thus the intercept corresponds to the

Outlier trials. Random effects capturing subject variability were introduced for both the intercept and the factor.

To compare the participant learning rate to the optimal Bayesian solution and assess the relative impact of outliers,

additional mixed linear models were defined. A regression was estimated separately for the fundamental and transitory

treatment (Tables S2, S4). Post-Outlier and Reversal trials were removed from the analysis. Two measurements were

taken on each participant and at each trial: its own learning rate and the learning rate calculated with the Bayesian model

(Alg. 4). The dependent variable is thus the learning rate. The dummy variable Participant was entered on the right-

hand-side to indicate if the measurement was the Bayesian learning rate or the participant one. The dummy variable

Outlier indicated if the type of trial was Regular or Outlier. The interaction Outlier x Participant will show if the impact

of outliers on the learning rate is smaller or larger for participants in comparison to the Bayesian solution. Random effects

capturing participant variability were introduced for both the intercept and the two dummy variables.

To compare the prediction error to the optimal Bayesian solution, data from the fundamental and transitory treatment were

joined and than split by the type of trial (Regular, Outlier, Post-Outlier or Reversal). A separate regression was estimated

for each type of trial (Tables S10, S11, S12). The dependent variable was the difference AbsPeObs minus AbsPeBayes.

AbsPeObs is the unsigned participant prediction error. AbsPeBayes is the unsigned Bayesian prediction error. On the

right-hand-side of the regression, a dummy variable was entered to label the Treatment. A significant and positive effect

of the dummy variable will indicate that the prediction error (relative to the Bayesian prediction error) is larger in the

transitory condition. Random effects due to subject variability were introduced for the intercept and the dummy variable.

To test the effect of training on behavioral adjustment, mixed linear models were defined with the learning rate as the

dependent variable. Separate models were estimated for the fundamental (Table S5) and transitory treatments (Table S6)
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and only outlier trials were included. On the right-hand-side of the regressions, a dummy variable Run was created to

indicate if the (outlier) trial belonged to the first or second run. Random effects due to subject variability were introduced

for the intercept and the dummy variable. Data from the fundamental and transitory treatments were then joined. Here

again only outlier trials were included in the analysis. Dummy variables coding for the Treatment and the Run were

entered on the right-hand-side of the regression (Table S7). The interaction Run x Treatment was added. The interaction

will test if the effect of the training is more pronounced in one treatment compared to the other. Random effects due to

subject variability were introduced for the intercept, the main effects, and the interaction effect.

To test the effect of training on performance, mixed linear models were defined with the unsigned prediction error as the

dependent variable. Separate models were estimated for the fundamental (Table S13) and transitory treatments (Table S14)

and only Post-Outlier or Reversal trials were included. On the right-hand-side of the regressions, a dummy variable Run

was created to indicate if the (outlier) trial belonged to the first or second run. Random effects due to subject variability

were introduced for the intercept and the dummy variable. Data from the fundamental and transitory treatments were

then joined. Here again only Post-Outlier or Reversal trials were included in the analysis. Dummy variables coding the

Treatment and Run were entered on the right-hand-side of the regression (Table S15). The interaction Run x Treatment

was added. The interaction will test if the effect of the training is more pronounced in one treatment compared to the

other. Random effects due to subject variability were introduced for the intercept, the main effects, and the interaction

effect.

To test the effect of training on speed, mixed linear models were defined with the deliberation time as the dependent

variable. When participants do not change the learning rate, the value of the dependent variable is missing (NA). Separate

models were estimated for the fundamental (Table S18) and transitory treatments (Table S19). All trials were included.

On the right-hand-side of the regressions, a dummy variable Run was created to indicate if the trial belonged to the first

or second run. Random effects due to subject variability were introduced for the intercept and the dummy variable.
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5 Tables

Table S1: Learning rate in the fundamental treatment

Variable Estimate Lower Upper SE Df t p

Fixed effect

Outlier 0.735∗∗∗ 0.684 0.787 0.026 12367 28.01 0.000

Outlier-Regular 0.202∗∗∗ 0.141 0.264 0.032 12367 6.42 0.000

PostOutlier-Outlier −0.099∗∗ −0.175 −0.024 0.038 12367 −2.59 0.010

Random effect (SD)

Outlier 0.140 − − − − − −
Outlier-Regular 0.170 − − − − − −
PostOutlier-Outlier 0.205 − − − − − −
Error 0.244 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=12400.

Table S2: Learning rate in the fundamental treatment (relative to Bayes)

Variable Estimate Lower Upper SE Df t p

Fixed effect

(Intercept) 0.642∗∗∗ 0.639 0.646 0.002 24647 370.23 0.000

Outlier 0.324∗∗∗ 0.312 0.335 0.006 24647 56.70 0.000

Participant −0.100∗∗∗ −0.152 −0.048 0.026 24647 −3.77 0.000

OutlierxParticipant −0.131∗∗∗ −0.199 −0.064 0.034 24647 −3.81 0.000

Random effect (SD)

(Intercept) 0.000 − − − − − −
Outlier 0.000 − − − − − −
Participant 0.147 − − − − − −
OutlierxParticipant 0.186 − − − − − −
Error 0.183 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=24681; Outlier=0 for regular trials; Outlier=1 for outlier trials; Participant=0 for Bayesian prediction;

Participant=1 for participants.

Table S3: Learning rate in the transitory treatment

Variable Estimate Lower Upper SE Df t p

Fixed effect

Outlier 0.389∗∗∗ 0.335 0.444 0.028 12367 14.10 0.000

Outlier-Regular −0.162∗∗∗ −0.217 −0.108 0.028 12367 −5.83 0.000

Reversal-Outlier 0.111∗∗∗ 0.067 0.156 0.023 12367 4.92 0.000

Random effect (SD)

Outlier 0.147 − − − − − −
Outlier-Regular 0.148 − − − − − −
Reversal-Outlier 0.108 − − − − − −
Error 0.257 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=12400.

Table S4: Learning rate in the transitory treatment (relative to Bayes)

Variable Estimate Lower Upper SE Df t p

Fixed effect

(Intercept) 0.627∗∗∗ 0.624 0.631 0.002 24660 329.06 0.000

Outlier −0.513∗∗∗ −0.526 −0.500 0.007 24660 −77.95 0.000

Participant −0.080∗∗ −0.133 −0.026 0.027 24660 −2.93 0.003

OutlierxParticipant 0.355∗∗∗ 0.295 0.416 0.031 24660 11.50 0.000

Random effect (SD)

(Intercept) 0.000 − − − − − −
Outlier 0.000 − − − − − −
Participant 0.151 − − − − − −
OutlierxParticipant 0.164 − − − − − −
Error 0.202 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=24694; Outlier=0 for regular trials; Outlier=1 for outlier trials; Participant=0 for Bayesian prediction;

Participant=1 for participants.
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Table S5: Learning rate as a function of training in the transitory treatment

Variable Estimate Lower Upper SE Df t p

Fixed effect

(Intercept) 0.447∗∗∗ 0.386 0.509 0.031 1003 14.36 0.000

Run −0.116∗∗∗ −0.169 −0.064 0.027 1003 −4.37 0.000

Random effect (SD)

(Intercept) 0.157 − − − − − −
Run 0.106 − − − − − −
Error 0.294 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=1035.

Table S6: Learning rate as a function of training in the fundamental treatment

Variable Estimate Lower Upper SE Df t p

Fixed effect

(Intercept) 0.726∗∗∗ 0.669 0.783 0.029 1103 25.07 0.000

Run 0.017 −0.013 0.048 0.015 1103 1.13 0.260

Random effect (SD)

(Intercept) 0.152 − − − − − −
Run 0.038 − − − − − −
Error 0.230 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=1135.

Table S7: Learning rate as a function of training and treatment (interaction)

Variable Estimate Lower Upper SE Df t p

Fixed effect

(Intercept) 0.726∗∗∗ 0.671 0.782 0.028 2136 25.68 0.000

Run 0.017 −0.016 0.050 0.017 2136 1.00 0.319

Treatment −0.279∗∗∗ −0.357 −0.202 0.040 2136 −7.03 0.000

Run x Treatment −0.133∗∗∗ −0.194 −0.072 0.031 2136 −4.27 0.000

Random effect (SD)

(Intercept) 0.145 − − − − − −
Run 0.035 − − − − − −
Treatment 0.202 − − − − − −
Run x Treatment 0.118 − − − − − −
Error 0.262 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=2170; Run=0 for run1; Run=1 for run2; Treatment=0 for fundamental; Treatment=1 for transitory.

Table S8: Prediction error (abs) in the fundamental treatment

Variable Estimate Lower Upper SE Df t p

Fixed effect

Outlier 2.890∗∗∗ 2.815 2.966 0.038 12367 75.42 0.000

Outlier-Regular 2.547∗∗∗ 2.471 2.623 0.039 12367 65.36 0.000

PostOutlier-Outlier −2.041∗∗∗ −2.183 −1.900 0.072 12367 −28.29 0.000

Random effect (SD)

Outlier 0.196 − − − − − −
Outlier-Regular 0.197 − − − − − −
PostOutlier-Outlier 0.382 − − − − − −
Error 0.513 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=12400.
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Table S9: Prediction error (abs) in the transitory treatment

Variable Estimate Lower Upper SE Df t p

Fixed effect

Outlier 2.774∗∗∗ 2.738 2.811 0.019 12367 149.18 0.000

Outlier-Regular 2.415∗∗∗ 2.377 2.453 0.019 12367 123.99 0.000

Reversal-Outlier −1.393∗∗∗ −1.552 −1.234 0.081 12367 −17.18 0.000

Random effect (SD)

Outlier 0.023 − − − − − −
Outlier-Regular 0.023 − − − − − −
Reversal-Outlier 0.427 − − − − − −
Error 0.583 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=12400.

Table S10: Prediction error (abs) for regular trial as a function treatment (relative to Bayes)

Variable Estimate Lower Upper SE Df t p

Fixed effect

(Intercept) 0.028∗∗∗ 0.022 0.035 0.004 20643 8.11 0.000

Treatement 0.025∗∗∗ 0.012 0.037 0.006 20643 3.93 0.000

Random effect (SD)

(Intercept) 0.014 − − − − − −
Treatment 0.029 − − − − − −
Error 0.243 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=20675.

Table S11: Prediction error (abs) for outlier trials as a function treatment (relative to Bayes)

Variable Estimate Lower Upper SE Df t p

Fixed effect

(Intercept) 0.014 −0.010 0.037 0.012 2138 1.14 0.255

Treatement 0.039∗ 0.008 0.071 0.016 2138 2.44 0.015

Random effect (SD)

(Intercept) 0.025 − − − − − −
Treatment 0.000 − − − − − −
Error 0.374 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=2170.

Table S12: Prediction error (abs) for trials following outliers as a function treatment (relative to Bayes)

Variable Estimate Lower Upper SE Df t p

Fixed effect

(Intercept) 0.470∗∗∗ 0.343 0.597 0.065 1923 7.27 0.000

Treatement 0.316∗∗ 0.116 0.516 0.102 1923 3.09 0.002

Random effect (SD)

(Intercept) 0.323 − − − − − −
Treatment 0.518 − − − − − −
Error 0.913 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=1955.
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Table S13: Prediction error (abs) as a function of training in the fundamental treatment

Variable Estimate Lower Upper SE Df t p

Fixed effect

(Intercept) 0.910∗∗∗ 0.765 1.055 0.074 1006 12.31 0.000

Run −0.126∗ −0.222 −0.029 0.049 1006 −2.56 0.011

Random effect (SD)

(Intercept) 0.364 − − − − − −
Run 0.000 − − − − − −
Error 0.785 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=1038.

Table S14: Prediction error (abs) as a function of training in the transitory treatment

Variable Estimate Lower Upper SE Df t p

Fixed effect

(Intercept) 1.597∗∗∗ 1.425 1.768 0.087 885 18.31 0.000

Run −0.435∗∗∗ −0.614 −0.257 0.091 885 −4.79 0.000

Random effect (SD)

(Intercept) 0.376 − − − − − −
Run 0.255 − − − − − −
Error 1.162 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=917.

Table S15: Prediction error (abs) as a function of training and treatment (interaction)

Variable Estimate Lower Upper SE Df t p

Fixed effect

(Intercept) 0.909∗∗∗ 0.772 1.046 0.070 1921 13.01 0.000

Run −0.132∗ −0.251 −0.012 0.061 1921 −2.16 0.031

Treatment 0.676∗∗∗ 0.457 0.895 0.112 1921 6.05 0.000

Run x Treatment −0.297∗∗ −0.515 −0.079 0.111 1921 −2.67 0.008

Random effect (SD)

(Intercept) 0.307 − − − − − −
Run 0.000 − − − − − −
Treatment 0.512 − − − − − −
Run x Treatment 0.362 − − − − − −
Error 0.977 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=1955; Run=0 for run1; Run=1 for run2; Treatment=0 for fundamental; Treatment=1 for transitory.

Table S16: Deliberation time in the fundamental treatment

Variable Estimate Lower Upper SE Df t p

Fixed effect

Outlier 0.662∗∗∗ 0.586 0.737 0.038 10453 17.23 0.000

Outlier-Regular 0.071∗∗∗ 0.031 0.110 0.020 10453 3.50 0.000

PostOutlier-Outlier −0.091∗∗∗ −0.145 −0.037 0.028 10453 −3.30 0.001

Random effect (SD)

Outlier 0.201 − − − − − −
Outlier-Regular 0.082 − − − − − −
PostOutlier-Outlier 0.112 − − − − − −
Error 0.413 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=10486.
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Table S17: Deliberation time in the transitory treatment

Variable Estimate Lower Upper SE Df t p

Fixed effect

Outlier 0.663∗∗∗ 0.603 0.722 0.030 10332 21.79 0.000

Outlier-Regular 0.082∗∗∗ 0.053 0.112 0.015 10332 5.46 0.000

Reversal-Outlier 0.075∗∗ 0.025 0.125 0.026 10332 2.94 0.003

Random effect (SD)

Outlier 0.149 − − − − − −
Outlier-Regular 0.000 − − − − − −
Reversal-Outlier 0.081 − − − − − −
Error 0.428 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=10365.

Table S18: Deliberation time as a function of training in the fundamental treatment

Variable Estimate Lower Upper SE Df t p

Fixed effect

(Intercept) 0.614∗∗∗ 0.545 0.682 0.035 10454 17.51 0.000

Run −0.035∗∗ −0.060 −0.011 0.013 10454 −2.81 0.005

Random effect (SD)

(Intercept) 0.192 − − − − − −
Run 0.053 − − − − − −
Error 0.415 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=10486.

Table S19: Deliberation time as a function of training in the transitory treatment

Variable Estimate Lower Upper SE Df t p

Fixed effect

(Intercept) 0.600∗∗∗ 0.542 0.657 0.029 10333 20.55 0.000

Run 0.001 −0.028 0.030 0.015 10333 0.07 0.948

Random effect (SD)

(Intercept) 0.159 − − − − − −
Run 0.068 − − − − − −
Error 0.429 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=10365.
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Table S20: Early BOLD response to outliers (attentional network)

Region T-value Df x y z

Left Lingual 9.44 29 −22 −70 −2

Right Lingual 8.30 29 22 −64 2

Left Superior Occipital 6.26 29 −22 −74 34

Right Superior Occipital 6.54 29 26 −70 38

Left Parietal/Post Central 6.01 29 −34 −44 42

Right Parietal/Post Central 7.40 29 36 −44 52

Left Superior Precentral 7.82 29 −34 −6 50

Right Superior Precentral 7.69 29 40 0 44

Medial superior frontal (SMA) 5.50 29 −6 14 48

Left Inferior Precentral 5.84 29 −44 2 30

Right Inferior Precentral 7.39 29 50 8 28

Left Insula 8.04 29 −28 24 0

Right Insula 6.21 29 30 28 −4

Thalamus 6.61 29 −2 −22 −2

Peak activations in clusters surviving qFDR < .05; MNI coordinates.

Table S21: Late BOLD response to outliers (fronto-parietal network)

Region T-value Df x y z

Left Angular Gyrus 6.23 29 −40 −64 44

Right Angular Gyrus 6.43 29 40 −60 48

Left Middle Frontal Gyrus 5.45 29 −34 24 46

Right Middle Frontal Gyrus 5.77 29 36 28 46

Left Ant. Middle Frontal Gyrus 7.16 29 −36 56 0

Right Ant. Middle Frontal Gyrus 6.09 29 38 56 0

Peak activations in clusters surviving qFDR < .05; MNI coordinates.

Table S22: Early BOLD response to outliers (transitory minus fundamental)

Region T-value Df x y z

Left Insula 3.75 29 −28 24 −6

Right Insula 4.76 29 32 26 −6

Peak activations at p < .001, uncorr; MNI coordinates.

Table S23: Insula ROI: Early effect of outliers as a function of the treatement

Variable Estimate Lower Upper SE Df t p

Fixed effect

(Intercept) 1.420 −1.645 4.484 1.563 49565 0.91 0.364

Side −1.403∗∗∗ −1.728 −1.079 0.166 49565 −8.47 0.000

Outlier 0.533 −0.435 1.500 0.494 49565 1.08 0.280

Treatement −0.724 −4.601 3.152 1.978 49565 −0.37 0.714

Outlier x Treatement 2.152∗∗ 0.693 3.611 0.744 49565 2.89 0.004

Random effect (SD)

(Intercept) 8.659 − − − − − −
Outlier 2.293 − − − − − −
Treatement 10.960 − − − − − −
Outlier x Treatement 3.537 − − − − − −
Error 18.450 − − − − − −

*0 not included in the 95% Confidence Interval; Obs=49600; Side=0 for left, Side=1 for right; Treatment=0 for fundamental, Treatment=1 for transitory.
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