
Supplementary Information S2: Approximating explicit population-

genetic models for the spread of a transgenic, anti-pathogen con-

struct using a phenomenological description G(t) of change in

mean vector comptence

System (1) in the main text represents the effects of transgenic population manipulation on

average vector competence, and describes how these manipulations affect prevailing epidemi-

ological dynamics. We model situations where there is little or no feedback from on-going

epidemiological dynamics on the implementation of a transgenic release program aimed at pop-

ulation replacement. This is reasonable when, for instance, the release regimes for transgenic

vectors or the specific transgenic construct follow a fixed release ratio over the relevant time

horizon. Indeed, if transgenic constructs work as expected and release regimes are constant,

prevailing vector population and epidemiological dynamics will not affect the change in vector

comptence.

When vector fitness is unaffected by pathogen load (see refs. [6,9] of the main text for ex-

ceptions), transgenic manipulation aimed at population replacement should change the average

phenotype of vectors, but is unlikely to change vector population dynamics. This is because

most release programs envision releasing either non-vectoring transgenic males (whereas re-

productive output of a vector population often depends on female density - e.g., [1, 2]), or

because strong, density-dependent recruitment can quickly restore vector population sizes to

equilibrium even when transgenic females are released (e.g., [3]).

Indeed, describing the change in average vector competence therefore only requires tracking

the underlying gene frequency of an anti-pathogen transgene in the vector population. Below,

we use explicit population genetic models to demonstrate how the spread of a wide array of

proposed transgenic constructs can be closely approximated by the function G(t) = 1/[1 +

exp(αt+ β)].
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Case 1. The spread of an anti-pathogen transgene in the absence

of gene drive

It is commonly assumed that introgressing anti-pathogen constructs into wild vector populations

requires linking anti-pathogen genes to a selfish genetic element (SGE - i.e., genes that are

inherited at higher rates than other genes in the genome). This is because the release numbers

required to render vector populations vector incompetent are asssumed to be prohibitive without

such techniques (e.g., [4], ref. [16] of the main text). However, some recent theoretical studies

suggest that transgenic population replacement may be feasible absent gene drive ([3], ref. [9] of

the main text), and these results appear robust using considerably more detailed, mechanistic

models of urban mosquito populations (ref. [79] of the main text).

If vector population dynamics follow a logistic growth model, and the transgenic construct

does not affect the density-independent survivorship of adult vectors (e.g., ref. [79] of the main

text), then the dynamics of all vectors (n) and vectors carrying an anti-pathogen gene unlinked

to a SGE (nA) are given by

dn

dt
= n(wAA(

nA
n

)2 + 2wAa(
nA
n

)(1 − nA
n

) + waa(1 − nA
n

)2)(1 − n/K) − µn (1)

dnA
dt

= n(wAA(
nA
n

)2 + wAa(
nA
n

)(1 − nA
n

))(1 − n/K) − µnA

(e.g., [5]). Here, A, a represent the presence or absence of the transgenic construct, wi,j repre-

sents the per-capita contribution of individuals with genotype i, j to recruitment, nA describes

the number of gametes of type A, K describes the carrying capacity and µ describes the per-

capita, density-independent adult vector mortality.

There are three noteworthy consequences of model (1). First, the release of transgenic

vectors can be modeled as increasing the relative contribution to recruitment by vectors ho-

mozygous for the anti-pathogen construct. This is true, for instance, when containers with

transgenic mosquito eggs are released into the vector’s habitat (e.g., refs. [79, 97, 98] of the

main text). We note that under such a release regime, if the containers are manufactured to

prevent oviposition (e.g., ref. [97] of the main text), the carrying capacity in model (1) of the
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main text remains unaffected. Thus, system (1) can describe the release of transgenic vectors

for the duration of the time horizon of interest, and models the spread of an anti-pathogen

construct in the absence of gene-drive.

Second, the dynamics described by system (1) can also result when carrying the transgene

confers a net fitness advantage to individual vectors (e.g., ref. [6] of the main text). This

scenario could arise if the transgene also manages to confer resistance to other pathogens of

the vector, even if the focal pathogen that is the target for elimination (and hence subject to

an epidemiological feedback) does not detrimentally affect the vector. How common such a

scenario is depends on the particular microbiome of different vector populations; we simply

note here that equations (1) can potentially describe such a scenario.

Finally, system (1) can be used to describe not only the introgression of an anti-pathogen

gene, but how an anti-pathogen gene carrying a fitness cost can be lost from the vector popu-

lation. In particular, sustained releases might temporariy compensate for such a fitness cost so

that wAA > waa. However, if releases cease, then the fitness cost of the transgene may become

apparent, rendering waa > wAa, wAA. Reinterpreting nA as the number of vectors not carrying

the transgene can allow us to model how a transgene with a fitness cost can be lost from the

vector population.

The dynamics of the transgene’s frequency can then be calculated by numerically solving

system (1). Figure (A) shows how a transgene can increase in frequency according to the

dynamics predicted by integrating system (1). When the transgene’s expression is dominant

(so that carrying a single copy suffices to render an individual vector incompetent - e.g., [6]), the

relative average magnitude G(t) of vector competence in the population is completely described

by one minus the frequency of the anti-pathogen construct. As is apparent from Figure (A),

the decline in vector-competence can be approximated very closely by a sigmoidal function of

the form G(t) = 1/[1 + exp(αt + β)]. We note that, by symmetry, this functional form also

describes the loss of an anti-pathogen transgene (or an increase of the wildtype genotype) that

carries a noticeable fitness cost following the end of releases.
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Case 2. The spread of Wolbachia

Mosquitoes infected with the symbiotic insect bacteria Wolbachia (e.g., [7]) have been shown

to be unable to vector several medically important pathogens including malaria, chikungunya

and dengue (ref. [56] of the main text). Wolbachia is vertically transmitted, and the symbiont

spreads by manipulating host reproduction to favor the reproductive contribution of infected

females. In particular, cytoplasmic incompatibility (CI), where only infected females are able to

carry the offspring of infected males, is an important mechanism facilitating Wolbachia spread.

Following [8], the dynamics for the frequency x(t) of a single Wolbachia strain for a vector

population at equilibrium are given by

dx

dt
= rQ(1 − τx)x2 − rx(1 − τ) (2)

where r is the per-capita recruitment rate, τ is the fraction of infected offspring that carry

Wolbachia (because Wolbachia transmission from mother to offspring may be imperfect), Q

describes the magnitude of cytoplasmic incompatibility, and because we consider cases where

transgenic population replacement does not alter vector population dynamics, Wolbachia in-

fected individuals are assumed to suffer no further density-dependent mortality effects (which

is reasonable in Ae. aegypti - e.g., ref. [11] of the main text).

When Wolbachia infection prevents vectors from transmitting the pathogen, the population-

wide average Wolbachia infection rate directly describes average vector-competence. Again, as

is apparent in Figure (B), the decline in vector-competence caused by releasing Wolbachia can

be closely approximated by a sigmoidal function of the form G(t) = 1/[1 + exp(αt+ β)].

Case 3. The spread of a MEDEA-linked transgenic construct

Non-Mendelian inheritance of MEDEA and MEDEA-like constructs results from mothers car-

ryng the construct being unable to produce offspring that fail to inherit a copy of the construct

([9]). The severity of such maternal effects on offspring fitness can be described by a param-

eter T that determines the probability of a wildtype homozygote offspring being killed by a

heterozygotic mother.
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If the vector population is at stable equilibrium and the vector population size is sufficiently

large (so that the effects of genetic drift can be neglected), the dynamics of MEDEA or a

MEDEA-like construct and the wildtype gene among female vectors between generations t, t+1

is given by

DAA(t+ 1) = pS(pD − s(DAA(t) + hDAa(t)/2))/W (3)

DAa(t+ 1) = ((1 − pS)(pD − s(DAA(t) + hDAa(t)/2)) + pS(1 − pD − shDAa(t)/2))/W

Daa(t+ 1) = ((1 − pS)(1 − pD − (sh+ T − Tsh)DA,a(t)/2))/W

([10]). Here, Di,j(t) represents the frequency of individuals with genotype i, j on generation t,

pS = pD is the fraction of males and females carrying a MEDEA or MEDEA-like construct (A),

s is the fitness cost or benefit to carriers relative to wildtype (a) homozygotes, and h describes

the dominance effect of MEDEA on fecundity. The composite parameter W describes mean

fitness and is given by W = (1 − s(DAA + hDAa/2) − shDAa/2 −DAa/2(1 − sh)(1 − pS)).

Assuming the transgene with dominant expression is linked to the MEDEA construct, Figure

(C) shows that despite system (3) being framed as a discrete-time model, the decline in vector-

competence can be approximated by a continuous function over a sufficiently long time horizon.

The functional form G(t) = 1/[1 + exp(αt + β)] once again describes well the basic dynamics

of the reduction in vector competence resulting from MEDEA spread.

Conclusions

In model (1) of the main text, transgenic population replacement does not involve a feedback

from epidemiological dynamics to the trajectory of vector competence. Thus, we are able to

model how transgenic manipulation affects epidemiological dynamics using a function G(t) that

does not depend on other state variables in our model. Here we show that the phenomenological

function G(t) = 1/[1+exp(αt+β)] is able to closely capture the dynamics of several transgenic

strategies that vary considerably in their underlying biology. Thus, our approach captures the

basic dynamics of transgenic population replacement despite considerable differences in the

biological details underlying any given transgenic strategy.
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The close congruence between the trajectories predicted by the models incorporating explicit

population genetics (Figs. A-C) implies that using a generic, phenomenological description of

transgenic manipulation in the form of G(t) allows us to gain analytic tractability, and, perhaps

more importantly, generate broader insights that can be expected to be robust across a range

of specific transgenic approaches.

Substantially more detailed models incorporating greater biological realism would be ap-

propriate for evaluating the epidemiological effects of combining clinical interventions with

transgenic manipulation for specific vector species, localities, and diseases. They could also

help pinpoint the limitations of specific transgenic strategies when combined with other public

health strategies in each system. Nevertheless, we argue that these are not the only useful goals

of modeling. A general understanding of the basic principles of the interplay between transgenic

manipulation, clinical interventions and epidemiological dynamics, which can be expected to

hold across a range of transgenic strategies, can be of value in framing and guiding the analysis,

as well as interpreting the results, of considerably more detailed, system-specific models. To

attain such a baseline understanding, a phenomenological approach which closely describes the

dynamics of a range of transgenic manipulations can often suffice.
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Figure captions

Figure A. The proportional decline in average vector competence caused by releasing transgenic

vectors carrying constructs unlinked to gene-drive mechanisms. The decline in average vector

competence (scaled to initial vector competence) is simply one minus the frequency of the

antipathogen transgene in the vector population. The relative recruitment rates are modified

by releasing different numbers of transgenic vectors, and are varied across panels. The remaining

parameter values are obtained from Table 1 of the main text. In this, and in subsequent figures,

the solid black line represents the prediction of the genetically explicit model, and the grey dots

represents the phenomenological function G(t) evaluated at time point t with parameter values

that most closely approximate the trajectory predicted by the explicit genetic model. The

parameters α, β represent the parameters of the sigmoidal function G(t) fit by performing a

nonlinear least squares regression of G(t) on the solution to the genetically explicit model.

Figure B. The proportional decline in vector competence following the release of transgenic

vectors infected with Wolbachia (solid black lines) and the phenomenological function G(t)

most closely approximating the subsequent spread of Wolbachia (dotted grey lines). The de-

cline in average vector competence (scaled to initial vector competence) is simply one minus the

frequency of Wolbachia infection in the vector population. The extent of cytoplasmic incom-

patibility (CI) is varied across panels. For Ae. aegypti infected by the wMel, the CI is typically

near 1 (e.g., ref. [11] of the main text), but we consider a much wider range here to encompass

both successful and failed transgenic population manipulation strategies. In all panels, initial

Wolbachia prevelance is set at 2% and r is as in Table 1 of the main text.

Figure C. The proportional decline in vector competence caused by releasing transgenic

vectors carrying a transgenic construct linked to a MEDEA-like element (solid black lines)

and the phenomenological function G(t) most closely approximating the subsequent spread of

MEDEA (dotted grey lines). The decline in average vector competence (scaled to initial vector

competence) is simply one minus the frequency of the MEDEA element in the vector population.

The probability that an offspring without the MEDEA element is killed by a MEDEA-carrying

mother is varied across panels. In all panels, initial MEDEA frequency is set at 1%, s = 0 and

h = 1.
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Figures
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