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S1 File. Supporting Information  

Appendix A. Details of the model of deer population, 

deer harvest, and disease transmission. 

Equations of population dynamics 

The model includes juvenile birth and maturation, natural mortality, harvest and disease 

transmission: 
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Cnk ,...,2 ,  Cn , where Cn  is the number of disease-related mortality 

compartments, and 1  is the mean disease duration, so   is the increase in mortality 

rate for a single-compartment mortality model.  The total number of infected individuals 

in each deer category is obtained as a sum over all Cn  compartments, 

2,1,,,...
)()2()1(

mmfjxIIII Cn
xxxx  . 

In this model juveniles are born by both healthy and infected females.  Proportion of 

males:females in juveniles is assumed 1:1.  Juveniles become adult females and young 

males at rate 1 .  Young males become older males at rate 1m .  All categories of deer 

are harvested, harvest rate may depend on deer category, but it does not depend on 

infection status, so harvest is nonselective.  Susceptible deer become infected at the rate 

proportional to force of infection  , which also depends on deer category. 

The birth rate depends on buck:doe ratio fm DD / ,  fm DDB / where the 

function  x  linearly grows for small x and then stabilizes at 1:  
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Part of the infected females may transmit infection to their fawns at birth or earlier, which 

is described by the probability of vertical transmission pV.  

 

Non-disease-related mortality and density-dependence 

Per capita mortality rate for adults is assumed density independent [13] and equal 

to fSm ,0 , mSm ,0 , fIm ,0  and mIm ,0  respectively.  Mortality for both male classes is 

assumed the same.  For a single infected compartment, mortality rate of infected deer 

should increase by the inverse mean duration of the disease, which is about 2 years [1],  

 mmIffI mmmm 0,00,0 , .       (A10) 

For multiple infected compartments the increase is  Cn . The rate of passing through 

each compartment is greater, but the mean duration of the disease remains the same, see 

Fig. 1.  In the literature there are two estimates of  . The first one 1year57.0   has 

been done by Miller et al. [14] with fitting SI-type  model to captive deer mortality data.  

The second one can be derived from the observation of Miller et al. (Miller MW, 

Swanson HM, Wolfe LL, Quartarone FG, Huwer SL, Southwick CH, Lukacs PM. Lions 

and prions and deer demise. PLoS one 2008; 3: e4019), that per year survival of infected 

free-ranging female mule deer is reduced by factor 0.53/0.82=0.64, which corresponds to 

  11 year43.0year64.0ln   . Both estimates are close, and in the calculations below 

we use the first one. 

We assume that the main way of natural deer population regulation is density-

dependent juvenile mortality, which is usually related with predators and food limitation 
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during most critical season, which is winter for Alberta.  We used two models of density 

dependence, and both of them are based on the ratio of required RF  and available AF  

food for deer population.  The required food is estimated with the help of daily food 

consumption rates mfjxFF xIxS ,,,, ,,   for each deer category (see Table 1).  Then  

 

    
21,,,21,,,

,

mmmIffIjjImmmSffSjjS

xxR

IIFIFIFSSFSFSFC

ISF




, (A11) 

where C is a constant proportional to the duration of food-limiting period and the area 

occupied by the population.  The available food is estimated from the same expression 

(A11) but for the densities of equilibrium population 2000 ,...,, mfj ISS , which assumed to 

be known:  xxRA ISFF 00 , .  Then in the ratio AR FF /  the unknown constant C 

vanishes. 

The first way of characterizing food limitation is through the value that we call 

starvation index V,  
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[15]. If there is excessive food, i.e., the population is way below winter carrying capacity, 

then FA>FR and V=0.  If FA is much less than FR and starvation rates are high, V 

approaches 1.  At a food-based equilibrium (at carrying capacity) V takes some value V0 

between 0 and 1, corresponding to partial food limitation.  We assume that juvenile 

mortality is related with V as:  

 },{,10 ISvVmmm vjvjvj         (A13) 

where vjm0  corresponds to density-independent mortality and vjm1  to its density-

dependent part.  The model has been parameterized in [6] from deer survival data 
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presented in (White GC, Lubow BC. Fitting population models to multiple sources of 

observed data. Journal Wildlife Management 2002; 66:300-309).  Data presented there 

represent mortality changes due to winter severity, but through food limitation as well.  

We assume that maximum per year fawn survival corresponds to V=0, the minimum one 

to V=1, and the equilibrium survival corresponds to 0V .  

The second model of density dependent mortality is a generalization of expression 

given in [17]. It uses different expression for V in (A13),  

 1, 











A

R

F

F
V .       (A14) 

Below we used 1  and 2 .  This model has been parameterized by the same data: 

maximum survival corresponds to V=0 and equilibrium one to V=1. Note that the density 

independent part vjm0  for (A12) and (A14) should coincide, but the density dependent 

coefficients vjm1  are different.  

 Our modeling results do not show any influence of the chosen type of density-

dependence in the model on disease prevalence and hence on the effect of harvest disease 

management.  Choice of the density-dependence, however, may be critical for the study of 

the effect of harvest on deer density.  

 

Density-dependence visualization (Fig. A1) 

 The goal is to visualize the behaviour of deer mortality and recruitment as density 

change.  In general this is a complicated task, because the required food depends not only 

on density, but on proportions of deer of each categories.  For this reason, we assume the 
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population healthy ( 0xI ) and the proportions DSxSx / , 2,1,, mmfjx   fixed.  

Then the required food is  

  
x

SxSx

x

xSxR FDSFF , 

and similarly  

   
x

SxSxA FDF 0 , 

where 0D  is the density of population used for model parameterizing. Therefore, 

 0// DDFF AR  . 

Substituting this for the expression for V and using (A13), we obtain Fig. A1a. 

If in addition we assume that buck:doe ratio >0.05 and juveniles are not harvested, then at 

equilibrium 
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where Sjm  is density dependent juvenile mortality (A13), then per year recruitment 
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This gives us Fig. A1b. 
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Disease transmission 

In [6] we develop the mathematical expressions for the force of infection terms for 7 

transmission mechanisms and use four of them, which have been considered most 

plausible.  They give the following force of infection terms for the 5 combination of age 

classes used in our harvest senarios: 
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2121 , mmmmmm IIISSS  , 

The two terms in square brackets in (A15)-(A17) correspond to disease transmission 

within sexually segregated groups (summer and early autumn) and within mixed groups 

(rut, winter and early spring). The weight factors MS ww ,  characterize proportional 

contribution of each type of seasonal deer behaviour to the total force of infection and are 

further described in [6].  The term 2,1R  in (A15) corresponds to disease transmission 

during mating or rut where:  
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  and R  are the corresponding transmission coefficients for within-group and rut 

transmission. For rut transmission, we assume that if there are enough older males, they 

alone mate with females, but if the density of the older males drops below one older male 
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per more than ten females, that is the ratio 1.0/2 fm DD , then younger males also take 

part in mating, which is described by L in (A18). 

The matrix of coefficients uv  characterizes relative intensity of transmission 

from infected deer of category v to susceptible deer of category u and changes with 

different assumptions about the principal route of disease transmission.  We consider 5 

combinations of transmission mechanisms that were identified in [6] as plausible.  All of 

them, except for the null model, were capable of reproducing the observed difference in 

CWD prevalence between males and females found in many jurisdictions [4,5].  

For transmission mechanisms in Table 1 we use the following assumptions:  

TM1. (Null model) Direct transmission with equal intensity of contacts among all 

deer categories: 1uv  and 0R . Slightly higher prevalence in males may arise due to 

seasonality.  

TM2. Direct transmission with equal intensity of contacts among males and 

females 1uv  and significant mating transmission with R . Higher prevalence in 

males arises due to combination of mating transmission and seasonality.  

TM3. Environmental transmission proportional to food consumption of both 

infected and healthy individuals. In this case 0R  and  

 ySxIyx

uSvI

uv
FF

FF

,,,

,,

max
 .       (A19) 

Higher prevalence in males arises due to higher food consumption of males than females. 

 TM4. Environmental and rut transmission. uv  is defined by (A19) and R . 
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 TM5. Direct transmission with equal intensity of contacts, but males are more 

susceptible to infection than females or juveniles.  We introduce the ratio of male to 

female susceptibility 1mY .  Then mmv Y , 1 jvfv . 

 TM6. Direct transmission with higher intensity of male-male contacts.  All 

1uv  except for 1 mmm Z .  Mathematically this is close to the case TM3, where 

mm  is greater than all other entries, but interpretation is different. 

 

Hunter harvest: annual removal 

Harvest rates 2,1,,, mmfjxhx  , reflect the following.  The deer population is 

surveyed once a year in January, when the hunting season is over, but before males lose 

their antlers.  We interpret the deer densities xD  given by the model as the estimated 

population density at the time of the winter survey.  At the state of equilibrium, when all 

deer densities do not change from year to year, the annual harvest rate for the deer of 

category x is thD xx   deer/km
2
 ( year1t ).  Therefore, the pre-harvested deer density is 

thDD xxx  , and hence the proportion of the pre-hunted deer of the category x removed 

by harvest is  

 
th

th

thDD

thD
H

x

x

xxx

xx
x











1
.      (A20) 

At a low harvest rate when 1thx , thH xx  , and hence xh  is approximately the 

proportion of category x removed per year. In other cases harvest intensity xh  and 

proportion of individuals removed annually xH  are related as  
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 1year
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Disease-related mortality: multiple compartments 

The reason for introducing multiple compartments for infected individuals is explained in 

Section 2.5: to reduce variability in infected deer survival times.  This is illustrated in Fig. 

A2. Mathematical explanations are given in Appendix B.  Here we discuss the effects that 

we observed comparing the results for different numbers of compartments Cn . 

 We fitted transmission coefficients for models with 25,5,1Cn  to the same 

Alberta data for the initial stage of the disease.  The results are shown in Table A3.  An 

interesting effect is observed: the greater is Cn , the smaller is the fitted transmission 

coefficient.  This may be the result of slower decrease in infected deer density in the first 

1-1.5 years of the disease development.  The total number of the secondary infections 

may be the same, but they are created in a shorter period.  Therefore, the same initial 

disease dynamics can be reproduced with less intensive transmission.   

 The difference in disease transmission coefficients may create significant 

difference at the developed stage of the disease.  For 1Cn  and transmission model TM1 

the population appeared to be at the edge of extinction with the adult prevalence close to 

57%.  At the same time, at 25Cn  the predicted adult prevalence is about 40%, and the 

population remains viable.  At present, there are no experimental data to make the correct 

choice of Cn , and we have chosen 25Cn  due to closer resemblance to the reported 

disease duration in the literature. Note that for 10Cn  there is very little dependence of 
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the results on Cn .  Analogs of Fig. 2 for 1Cn  and 5Cn  are presented in Figs. A3 and 

A4 respectively.  Comparison with Fig. 2 shows that the disease prevalence at the same 

harvest level is higher at smaller Cn .  At the same time, optimal harvest policy remains 

practically the same. 

 

Experiments with Healthier older male class: influence on harvest 

policies 

 In some publications on CWD, see [4,5], there are data that can be interpreted 

such that male disease prevalence grows with deer age reaching its maximum around 5 

years old, and then decreasing. If disease transmission rates and mortality of adult male 

deer do not depend on age, as in our model, this can not happen: older males have higher 

disease prevalence just because of longer exposure to the infection.  However, the older 

male class may have less contact rate because of less participation in bachelor groups, or 

higher mortality e.g. because of poorer condition in the beginning of the winter due to 

starvation and exhaustion during rut.  In either of cases their prevalence may be less or 

not higher than that of young males, and there appears one more reasonable harvest 

strategy: harvest of young males only.  We did a series of model calculations for the 

original model and the cases of twice less contact rate and twice greater mortality rate for 

the older male class. We searched for optimal harvest strategy with three independent 

harvest rates: antlerless, young males and older males.  The optimal policies were less 

stable than in Figs. 2-3, and in most stable cases were close to that for the original model.  

However, the results of comparing the seven harvest policies were more interesting.  For 

the transmission mechanisms TM3 (environmental) and TM5 (higher male susceptibility) 
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they are shown in Fig. A5. One can see that in case of healthier old male class (panels c-

f) the results of harvesting young males only give slightly higher than harvest all males, 

but close to them.  If the older male class is indeed healthier, then harvesting only young 

males could be an alternative management policy provided there is a goal to preserve 

older males.  

Another interesting effect related with the hypothesis of healthier older male class 

is that fitting the model with twice less contact rate to data gives much higher value of rut 

transmission coefficient for the mechanism TM2 ( 72.0R ) and TM4:  ( 39.0R ).  

The model compensates slower transmission to older males from other males by more 

intensive transmission from females.  
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Table A1. Notation for model variables and parameters. 

 

Variable or subscript  Symbol Units  

Deer age and sex classes:  

  males, females, juveniles 

f, m1, m2, j  

Deer population density D deer/km
2
 

Density at disease-free 

equilibrium 

D0 deer/km
2
 

Density of susceptible males, 

females, juveniles 

Sm1, Sm2, Sf, Sj deer/km
2
 

Density of infected males, 

females, juveniles 

Im1, Im2, If, Ij deer/km
2
 

Fertility rate of healthy females B year
–1

 

Probability of vertical 

transmission 

pV  

Fertility rate of infected females 

for bringing healthy and infected 

fawns 

BIS=(1–pV)B,  BII=pVB year
–1

 

Fawns maturation rate (inverse of 

juvenile stage duration ,) 

1  year
–1

 

Male aging rate (inverse of young 

adult stage duration m ,) 

1
m  year

–1
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Density-independent portion of 

per capita mortality rate 

m0m, m0f, m0j,  

 

year
–1

 

Starvation index V  

Density-dependent portion  of 

mortality rate of juveniles only 

Vm0j year
–1

 

Per capita hunting rate (equal for 

S and I)  

jfmm hhhh ,,, 21  year
–1

 

Overall harvest rate  

 

 jfmm hhhhh ,,,max 21  year
–1

 

Hunter’s preferences 
PjPfPmPm hhhh ,,, 21 , 

jfmmxhhh Pxx ,,2,1,   

 

Per capita food consumption FS,m, FS,f, FS,j, 

FI,m, FI,f, FI,j, 

kg/day 

Total force of infection (per 

susceptible capita disease 

transmission rate) 

m, f, j year
–1

 

Disease transmission coefficient   year
–1

 or km
2
/year 

Seasonal weights wM, wS  
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Table A2. Parameter values used in modeling deer population dynamics 

 

Parameter Mule Deer Comment 

Birth rate for healthy females B (fawns per 

adult female) 

1.65  Alberta Fish & Wildlife, 

unpublished data, 

Edmonton, AB 

Maturation time  1.5 years   

Food consumption by healthy adult male, 

female, fawn air dry food kg/day  FS,m,  FS,f,    

FS,j. (estimates in Appendix) 

1.40,   1.09,   

1.03 

Potapov et al. (2013) 

Food consumption by infected adult male, 

kg/day  FI,m 

=0.7FS,m  

Food consumption by infected adult female, 

kg/day  FI,f 

=0.7FS,f   

Food consumption by infected fawn, kg/day  

FI,j 

=FS,j   

Equilibrium deer density for WMU 234, deer 

per km
2
, D0 

1.58  Alberta Fish & Wildlife, 

unpublished data, 

Edmonton, AB  

Habib et al. (2010) 

Equilibrium proportions of healthy 

population   S0m/D0, S0f/D0, S0j/D0    

0.44,  0.18,  

0.38  

Potapov et al. (2013) 

Adult female mortality  m0f 0.15 Potapov et al. (2013) 



 

16 

Potapov et al. (2013) 

Adult male mortality  m0m 0.29 Potapov et al. (2013) 

Juvenile mortality m0j+Vm1j 0.30+12.3V Potapov et al. (2013) 

Mortality coefficient for infected adult males, 

years
-1

,  m0I,m 

m0m+0.57  Miller et al. (2006) 

Mortality coefficient for infected adult 

females, years
-1

,  m0I,f 

m0f+0.57  Miller et al. (2006) 

Mortality coefficient for infected fawns, 

years
-1

,  m0I,j 

=m0j+0.57 (***) 

Density-dependent mortality coefficient for 

infected adult males, years
-1

,  m1I,m 

0   Miller et al. (2006) (***) 

Density-dependent mortality coefficient for 

infected adult females, years
-1

,  m1I,f 

0  Miller et al. (2006) (***) 

Density-dependent mortality coefficient for 

infected fawns, years
-1

,  m1I,j 

=m1xj  (***) 

Hunters’ preference for males, hPm,  hPf,  hPj   1.00,  0.33,  

0.23   

Potapov et al. (2013) 

 

(***) No known evidence on difference with healthy deer 
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Table A3. Transmission mechanisms used in calculations, fitted transmission coefficients(  and one of mmRS ZYw ,,, ), and 

population characteristics at the developed stage of the disease (adult prevalence a  and male/female prevalence ratio mfr ) for the 

number of disease-related mortality compartments 25,5,1cn . 

Transmission 

mechanism 

Direct/Indirect  

transmission and seasonality 

Rut 

transmission 
1cn  5cn  25cn  

TM1 Equal transmission  

between all deer classes 

( 1uv ); Sw  fitted. 

No 

05.1

58.0

71.1

77.0









mf

a

S

r

w
 

14.1

44.0

67.1

63.0









mf

a

S

r

w
 

18.1

41.0

68.1

60.0









mf

a

S

r

w
 

TM2 Equal transmission  

between all deer classes 

( 1uv ); 1Sw  

Yes 

27.1

42.0

60.0

63.0









mf

a

R

r

 

47.1

33.0

49.0

52.0









mf

a

R

r

 

56.1

30.0

48.0

49.0









mf

a

R

r

 

TM3 Food-mediated transmission 

(high to males, medium to 

females, low to juveniles); 

Sw  fitted. 

No 

65.1

29.0

03.1

05.1









mf

a

S

r

w
 

81.1

24.0

02.1

86.0









mf

a

S

r

w
 

86.1

23.0

02.1

82.0









mf

a

S

r

w
 

TM4 Food-mediated transmission 

(high to males, medium to 

females, low to juveniles); 

1Sw  

Yes 

65.1

29.0

03.0

05.1









mf

a

R

r

 

82.1

24.0

03.0

85.0









mf

a

R

r

 

90.1

23.0

04.0

80.0









mf

a

R

r
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TM5 Equal transmission  

between all deer classes, but 

male susceptibility is higher 

( 1mY ); 1Sw  

No 

34.1

44.0

57.1

63.0









mf

a

m

r

Y
 

52.1

34.0

55.1

52.0









mf

a

m

r

Y
 

58.1

32.0

56.1

49.0









mf

a

m

r

Y
 

TM6 Increased male-to-male 

transmission ( 1mZ ), equal 

transmission between other 

deer classes; 1Sw . 

No 

31.1

43.0

68.1

63.0









mf

a

m

r

Z
 

49.1

33.0

65.1

52.0









mf

a

m

r

Z
 

55.1

31.0

66.1

49.0









mf

a

m

r

Z
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 a) 

 b) 

 

Fig. A1.  Illustrations of juvenile mortality rate and per female capita recruitment rate vs 

deer density 0/ DD  for three density-dependent juvenile mortality models. The curves are 

drawn under some simplifications, see text. Black solid line shows starvation model, grey 

lines correspond to logistic-like per capita mortality with linear (dashed, 1 ) and 

quadratic (solid, 2 ) density dependence.  
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Fig. A2.  An example showing the difference between three disease-related mortality 

models: % of adult female population surviving by certain time.  Dashed line: healthy 

adult females.  Solid lines: infected adult females, model with 1cn , 5 and 25 

compartments.  All three solid lines correspond to the same mean disease duration 

75.11  years.     
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Fig. A3. Optimal harvest for 1-compartment disease-related mortality model. 
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Fig. A4. Optimal harvest for 5-compartment disease-related mortality model. 
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Fig. A5.  Effect of only young male harvest for TM3 and TM5 in case of original model 

(a,b) (Fig. 3), twice less contacts for older males (c,d) and twice greater mortality rate for 

older males (e,f). In panels c-f harvest of young adults is closer by the effect to harvest of 

all adults. 
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Fig. A6. Optimal policy if infected individuals are always harvested at the rate 20% 

greater than healthy ones (positive selectivity of infected). 
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Fig. A7. Optimal policy if infected individuals are harvested at the rate 20% less than 

healthy ones  (negative selectivity of infected).  
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Fig. A8.  a) Mixed policy (average of optimal ones for all six TMs shown in Fig. 4).  b) 

Proportions of removed females and juveniles vs proportion of removed males for this 

policy.  c) The disease prevalence under the mixed policy for each of TMs: for TM3, 

TM5 and TM6 the disease can be eradicated, but this requires greater harvest effort. 
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Fig. A9.  a) Mixed policy shown in Fig. A5 with added stochasticity in available food AF  

in (A12) and hence in juvenile mortality (A13).  For 10% AF  variability (panel a), the 

results are very close to Fig. A5c. Stronger variability makes control less efficient.  Since 

steady state does not exist with randomness added, shown is the disease prevalence 

averaged over 1000 years. 
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 Appendix B. Mortality rate, compartments and the 

effective hazard function 

 This is an attempt to overcome the problem of nonconstant hazard function.  Let 

us assume that on average individuals live about T=2 years since getting infected, then 

die.  We shall split this interval in a number of compartments n, each of the 

compartments of the mean duration T/n.  This corresponds to the rate of compartment 

leaving Tn / .  At t=0 let there be 0N  infected individuals in the first compartment.  

 

 

Mort.:   1m       .                    2m                                               nm                                    

We consider only the destiny of these 0N  infected individuals, no reproduction.  Within 

each compartment there may be additional death rate, not related with the disease, e.g. 

harvest or predation, for i-th compartment we denote it by im .  The current population 

size within each of the compartments we denote by ix .  At t=0    01 0 Nx  ,  

  nixi ,...,2,00   The total population size is nxxxN  ...21 .  This system is 

described by the equations: 

 

 

 

  ./

...

,/

,/

1

2212

111

nnnn xmxdtdx

xmxdtdx

xmdtdx









 

Com. 1 Com. 2 Com. n Instant death 

    
… 
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This system can be solved analytically, however analytical solution in most cases 

becomes very bulky.  In the simplest case mmmm n  ...21  the solution has the 

simplest form, 

 
 
 

  ,exp
!1

)(
1

0 tm
k

t
Ntx

k

k 







 

which is the Gamma-distribution.   

We characterize the dynamics of the total population 

)(...)()()( 21 txtxtxtN n  by the survival rate   %100/ 0 NtN  and by the effective 

hazard function.  By definition, hazard function is the probability of individuals to die 

between t and t+dt divided by dt provided they survived till the moment t.  In other 

words, this is just the absolute instant relative growth rate   NdtdNtHz // . 

 We consider the cases 1n , 2, 3, 4, 6, 8, 12, 24, which corresponds to the mean 

duration of staying within each compartment 24, 12, 8, 6, 4, 3, 2 and 1 month.  

In Fig. B1 are the examples of the time dependence of different compartments for n=3 

and n=12: 

  

Fig. B1. 
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For the total population and for the hazard function the results are the following. 

a) No additional mortality, m=0, everyone die immediately after leaving n-th 

compartment:  

  

Fig. B2. 

b) Additional mortality 2.0im   

  

Fig. B3. 

 

The greater is n, the closer is the survival distribution to a step-like function.  

Fig. A1 in Appendix A was obtained in a similar way. 


