
Appendix S1. Alternative derivations of Weibull PDF and 

CDF for energies RE and data testing 

 

General assumptions 

A methylation change at a genomic region R  has an associated amount of 

information RI  processed by the activity of methyltransferases and demethylases. To 

estimate the amount of information associated with methylation changes, a methylome is split 

to N genomic regions of length l , and information RI is computed according to Eq. 3 in each 

region R .  

The general assumptions for the model are: 

1) Landauer’s principle is assumed to hold. That is, under Landauer’s principle, the 

minimum energy dissipated to process the information RI  can be approached by 

equation 2lnTkIE BRR   (Eq. 4, main text). 

2) Methyltransferase/demethylase activities at different genomic regions are 

independent of one another. In addition, kinetic parameters and mechanism of 

enzymatic reaction catalyzed by methyltransferases are assumed to be consistent 

across different genomic regions.  

3) Cytosine DNA methylation (CDM) changes induced by thermal fluctuations in 

non-overlapping genomic regions are independent for all the genomic regions. 

4) There is a large, but finite, range of possible values of energy dissipation and any 

amount of energy  i

R

i

RR EEE ,1  in a small interval of values  i

R

i

R EE ,1  is 

dissipated with constant probability 1q . 



Derivation assuming a Binomial process 

We assume that the dissipation of each particular value of energy RE follows a 

binomial process. In consequence, if the energy RE  associated to the CDM changes induced 

by thermal fluctuations is consistent with a binomial process (assumption 3 and 4), then we 

can distinguish these CDM changes from those originating by the regulatory methylation 

machinery (the biological signal), because it is well known that the latter are not independent 

for all genomic regions. Under this assumption, the probability that a particular value of 

energy RE  in the range  i

R

i

R EE ,1  would be dissipated at least once in N genomic regions is 

given by the binomial distribution     1
1,,1
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Next, a natural statistical mechanical assumption considers the frequencies  REf  

proportional to the Boltzmann factor 
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R eEf , where   is a scaling 

parameter. The Boltzmann factor, 
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e  reveals the relative probability of a particular 

arrangement (with a given energy).  The experimental data confirm the last assumption (see 

below Fig.1 and 2).  Hence,       
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constant. According to assumption 5, the approximation   NqN
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1 can be used and we 

can rewrite Eq. 1 as:     
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 (1), where Nq is the expected number of 

times that an amount of energy  i

R
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RR EEE ,1  can be dissipated in N genomic regions Nq  

factor 
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Figure 1. Relationship between  RIf  and Boltzmann factor 
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 for four 

Arabidopsis thaliana ecotypes with a methylome partition into non-overlapping windows of 

2000 bp. Experimental data indicate that frequencies  RIf  are proportional to Boltzmann 

factor 
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Figure 2. Relationship between  RIf  and Boltzmann factor 
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 for four 

Arabidopsis thaliana ecotypes with a methylome partition into non-overlapping windows of 

5000 bp. Experimental data indicate that frequencies  RIf  are proportional to Boltzmann 

factor 
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In nature, high-energy dissipation values RE imply the processing of a considerable 

amount of information that, in the current case, conveys many methylation changes in the 

genomic region R.  Massive methylation changes have been observed under extreme stress 

conditions or by mutation of a crucial gene for the methylation machinery.  So, it is expected 

that, under normal conditions, high values of energy RE are dissipated with low probability q. 

Then, q  can be estimated subject to the constraint    
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where  lc  is a constant parameter that depends on the genomic region size l .  Equation 2 



leads to equalities    lcqln   for  lER   and  
 










l

E
lnlc R




0

)1(  for 1q , where 

0

RE is the energy dissipated with probability 1 (see below).  The scaling factor  l  can be 

estimated subject to the constraint  
 

 Nln
E

l
ln

R











0
1


  or    

 










l

E
lnNln R




0

1  (3); 

then    Nlnlc  . Thus, it can be assumed that    1



 lENq R (4).  Therefore, we can 

write Eq. 1 as   
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With cumulative probability distribution    
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eEF 1, (6).  Since 

methylation changes can take place with random fluctuations in thermal noise, the scaling 

parameter  l can be set equal to the average energy per DNA molecule in thermal 

equilibrium. That is,     Tkll B  (7), where  l expresses the contribution of all degrees 

of freedom to the average energy per molecule as a function of genomic region length l . 

Now, the physical meaning of energy 0

RE  derives after substitution of  l  given by Eq. 7 in 

Eq. 3. Explicitly, under the constraint expressed by Eq. 3, we have 

    TklNlNE BR   110   , i.e., 0

RE is the average energy per molecule contributed by all 

the degrees of freedom in N genomic regions of length l . 

 

Derivation assuming a Poisson process 

We assume the CDM changes induced by thermal fluctuation follow a Poisson 

process. Since Poisson is a limiting case of binomial process, the former inherits properties of 



independence from the underlying binomial process. That is, given a Poisson process, the 

probability that the value of energy RE  can be dissipated exactly n times in N genomic 

regions is given by the binomial distribution:  
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binomial distribution can be analyzed as a function of the expected number of times that 
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For a large number of genomic regions, the probability that a particular value of 

energy RE would be dissipated at least once in N genomic regions will be     eP 1 . It 

should then be expected that energies RE  with high probabilities  1P  will be observed 

more frequently, i.e., the frequencies  REf  are proportional to probabilities 

 1P :   qN

R eqNEf  . Then, after considering     
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 (Figs. 1 & 2), we retrieve 

Eq.1:  
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 and the rest of the reasoning to derive Eq. 5 follows as 

presented in the previous section. 

 



Testing distribution of data  

To expedite testing of the distribution of the RI  data, we have provided a homemade 

R script for a function called “fitCDF”. This function requires previous installation of the R 

packages “minpack.lm” and “numDeriv”. We provide two files of data to illustrate our 

analyses: 1) "Four_ecotypes_CGs_IG_2000bp.RData" and 2) 

"Four_ecotypes_CGs_IG_5000bp.RData", which contain GRanges objects (created with R 

package “GenomicRanges”) with the partition of four Arabidopsis methylomes (four ecotypes) 

into non-overlapping windows of 2000 and 5000 bp, respectively. A small R script to 

visualize these data is given below. 

 

The variable carried by the GRanges object is called “IG”. Herein, we’ll write an 

example with the Arabidopsis ecotype “Seattle_0”. 

 
Running this piece of script will yield: 

library(GenomicRanges) 

setwd( "~/yourworking directory/" ) 

source( " fitCDF.R" ) 

load( "Four_ecotypes_CGs_IG_5000bp.RData" ) 
> IG 

GRanges object with 23683 ranges and 4 metadata columns: 

                seqnames               ranges strand   |              Er_0               Fr_2 

                   <Rle>            <IRanges>  <Rle>   |         <numeric>          <numeric> 

         Chr1_1     Chr1       [    1,  5000]      *   |  8.80737483088559  -4.24430261119046 

      Chr1_5001     Chr1       [ 5001, 10000]      *   | 0.490502525222088  -4.81099325075313 

     Chr1_10001     Chr1       [10001, 15000]      *   | -1.81127812445913  -1.40769688076302 

     Chr1_15001     Chr1       [15001, 20000]      *   |  8.90901082556418   4.37532847136919 

     Chr1_20001     Chr1       [20001, 25000]      *   |  11.7345678273271 0.0477567318121585 

            ...      ...                  ...    ... ...               ...                ... 

  Chr5_26955001     Chr5 [26955001, 26960000]      *   | -8.55588937692415  -4.70259605385437 

  Chr5_26960001     Chr5 [26960001, 26965000]      *   |  3.73610493864898    -2.671734377967 

  Chr5_26965001     Chr5 [26965001, 26970000]      *   |  6.01465742862354   5.49410161054422 

  Chr5_26970001     Chr5 [26970001, 26975000]      *   |  1.82337933117724   6.09546633554899 

  Chr5_26975001     Chr5 [26975001, 26980000]      *   | 0.382428446508557   7.10709855580481 

                            Gifu_2          Seattle_0 

                         <numeric>          <numeric> 

         Chr1_1  -5.13192978402208  -4.06900380786532 

      Chr1_5001  -13.9267152828099 -0.310614868676782 

     Chr1_10001 -0.453808602174457  0.223212946461473 

     Chr1_15001  -1.22003859611185   5.81747772270944 

     Chr1_20001 -0.824852003187666   11.7143862528797 

            ...                ...                ... 

  Chr5_26955001  -10.4271281185123 -0.528917490574309 

  Chr5_26960001  -2.06264096524125  0.998900086746565 

  Chr5_26965001  -8.26703876113279    11.379301729585 

  Chr5_26970001   1.09643377637303   10.0883478098992 

  Chr5_26975001  -1.57882926228113  0.773260163719201 

dG = mcols( IG ) 

ig = abs( dG[,"Seattle_0"] ) # select  data from "Seattle_0" 

fit = fitCDF( ig, plot.num = 2 ) # It will yield the plot of the 

first two best distributions. 



 
Depending on machine computational power, the fit of Generalized Gamma (GG) 

distribution will vary in duration. Following return of plots, a list object with the following 

values is provided: 

 aic: Akaike information criterion 

 fit: list of results of fitted distribution, with parameter values 

 bestfit: the best fit distribution according to AIC  

 fitted: fitted values from the best fit 

 rstudent: studentized residuals 

 residuals: residuals 

The first plot corresponds to the best model according to Akaike information criterion 

(AIC), which in the current case is GG distribution (Fig. 5). The main problem with the 

fitting is that the scale parameter does not make physical sense, since it approaches zero. 

From the experimental data shown in Figs 1 to 2, we know that the scale parameter differs 

from  zero and increases with size of the genomic region. Thus, although the AIC indicates 

that this is the best model, it is discarded from a physical standpoint. This outcome is an 

artifact of the numerical fitting algorithm. The second best model is the 3-parameters Weibull 

distribution (Fig. 6). 

> fit <- fitCDF( ig, plot.num = 2 ) 

Loading required package: minpack.lm 

Loading required package: numDeriv 

Fitting Normal distribution...Done. 

Fitting Log-normal distribution...Done. 

Fitting Generalized Normal distribution...Done. 

Fitting Laplace distribution...Done. 

Fitting Gamma distribution...Done. 

Fitting 3P Gamma distribution...Done. 

Fitting Generalized Gamma distribution...Done. 

Fitting Weibull distribution...Done. 

Fitting 3P Weibull distribution...Done. 

Fitting Beta distribution...Done. 

Fitting 3P Beta distribution...Done. 

Fitting 4P Beta distribution...Done. 

Fitting Generalized Beta distribution...Done. 

Fitting Rayleigh distribution...Done. 

Fitting Exponential distribution...Done. 

Fitting 2P Exponential distribution...Done. 

 * Estimating Studentized residuals for distribution #  1  

 * Plot #  1 ... 

 * Estimating Studentized residuals for distribution #  2  

 * Plot #  2 ... 

** Done *** 



 

 

 
Figure 5. The best fit model according to AIC for RI data from "Seattle_0". This model is 

discarded since the scale parameter is very close to zero. 

 

 

To get the list of all fitted results, we can type: fit$fit. For the fitting result of the 3-parameter 

Weibull distribution we can type: 

 
 

 

> fit$fit$”3P Weibull” 

Nonlinear regression via the Levenberg-Marquardt algorithm 

parameter estimates: 0.193733766873807, 0.803545758745314, 

8.65454571509012  

residual sum-of-squares: 0.0007789 

reason terminated: Relative error in the sum of squares is at most 

`ftol' 



 
Figure 6. The second best fit model according to AIC for RI data from "Seattle_0".  

 

The model summary is obtained by typing: 

 

> summary(fit$fit$”3P Weibull”) 

 

Parameters: 

       Estimate   Std. Error t value  Pr(>|t|)    

mu     0.1937338  0.0009188  210.9    <2e-16 ***  

shape  0.8035458  0.0003436  2338.7   <2e-16 *** 

scale  8.6545457  0.0029626  2921.3   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.0001814 on 23680 degrees of freedom 

Number of iterations to termination: 11  

Reason for termination: Relative error in the sum of squares is at most 

`ftol'. 



About Q-Q norm and Kolmogorov-Smirnov goodness of fit problems for large 

data sets 

In Figs. 5 to 6, it appears that the expected normal distribution for the Studentized 

residuals derived from the non-linear fit of RI has some problems. However, the problem is 

neither in the experimental data nor in the non-linear fit, but in the Q-Q norm plot when the 

size of the dataset is large enough. An analogous issue is found for Kolmogorov-Smirnov 

goodness of fit. 

We supplied an R function “qq.weibull” to illustrate the issue by simulation. This 

function generates random numbers according to a specified Weibull distribution and then a 

small white-noise is added by using the R-base function “jitter” (see the details of this 

function in R by typing ?jitter). 

 Example 1: 

 
This piece of script will yield Fig. 7 and the tables below 

 

source("qq.weibull.R") 

# Example 1 

i = 38 # To set a random seed  

 

# A simulation based on 10^4 random empirical values with Weibull 

#distribution with parameters: 

# alpha = 0.6831651, scale = 2.5114992, mu = 0.01 

 

qq.weibull( s = 1, m = 4, seed = i ) 



 
Figure 7. Simulation to illustrate the effect of the data size on QQ-norm plot. Sample 

size: 10000. 

 

 
 

> qq.weibull( s = 1, m = 4, seed = i ) 

$lm 

 

Call: 

lm(formula = p.teo ~ p.emp) 

 

Residuals: 

       Min         1Q     Median         3Q        Max  

-0.0040990 -0.0010132  0.0000292  0.0010257  0.0042891  

 

Coefficients: 

             Estimate Std. Error  t value Pr(>|t|)     

(Intercept) 1.437e-03  3.176e-05    45.25   <2e-16 *** 

p.emp       9.958e-01  5.501e-05 18101.17   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.001588 on 9998 degrees of freedom 

Multiple R-squared:      1, Adjusted R-squared:      1  

F-statistic: 3.277e+08 on 1 and 9998 DF,  p-value: < 2.2e-16 

 

 

$ks 

 

 One-sample Kolmogorov-Smirnov test 

 

data:  x.emp 

D = 0.0057, p-value = 0.905 

alternative hypothesis: two-sided 



The QQ and PP plots, as well as the linear regression analysis “theoretical probabilities” 

versus “empirical probabilities” and Kolmogorov-Smirnov test, tell us that this fit is okay. 

However, we can see that the QQ-norm plot is reflecting a small issue (Fig. 7).  

 Example 2: 

The increment of the data size, retaining the same parameter setting, eliminates the problem: 

 
 

This sample size is consistent with the partition of Arabidopsis methylome into non-

overlapping windows of 5000 bp (see the GRanges object above). Results are presented in 

Fig. 8. Now, QQ-norm plot reflects a real issue. This issue is also quantitatively shown by the 

Kolmogorov-Smirnov test, which rejects the normality hypothesis of the Studentized 

residuals (see below).  

 

 
Figure 8. Simulation to illustrate the effect of the data size on QQ-norm plot. Sample size: 

23000. 

# A simulation based on 2.3 * 10^4 random empirical values with Weibull 

# distribution 

qq.weibull( s = 2.3, m = 4, seed = i ) 



 
 

This problem can be solved by applying a permutation test as described in Alastair 

Sanderson’s web page: “Using R to analyse data: statistical and numerical data analysis with 

R” ( http://www.sr.bham.ac.uk/~ajrs/R/r-analyse_data.html ).  

 

> qq.weibull( s = 2.3, m = 4, seed = i )  

$lm 

 

Call: 

lm(formula = p.teo ~ p.emp) 

 

Residuals: 

       Min         1Q     Median         3Q        Max  

-0.0051559 -0.0026236 -0.0007266  0.0027158  0.0061380  

 

Coefficients: 

              Estimate Std. Error  t value Pr(>|t|)     

(Intercept) -3.783e-03  4.011e-05   -94.33   <2e-16 *** 

p.emp        9.984e-01  6.946e-05 14372.14   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.003041 on 22998 degrees of freedom 

Multiple R-squared:  0.9999, Adjusted R-squared:  0.9999  

F-statistic: 2.066e+08 on 1 and 22998 DF,  p-value: < 2.2e-16 

 

$ks 

 

 One-sample Kolmogorov-Smirnov test 

 

data:  x.emp 

D = 0.0099, p-value = 0.02118 

alternative hypothesis: two-sided 

> qq.weibull( s = 2.3, m = 4, plot = FALSE, num.permt = 999, seed = i ) 

*** Performing permutation test for KS statistic.  999  permutations... 

$lm 

Call: 

lm(formula = p.teo ~ p.emp) 

Residuals: 

       Min         1Q     Median         3Q        Max  

-0.0051559 -0.0026236 -0.0007266  0.0027158  0.0061380  

 

Coefficients: 

              Estimate Std. Error  t value Pr(>|t|)     

(Intercept) -3.783e-03  4.011e-05   -94.33   <2e-16 *** 

p.emp        9.984e-01  6.946e-05 14372.14   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.003041 on 22998 degrees of freedom 

Multiple R-squared:  0.9999, Adjusted R-squared:  0.9999  

F-statistic: 2.066e+08 on 1 and 22998 DF,  p-value: < 2.2e-16 

 

$ks 

 One-sample Kolmogorov-Smirnov test 

data:  x.emp 

D = 0.0099, p-value = 0.02118 

alternative hypothesis: two-sided 

 

$Permutation.p.value 

p-value  

  1 

http://www.sr.bham.ac.uk/~ajrs/R/r-analyse_data.html


The p-value obtained does not reject the normality hypothesis of the Studentized residuals.  


