Efficacy of β_1 -adrenergic receptors is lower than that of β_2 -adrenergic receptors

(G protein/receptor-effector coupling/receptor subtypes/blocker selectivity)

FINN OLAV LEVY*, XI ZHU, ALBERTO J. KAUMANN[†], AND LUTZ BIRNBAUMER

Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030

Communicated by James Black, August 4, 1993

ABSTRACT We investigated the relative activity at which fully occupied human β_1 - and β_2 -adrenergic receptors (β_1 AR and $\beta_2 AR$) activate the stimulatory G protein (G_s)/adenylyl cyclase (AC) system in isolated membranes. The receptors were cloned and coexpressed in permanent cell lines at β_1/β_2 ratios that varied from 1:2 to 3:1 and at total receptor abundance that ranged from 8 to 2200 fmol/mg of membrane protein. Cell lines expressing $\beta_1 AR$ or $\beta_2 AR$ alone were also obtained. Competitive inhibition of isoproterenol-stimulated AC activity by the β_2 -selective antagonist ICI 118551 showed in all cases that maximal stimulation elicited by $\beta_1 AR$ was lower than when it was elicited by equivalent densities of β_2 AR. This was especially noticeable at limiting concentrations of receptor, where the β_1 AR-mediated effect was <10% of that mediated by β_2 AR. At receptor concentrations > 1000 fmol/mg of protein, stimulation by β_2 AR appeared to reach a maximum, while stimulation by β_1 AR continued to increase, so that at 3200 fmol/mg, β_1 AR-stimulated activity was 80% of β_2 ARstimulated activity. It is clear that the degree to which a given receptor system is able to activate the G_s/AC system depends not only on its abundance but also on an activity parameter determined by the nature of the receptor, which we refer to as receptor efficacy. For human β ARs, this efficacy parameter is much lower for the β_1 subtype than for its β_2 counterpart. The more effective stimulation of AC through β_2 AR than through β_1 AR is an inherent property of the receptor and not the cell in which it is expressed.

Tissues may have receptors for more than one drug or hormone, all of which elicit the same response but may do so to differing extents. One example is the adipose tissue of the rat. Cells from this tissue have receptors for corticotropin, epinephrine, secretin, and glucagon, all of which stimulate the same adenylyl cyclase (AC) in a nonadditive manner. A study of their individual effects showed them to vary by a factor of up to 2, so that full stimulation by glucagon was only 50% of that obtained with epinephrine (1, 2). Stimulations by corticotropin and secretin were intermediate. Given that the ligands are the natural hormones that coevolved with the receptors they interact with, explanations of the differing response intensities should be sought in the receptors and not in the ligands, which are likely to be the equivalent of "full agonists."

One possibility is that the lower of the responses is due to a low receptor abundance such that if the receptor number could be increased, the maximal response would be increased as well. Another possibility is that receptors, like ligands, may possess different intrinsic capacities to elicit a response. We report below experiments in which we compared the coupling—i.e., response-eliciting abilities—of the human β_1 and β_2 adrenergic receptors (β_1 AR and β_2 AR), and we show that, when compared to the β_2AR , the β_1AR is weaker in stimulating the G_s/AC system. We refer to this aspect of receptor function as receptor efficacy.

METHODS

Applying procedures described previously (3–7), we cloned the complete coding sequences of the human $\beta_1 AR$ and $\beta_2 AR$ from a genomic DNA library, joined to their 5' end the 41-bp alfalfa mosaic virus ribosomal recognition sequence of plasmid pAGA-2 (7, 8), and placed the constructs into pKNH (9), giving pK-h $\beta_1 AR$ and pK-h $\beta_2 AR$, and pMAMneo (Stratagene), giving pMn-h $\beta_1 AR$ and pMn-h $\beta_2 AR$. pKNH directs the constitutive transcription of inserts and pMAMneo directs dexamethasone-inducible transcription of inserts. The nucleotide sequences of the constructs were determined (10) and agreed with those reported for human $\beta_1 AR$ (11) and $\beta_2 AR$ (12).

Cell Lines Expressing $\beta_1 AR$, $\beta_2 AR$, and $\beta_1 AR$ Plus $\beta_2 AR$. The expression vectors containing the β AR inserts were transfected alone and in combination into thymidine kinasenegative mouse fibroblasts (Ltk⁻ cells) by the calcium phosphate/glycerol shock method (13). G418-resistant transformants were selected, seeded into 96-well plates, and tested in situ for isoproterenol-sensitive AC activity (14). Cells transfected with pK-h β_1 AR gave rise to L β_1 cells, those transfected with pK-h β_2 AR gave rise to L β_2 cells, and those transfected with either both pK-BAR plasmids or both pMn- β AR plasmids gave rise to L β 1 β 2 cells. Cells identified by this method as having acquired isoproterenol responsiveness (primary transformants) were expanded and tested further. Several primary clones were obtained from each transfection, and some of these were subjected to clonal selection by limiting dilution to give clonal cell lines, $L\beta 1.x$, $L\beta 2.x$, and LB1B2.x, where x identifies individual cell clones.

Cell Growth, Membrane Preparation, and AC and Ligand Binding Assays. Cells were grown in minimal essential medium α plus 10% fetal bovine serum containing penicillin and streptomycin (6) supplemented with G418 (400 μ g/ml; GIBCO). Cells were grown to close to confluence, split 1:5 into 150-mm dishes, and harvested 48–60 hr later. Dexamethasone (1 μ M) was added 24 hr before harvest of cells expressing receptors under the control of pMAMneo's glucocorticoid-responsive mouse mammary tumor virus long terminal repeat.

Minor modifications (unpublished work) of methods described previously were used for preparation of membranes (5) and assay of AC activity (15-17) and $[^{125}I]$ iodocyanopin-

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Abbreviations: AC, adenylyl cyclase; AR, adrenergic receptor; 125 I-CYP, [125 I]iodocyanopindolol; PGE₁, prostaglandin E₁.

^{*}Present address: Institute of Medical Biochemistry, University of Oslo, P.O. Box 1112 Blindern, N-0317 Oslo, Norway.

[†]Present address: Clinical Pharmacology Unit, University of Cambridge, Addenbrook's Hospital, Cambridge CB2 2QQ, United Kingdom.

Table 1.	Scatchard analysis of ¹²⁵ I-CYP binding and adrenergic stimulation of AC relative to that of prostaglandin E_1
(PGE ₁) in	membranes of L cells transfected with human $\beta_1 AR$ and/or $\beta_2 AR$ DNA in pKNH vector

					AC activity		
		12:	⁵ I-CYP binding* (mean ± SD)	Stimulation relative to	PGE ₁ -stimulated	
Cell line	Receptor(s)	Exp	K _d , pM	$B_{\rm max}$, fmol/mg	PGE_1^{\dagger}	per min per mg (n)	
Lβ1.2	β1		7.2 ± 0.2	3210 ± 30	1.6 ± 0.2	41 ± 13 (7)	
Lβ1.3	β_1	1	8.1 ± 0.2	1910 ± 20	1.2 ± 0.1	26 ± 2 (2)	
		2	9.2 ± 0.2	1980 ± 30			
Lβ1.4	β_1		7.6 ± 0.2	2370 ± 20	1.3	24 (1)	
L _{β2.5}	β_2		4.5 ± 0.2	720 ± 10	1.5	29 (1)	
Lβ2.7	β_2	1	3.4 ± 0.2	3150 ± 40	1.9 ± 0.2	49 ± 12 (6)	
		2	2.8 ± 0.1	ND			
L β2.20	β2		4.1 ± 0.2	415 ± 10	1.6	14 (1)	
Lβ1β2.1	$\beta_1 + \beta_2$		6.2 ± 0.2	2590 ± 50	2.0 ± 0.3	$35 \pm 5(5)$	

ND, not determined.

*Incubations were for 180 min at 32°C in 100 μ l with 0.3–0.6 μ g of membrane protein.

[†]Ratio of activity in the presence of (-)-isoproterenol (1-10 μ M) divided by activity in the presence of PGE₁ (10 μ g/ml). Incubations were for 20 min at 32°C in 50 μ l with 2-5 μ g of membrane protein. Values are means \pm SD (n > 2) or half the range (n = 2) of n experiments.

dolol (125 I-CYP) binding (18). Membranes were frozen in aliquots and kept at -70° C until used. No significant loss of receptor binding or AC activity occurred over 9 months, the longest time tested.

RESULTS

We constructed, cloned by limiting dilution, and characterized 12 cell lines (Tables 1 and 2). Three express the human $\beta_1 AR$ (L β 1 clones 2-4), 3 express the human $\beta_2 AR$ (L β 2 clones 5, 7, and 20), and 6 express both the $\beta_1 AR$ and the $\beta_2 AR$ (L β 1 β 2 clones 1, 8-11, and 14). Expression of the receptors is constitutive for all cell lines except L β 1 β 2 clones 9-11, which were constructed by cotransfection of the $\beta_1 AR$ and $\beta_2 AR$ DNAs in pMAMneo and in which expression was induced by addition of dexamethasone 24 hr before harvest.

Scatchard analysis of ¹²⁵I-CYP binding to membranes of murine L cells expressing only β_1AR or only β_2AR showed that although the receptor abundance (fmol/mg of protein)

varied from one clonal cell line to another, the lines had very similar affinities for ¹²⁵I-CYP that segregated into K_d values (mean ± SEM) of 8.0 ± 0.4 pM for cells expressing β_1AR and 3.7 ± 0.4 pM for those expressing β_2AR (Table 1). The binding data obtained with L $\beta 1\beta 2.1$ cell membranes were well fitted by a binding isotherm with a single K_d for ¹²⁵I-CYP of 6.2 ± 0.2 pM. L $\beta 1\beta 2.1$ cell membranes have about equal amounts of β_1AR and β_2AR (see below) and the binding data can be fitted equally well with a model of two independent binding sites with the K_d values derived from cell membranes expressing the individual receptors—i.e., 50% 8 pM plus 50% 3.7 pM (data not shown).

All β AR-transfected cell lines exhibited stimulation of AC by (-)-isoproterenol, which had been the functional screen used to identify them as receptor-positive. (-)-Norepinephrine and (-)-epinephrine also stimulated AC activity. In dose-response studies on membranes from cells that expressed either β_1 AR or β_2 AR alone, maximal stimulation of AC by the three agonists was the same (data not shown).

Table 2. Absolute and relative abundance of $\beta_1 AR$ and $\beta_2 AR$ and relative stimulation of AC by these receptors in membranes from stably transfected cell lines

	Vector				AC activation [†]		PGE1-		
Cell line		¹²⁵ I-CYP binding*		Relative receptor abundance			$\beta_2+\beta_1,$	stimulated AC,	
		Added, pM	Bound, fmol/mg	Probe	β_1/β_2 ratio [‡]	$eta_1, {}^{\S}$ fmol/mg	β_1 , % of $\beta_1 + \beta_2 (n)$	isoproterenol/ PGE ₁ (n)	pmol per min per mg (n)
Lβ1β2.1	pKNH	49	2134 ± 12	CGP	46:54	1000			
		52	2464 ± 13	ICI	54:46	1330	50 ± 7 (2)	$2.0 \pm 0.3 (5)$	$34 \pm 6(5)$
Lβ1β2.8	pKNH	49	2214 ± 9	CGP	65:35	1440			
	-	52	2317 ± 14	ICI	74:26	1710	$52 \pm 4 (2)$	$1.9 \pm 0.3 (4)$	33 ± 8 (4)
Lβ1β2.14	pKNH	49	· 957 ± 8	CGP	63:37	600			
	-	49	1320 ± 16	ICI	70:30	920	47 ± 6 (2)	$1.8 \pm 0.2 (4)$	$31 \pm 7 (4)$
Lβ1β2.9	pMAMneo	49	126 ± 1	CGP	68:32	86			
	-	49	150 ± 2	ICI	75:25	113	38 ± 7 (2)	$0.6 \pm 0.1 (4)$	$30 \pm 6(4)$
Lβ1β2.11	pMAMneo	49	50 ± 1	CGP	55:45	28			
	-	49	66 ± 2	ICI	62:38	41	$29 \pm 6 (2)$	0.29 ± 0.05 (4)	$26 \pm 5(4)$
Lβ1β2.10	pMAMneo	49	8 ± 0.5	CGP	34:66	2.7			
	-		ND	ICI	ND	ND	7 ± 5 (2)	0.09 ± 0.03 (4)	48 ± 10 (4)

ND, not determined. Expression from pMAMneo was induced with dexamethasone.

*Incubations were for 180 min at 32°C in 100 μ l with 0.5–0.6 μ g (clones 1, 8, and 14), 2–2.5 μ g (clone 9), 4–4.5 μ g (clone 11), or 10–12 μ g (clone 10) of membrane protein.

[†]Activities in the presence of (-)-isoproterenol (1-10 μ M) or PGE₁ (10 μ g/ml). Incubations were for 20 min at 32°C in 50 μ l with 1.5-4.5 μ g (L β 1 β 2.1), 1.5-4.5 μ g (L β 1 β 2.8), 1.5-7.2 μ g (L β 1 β 2.14), 2.5-8.3 μ g (L β 1 β 2.9), 3.7-8.7 μ g (L β 1 β 2.11), or 13 μ g (L β 1 β 2.10) of membrane protein. Values are means ± SD; *n*, number of experiments.

[‡]Calculated from fitting curves for competitive inhibition of the binding of ¹²⁵I-CYP by CGP 20712A or ICI 118551 or curves for competitive inhibition of isoproterenol (1–10 μ M)-stimulated AC by ICI 118551 with a model of two independent binding sites as shown in Fig. 2. ^{§125}I-CYP (fmol/mg) bound × fraction of binding calculated to be due to β_1 AR.

FIG. 1. Effect of the β_1 -selective antagonist CGP 20712A (Upper) and the β_2 -selective antagonist ICI 118551 (Lower) on the binding of ¹²⁵I-CYP (A) and stimulation of AC by 1 μ M (-)-isoproterenol (B) in membranes from L cells expressing human β_1 AR alone (\Box), human β_2 AR alone (0), or both receptors together (\bullet). Binding data represent total binding to membranes without subtraction of nonspecific binding. Pr, incubation mixtures contained 3 μ M (-)-propranolol. Points are results from individual incubations except for ¹²⁵I-CYP binding and (-)-isoproterenol-stimulated activities in the absence of β_1 or β_2 blockers or in the presence of 3 μ M (-)-propranolol (Pr), which are means of triplicates. Values below the β_1 , β_2 , and $\beta_1 + \beta_2$ designations represent the 100% values of each of the curves; also given are the calculated amplitudes of β_1 or β_2 components in $\beta_1 + \beta_2$ membranes (A) or activity behaving as β_1 - or β_2 -mediated in $\beta_1 + \beta_2$ membranes (B). Lines represent computer generated fits of the data obtained with theoretical models for one (L β 1 and L β 2 cells) and two $(L\beta 1\beta 2 \text{ cells})$ sites. Calculations were performed by an IBM PS/2 computer using nonlinear regression routines provided by the SIGMAPLOT 4.1 software (Jandel, Corte Madera, CA). One-site model: $y = f(x) = a + \{(b - a)[1/(1 + x/c)]\}$, where a is y at the bottom of the curve, b is y at the top of the curve, c is the midpoint of the

However, there was considerable cell-to-cell difference in the stimulated activities that appeared to be dependent on the receptor subtype and receptor number, especially when related to activity stimulated by the resident L-cell PGE₁-responsive prostanoid receptor (Fig. 1*B*; Tables 1 and 2). Thus, the extent of AC stimulation by receptor at concentrations of isoproterenol giving maximal effects in membranes from three cell lines expressing the β_1 AR at 1900–3200 fmol/mg ranged from 1.2- to 1.6-fold that obtained with PGE₁, while membranes from cells expressing the β_2 AR at 2600–3200 fmol/mg had isoproterenol-stimulated activities that were 1.9- to 2.0-fold the PGE₁-stimulated activity. This suggested that β_1 AR might be less efficacious than β_2 AR in activating the G_s/AC system.

The lower activity of $\beta_1 AR$ is exemplified in Fig. 1. The effect of selectively blocking $\beta_1 AR$ on the stimulation of AC in membranes from cells coexpressing $\beta_1 AR$ and $\beta_2 AR$ was compared with the effect of selectively blocking $\beta_2 AR$ in the same membranes. The effect of $\beta_1 AR$ and $\beta_2 AR$ blockade in cell membranes with only $\beta_1 AR$ and only $\beta_2 AR$ was assessed as control. Competitive inhibition of ¹²⁵I-CYP binding by CGP 20712A and ICI 118551 to membranes of $L\beta 1.2$ and L β 2.7 cells (Fig. 1A) confirmed the respective β_1 AR and β_2 AR selectivity of these drugs (19) under our assay conditions. Quantitation of $\beta_1 AR$ and $\beta_2 AR$ in membranes of L β 1 β 2.1 cells revealed that these cells coexpress β ₁AR and β_2 AR at a ratio of about 1:1 (displacement of ¹²⁵I-CYP by CGP 20712A gave a β_1/β_2 ratio of 0.85, and displacement of ¹²⁵I-CYP by ICI 118551 gave a β_1/β_2 ratio of 1.17; Fig. 1 and Table 2).

In contrast to the biphasic inhibition of ¹²⁵I-CYP binding, the dose-response curve for CGP 20712A-mediated inhibition of AC activity stimulated by 1 μ M isoproterenol in membranes from L β 1 β 2.1 cells was monophasic with an IC₅₀ of 52 μ M, which corresponds to the inhibition of the β_2 AR component of the cell. This indicated that blockade of the β_1 AR component (which in these membranes occurred with an IC₅₀ of 5–10 nM) was without detriment to the overall stimulation of the G_s/AC system and that the β_2 AR was driving the system to such an extent that an added β_1 ARmediated stimulation could not be expressed; i.e., that the two receptors were acting in a nonadditive manner and that the stimulation by β_2 AR occluded the stimulation by the β_1 AR.

Inhibition of isoproterenol stimulated AC activity by the β_2 AR-selective blocker, ICI 118551, gave a different picture: the inhibition curve was biphasic, allowing clear distinction of the $\beta_2 AR$ and $\beta_1 AR$ components, with respective IC₅₀ values of 12 nM and 3 μ M. This indicated that, in contrast to subtraction of $\beta_1 AR$ action, which had been without effect, subtraction of $\beta_2 AR$ action resulted in a partial loss of stimulation by saturating isoproterenol and that, therefore, the intrinsic ability of $\beta_1 AR$ to activate the G_s/AC system was less than that of $\beta_2 AR$. An overnight treatment of $L\beta 1\beta 2.1$ cells with pertussis toxin (0.1 μ g/ml) prior to harvest for membrane preparation, which caused ADP-ribosylation of >95% of the cell's pertussis toxin substrates, left unaffected the biphasic inhibition of isoproterenol-stimulated AC activity by increasing concentrations of ICI 118551 (data not shown). This indicated that the lower stimulation by $\beta_1 AR$ observed after blockade of $\beta_2 AR$ was not due to $\beta_1 AR$ mediated inhibition of AC activation by G_i.

displacement curve (IC₅₀), y is the y-axis value at x, and x is concentration of ligand along the x axis. Two-site model: $y = f(x) = a + \{(b - a)[e/(1 + x/c) + (1 - e)/(1 + x/d)]\}; a, b, x, and y are as$ in the one-site model, e is the fraction of <math>b - a contributing to y with a midpoint value (IC₅₀) of c, and 1 - e is the fraction of b - acontributing to y with a midpoint value (IC₅₀) of d.

FIG. 2. Relationship between membrane receptor abundance and stimulation of the G_s/AC system for human β_1AR (ovals) and β_2AR (triangles). Data are derived from Tables 1 and 2. Open symbols, cells expressing only one receptor type; filled symbols, cells expressing both β_1AR and β_2AR . Gray lines connect data from the same cell line.

Table 2 presents results obtained with other $L\beta 1\beta 2$ cell lines, all expressing $\beta_1 AR$ and $\beta_2 AR$ at relative ratios ranging from 1:2 to 3:1, assessed by competitive inhibition of ¹²⁵I-CYP binding by CGP 20712A and ICI 118551, but differing significantly in the total number of β ARs in the isolated membranes, ranging from 2300 fmol/mg (L β 1 β 2.8) to 8 fmol/mg (L β 1 β 2.10). In all but one case, the β ₁AR component of AC stimulation was clearly uncovered after blocking the $\beta_2 AR$ component with ICI 118551 and ranged between 30% and 50% of the stimulation obtained with both receptors. For the lowest total β AR abundance (8 fmol/mg), stimulation of AC by β_1 AR was marginal, 6-7% of $\beta_1 AR$ plus $\beta_2 AR$, even though $\beta_1 AR$ was 30% of the total. This reflects the effect of absolute βAR level on AC stimulation, which reached a maximum at around 2-fold that obtained with the resident PGE₁-responsive receptor and decreased as total receptor levels fell below 500 fmol/mg (Fig. 2). In all cases, $\beta_1 AR$ was less efficacious than β_2 AR. Nearly identical results were obtained when ICI 118551 was used to block the stimulation of AC by 1 or 10 μ M isoproterenol. Both these concentrations of isoproterenol were supramaximal for AC stimulation in all membranes except those from $L\beta 1\beta 2.10$ cells, in which, presumably due to the very low receptor density, the dose-response curve for isoproterenol was right-shifted so that it required close to 10 μ M to reach a maximum. EC₅₀ values for isoproterenolmediated stimulation in cells expressing transfected β ARs have been shown to depend on receptor levels (20).

The $\beta_1 AR$ vs. $\beta_2 AR$ selectivities of CGP 20712A and ICI 118551 were determined from competitive shifts of doseresponse curves for isoproterenol-mediated stimulation of the AC of L β 1 and L β 2 cells. Linear Schild plots with slopes of 0.9-1.0 were obtained (data not shown). The pK_B values derived for inhibition of isoproterenol action at β_1 AR and β_2 AR were 8.7 and 5.8, respectively, for CGP 20712A, and 7.2 and 9.5, respectively, for ICI 118551. Thus CGP 20712A has a β_1/β_2 selectivity ratio of 794:1 [antilog(8.7 - 5.8)] and ICI 118551 has a β_2/β_1 selectivity of 199 [antilog(9.5 - 7.2)]. Using the IC₅₀ values obtained for competitive inhibition of ¹²⁵I-CYP binding and correcting for the 2-fold difference in affinity of the probe for $\beta_2 AR$ vs. $\beta_1 AR$ (Table 1), we calculated the β_1/β_2 selectivity of CGP 20712A to be 845:1 and the β_2/β_1 selectivity of ICI 118551 to be 228. These values are in excellent agreement with the values obtained from inhibition of stimulation of AC. Thus the method of assay does not affect the subtype selectivity of the blockers.

DISCUSSION

 β_1 AR and β_2 AR are coexpressed and function in the human myocardium (21–25). The density of β_1 AR is usually higher

than that of $\beta_2 AR$. Studies from several laboratories suggest that $\beta_1 AR$ may be "weaker" than $\beta_2 AR$ or even be ineffective in activating the G_s/AC system. For example, Waelbroeck et al. (26) found virtually no stimulation of AC through β_1 AR but only through β_2 AR. An analytical study by Kaumann and Lemoine (19) on isolated ventricular tissues from patients with mitral valve lesion showed an asymmetry between a lower abundance of $\beta_2 AR$ relative to $\beta_1 AR$ and a greater stimulation of AC by β_2 AR than by β_1 AR in cardiac membrane particles. Thus, while about 70% of the total β AR population was β_1 AR, competitive blockade of both epinephrine- and norepinephrine-induced stimulation of AC showed a β_1 AR component (stimulation resistant to β_2 AR blocker) of 25-36%, but a β_2 AR component (stimulation resistant to β_1 AR blocker) of 63-89% (19). Relating β_1 AR and β_2 AR densities to the corresponding β_1 AR and β_2 AR stimulation of AC yielded a ratio of $\geq 6:1$ for activation of AC by $\beta_2 AR$ relative to $\beta_1 AR$ (19, 25). Golf and Hansson (33) and Bristow et al. (27) extended these findings to membranes of nonfailing human heart, by also reporting more $\beta_1 AR$ than $\beta_2 AR$ in membranes but a much greater stimulation of AC through β_2 AR than β_1 AR. There are, however, at least two problems with a definitive interpretation of experiments of this sort: (i) data from human heart AC show a large patient-to-patient variability (24, 28, 29), suggesting that a factor(s) other than an intrinsic property of the β ARs themselves contribute to the estimation of the efficiency with which they transduce a signal, and (ii) it is not possible to know the cellular origin of the membranes whose β ARs are assessed biochemically by ligand binding or AC activation. Although it is assumed that most membranes are from myocardial cells, it cannot be ruled out that a significant contribution of β ARs comes from other cells (endothelial, neuronal, etc.) in the particular tissue fragments used for the studies.

Green et al. (30) eluded the uncertainty about the cellular origin of membrane used by evaluating the properties of the cloned human β_1 AR and β_2 AR in two clonal CHW-1102 fibroblast lines, one expressing the $\beta_1 AR$ and the other expressing the $\beta_2 AR$ at nearly identical levels. Like receptor levels, isoproterenol-stimulated AC activities were very similar for the two cell lines. The interaction of these receptors with isoproterenol was studied in terms of binding in the absence and presence of GTP and in terms of the EC_{50} with which isoproterenol stimulated AC activity. K_i values, assessed by displacement of ¹²⁵I-CYP in the presence of GTP, and low-affinity $K_{\rm L}$ constants, computed from the biphasic displacement of ¹²⁵I-CYP by isoproterenol in the absence of GTP, differed <2-fold in comparisons of β_1 AR with β_2 AR or $K_{\rm i}$ with $K_{\rm L}$. On the other hand, the high-affinity $K_{\rm H}$ constants, computed from the biphasic displacement curves obtained in the absence of GTP, differed depending on the comparison made: $K_{\rm H}$ for $\beta_1 AR$ was 5-fold that for $\beta_2 AR$, and the $K_{\rm H}/K_{\rm L}$ ratio for $\beta_1 AR$ was 12 whereas that for $\beta_2 AR$ was 140. The higher $K_{\rm H}/K_{\rm L}$ ratio was positively correlated to a 4-fold lower EC₅₀ for AC stimulation in β_2 AR cells than β_1 AR cells. Since $K_{\rm H}$ values are determined by the association of the receptors with the G_s protein of the cell (31), these experiments indicate that subtype-specific factors other than the inherent affinity for the ligand (assessed as K_i or K_L) influence the efficiency with which the signal is transduced. The results of Green et al. (30) agree with the general concept that β AR coupling is subtype-selective. They did not, however, show a difference between the two receptor subtypes other than the affinity of the agonist for what is thought to be the $G_s/\beta AR$ complex and provided no clues as to possible differences in the coupling efficiency suggested by the studies with human myocardium.

Our studies show that the extent to which a receptor may activate an AC system (i.e., its efficacy) may depend on the nature of the receptor. Unlike Green *et al.* (30), by coexpressing $\beta_1 AR$ and $\beta_2 AR$ we were able to compare the ability of the two receptor subtypes to stimulate AC in an identical biochemical background. As is shown in Fig. 2 and Table 2, in all of the cells tested, and over a total receptor abundance ranging from 8 to 2500 fmol/mg of protein, β_1 AR stimulation of AC was always partial and nonadditive to that elicited by the $\beta_2 AR$. Increases in $\beta_2 AR$ density resulted in increasing isoproterenol-stimulated AC activities (in comparison to stimulation by PGE₁), and this leveled off at about twice the stimulation elicited by PGE_1 . Thus, the response system saturates and further increases in receptor density no longer lead to further increases in activity. The same applies to β_1 AR, with the difference that at matching receptor levels in the membranes the ability of the $\beta_1 AR$ to stimulate the G_s/AC system is less than that of the β_2 AR. Although at high levels of $\beta_1 AR$ expression, AC stimulation approached that of saturating levels of $\beta_2 AR$, it is not clear from our studies whether $\beta_1 AR$ will ever be able to activate as many G_s molecules per unit time as $\beta_2 AR$.

Our experiments may be relevant to the function of β_1AR and β_2AR in human heart. Working with single isolated human ventricular myocytes, Del Monte *et al.* (32) have recently confirmed *in situ* both the coexistence of β_1AR and β_2AR in a single cell and that the contribution of the β_2AR predominates over that of the more abundant β_1AR . We conclude that β_2AR stimulates AC with greater efficacy than β_1AR and that efficacy is an inherent property of G-proteincoupled receptors.

This work was supported in part by Grant HL45198 from the National Institutes of Health to L.B. and a Fogarty International Center Fellowship to F.O.L.

- 1. Birnbaumer, L. & Rodbell, M. (1969) J. Biol. Chem. 244, 3477-3482.
- Rodbell, M., Birnbaumer, L. & Pohl, S. L. (1970) J. Biol. Chem. 245, 718-722.
- 3. Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982) *Molecular Cloning: A Laboratory Manual* (Cold Spring Harbor Lab. Press, Plainview, NY).
- Liao, C.-F., Themmen, A. P. N., Joho, R., Barberis, C., Birnbaumer, M. & Birnbaumer, L. (1989) J. Biol. Chem. 264, 7328-7337.
- Levy, F. O., Gudermann, T., Perez-Reyes, E., Birnbaumer, M., Kaumann, A. J. & Birnbaumer, L. (1992) J. Biol. Chem. 267, 7553-7562.
- Gudermann, T., Birnbaumer, M. & Birnbaumer, L. (1992) J. Biol. Chem. 267, 4479-4488.
- Sanford, J., Codina, J. & Birnbaumer, L. (1991) J. Biol. Chem. 266, 9570–9579.
- Gudermann, T., Nichols, C., Levy, F. O., Birnbaumer, M. & Birnbaumer, L. (1992) Mol. Endocrinol. 6, 272–278.

- 9. Nukada, T., Mishina, M. & Numa, S. (1987) FEBS Lett. 211, 5-9.
- Sanger, F., Nicklen, S. & Coulson, A. R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- Frielle, T., Collins, S., Daniel, K. W., Caron, M. G., Lefkowitz, R. J. & Kobilka, B. K. (1987) Proc. Natl. Acad. Sci. USA 84, 7920-7924.
- Emorine, L. J., Marullo, S., Delavier-Klutchko, C., Kaveri, S. V., Durieu-Trautmann, O. & Strosberg, A. D. (1987) Proc. Natl. Acad. Sci. USA 84, 6995-6999.
- Graham, F. L. & Van der Eb, A. J. (1973) Virology 52, 456– 467.
- 14. Birnbaumer, M., Hinrichs, V. & Themen, A. P. N. (1990) Mol. Endocrinol. 4, 245-254.
- Birnbaumer, L., Yang, P. C., Hunzicker-Dunn, M., Bockaert, J. & Duran, J. M. (1976) Endocrinology 99, 163-184.
- Salomon, Y., Londos, C. & Rodbell, M. (1974) Anal. Biochem. 58, 541–548.
- Bockaert, J., Hunzicker-Dunn, M. & Birnbaumer, L. (1976) J. Biol. Chem. 251, 2653–2663.
- Abramowitz, J., Iyengar, R. & Birnbaumer, L. (1982) Endocrinology 110, 336–346.
- Kaumann, A. J. & Lemoine, H. (1987) Naunyn-Schmiedeberg's Arch. Pharmacol. 335, 403-411.
- George, S. T., Berrios, M., Hadcock, J. R., Wang, H.-y. & Malbon, C. C. (1988) Biochem. Biophys. Res. Commun. 150, 665-672.
- Brodde, O. E., Karad, K., Zerkowski, H. R., Rohm, N. & Reidemeister, J. C. (1983) Circ. Res. 53, 752-758.
- 22. Heitz, A., Schwartz, J. & Velly, J. (1983) Br. J. Pharmacol. 80, 711-717.
- Stiles, G. L., Taylor, S. A. & Lefkowitz, R. J. (1983) Life Sci. 33, 467–473.
- Gille, E., Lemoine, H., Ehle, B. & Kaumann, A. J. (1985) Naunyn-Schmiedeberg's Arch. Pharmacol. 331, 60-70.
- 25. Kaumann, A. J. (1987) Biomed. Biochim. Acta 46, S411-S416.
- Waelbroeck, M., Taton, G., Delhaye, M., Chatelain, P., Camus, J. C., Pochet, R., Leclerc, J. L., De Smet, J. M., Robberecht, P. & Christophe, J. (1983) Mol. Pharmacol. 24, 174-182.
- Bristow, M. R., Hershberger, R. E., Port, J. D., Minobe, W. & Rasmussen, R. (1988) Mol. Pharmacol. 35, 295-303.
- Lemoine, H., Schönell, H. & Kaumann, A. J. (1988) Br. J. Pharmacol. 95, 55-66.
- Kaumann, A. J., Hall, J. A., Murray, K. J., Wells, F. C. & Brown, M. J. (1989) Eur. Heart J. 10, Suppl. B, 29–37.
- Green, S. A., Holt, B. D. & Ligget, S. B. (1992) Mol. Pharmacol. 41, 889-893.
- Cerione, R. A., Codina, J., Benovic, J. L., Lefkowitz, R. J., Birnbaumer, L. & Caron, M. G. (1984) *Biochemistry* 23, 4519– 4525.
- Del Monte, F., Kaumann, A. J., Poole-Wilson, P. A., Wynne, D. G., Pepper, J. & Harding, S. E. (1993) Circulation 88, 854-863.
- 33. Golf, S. & Hansson, V. (1986) Cardiovasc. Res. 20, 637-644.