1	Supplementary Information
2	
3	
4	Peltaster fructicola genome reveals evolution from an invasive phytopathogen to
5	an ectophytic parasite
6	
7	Chao Xu ¹ , Huan Chen ¹ , Mark L. Gleason ² , Jin-Rong Xu ^{1,3} , Huiquan Liu ¹ , Rong Zhang ¹ &
8	Guangyu Sun ^{1*}
9	
10	¹ State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection,
11	Northwest A&F University, Yangling, Shaanxi 712100, China
12	² Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011,
13	USA
14	³ Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907,
15	USA
16	
17	*Corresponding author: e-mail: sgy@nwsuaf.edu.cn; Tel: 086-029-87092075
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/ 20	
38 20	
39	
40	
41 42	
42	

Supplementary Figures

Supplementary Figure 1. Distribution of 21-mer frequency in the raw Illumina genomic reads of *P. fructicola*. The peak depth is at 197X. The peak of 21-mer frequency (M) in reads is correlated with the real sequencing depth (N), read length (L), and kmer length (K); their relationships can be expressed in the experienced formula: M = N * (L - K + 1) / L. We then divided the total sequence length by the real sequencing depth and obtained an estimated genome size of 19.54 Mb.

Supplementary Figure S4. Distribution of total gene contents and assembly sizes of sequenced fungi with various lifestyles in Capnodiales. The dashed line discriminates between fungi that have larger and smaller gene densities than P. fructicola (459.93 genes/Mb). The solid line indicates the linear trend with the linear correlation coefficient r (0.67). Hemibiotrophs: Dothistroma septosporum, Mycosphaerella fijiensis, Zymoseptoria tritici, Mycosphaerella populorum, Mycosphaerella populicola, Zymoseptoria ardabiliae, Zymoseptoria pseudotritici. Biotroph: Cladosporium fulvum. Necrotrophs: Cercospora zeae-maydis, Teratosphaeria nubilosa. Mycoparasites: Dissoconium aciculare, Pseudovirgaria hyperparasitica. Saprotrophs: Baudoinia compniacensis, Piedraia hortae, Polychaeton citri, Zasmidium cellare. Ectophyte: Peltaster fructicola.

COG function classification

Supplementary Figure S5. Distribution of COG function annotation of the lost genes in P.

4	fructicola and Z. tritici. In total, 215 genes (38.4%) and 527 genes (45.9%) were annotated in P.
5	fructicola (PF) and Z. tritici (ZT), respectively.

5	fructicola	(PF)	and Z	. tritici	(ZT)), res	pective	21
---	------------	------	-------	-----------	------	--------	---------	----

COG function classification

- Supplementary Figure S6. Distribution of COG function annotation of species-specific genes
- in P. fructicola and Z. tritici. In total, 168 genes (10.3%) and 409 genes (11.7%) were annotated
- in P. fructicola (PF) and Z. tritici (ZT), respectively.

Supplementary Tables

3 Supplementary Table S1. Up-regulated and/or highly expressed secreted protein-coding

4 genes *in vivo* in *P. fructicola*.

Gene ID	Pfam annotation	E-value	Nr annotation	E-value	Expression in vivo ¹
Pelfr_1250	Glyco_hydro_30 (PF02055)	5.4e-29	Beta-1,6-glucanase	3e-177	Up-regulated & highly
					expressed
Pelfr_1126	COesterase (PF00135)	6.7e-74	Carboxylesterase type B	0.0	Up-regulated & highly
					expressed
Pelfr_6771	Metallophos (PF00149)	5.8e-29	Acid phosphatase AphA	0.0	Up-regulated & highly
					expressed
Pelfr_3889	Metallophos (PF00149)	4.6e-07	Metallo-phosphoesterase	0.0	Up-regulated
Pelfr_4114	Phosphoesterase (PF04185)	9.5e-70	Phospholipase C	0.0	Up-regulated
Pelfr_5583	GDPD (PF03009)	6.6e-07	Glycerophosphoryl diester	0.0	Up-regulated
			phosphodiesterase		
Pelfr_3400	Peroxidase_2 (PF01328)	3.2e-13	Cloroperoxidase	0.0	Up-regulated
Pelfr_2011	FAD_binding_4 (PF01565)	2.5e-25	Secreted FAD-dependent	4e-96	Up-regulated
			oxidoreductase		
Pelfr_5553	Tyrosinase (PF00264)	1.5e-49	Tyrosinase	4e-135	Up-regulated
Pelfr_2833	Arginase (PF00491)	4.2e-83	Arginase/deacetylase	0.0	Up-regulated
Pelfr_4025	Cu-oxidase (PF00394);	1.1e-44	Multicopper oxidase type 1	0.0	Up-regulated & highly
	Cu-oxidase_2 (PF07731);				expressed
	Cu-oxidase_3 (PF07732)				
Pelfr_4790	S1-P1_nuclease (PF02265)	3.2e-96	Nuclease PA3	2e-144	Up-regulated & highly
					expressed
Pelfr_1369	-	-	Hypothetical protein	4e-57	Up-regulated
Pelfr_2143	DUF1996 (PF09362)	1.2e-59	WSC domain-containing	1e-70	Up-regulated
			protein		
Pelfr_7312	-	-	Hypothetical protein	1e-24	Up-regulated & highly
					expressed
Pelfr_7724	-	-	Hypothetical protein	1e-10	Up-regulated & highly
					expressed
Pelfr_3633	Glyco_hydro_17 (PF00332)	6.6e-33	Exo-beta-1,3-glucanase	1e-140	Highly expressed
Pelfr_1460	Peptidase_M28 (PF04389)	1.9e-29	Zinc-metallopeptidase	0.0	Highly expressed
Pelfr_0316	FKBP_C (PF00254)	2.3e-41	FKBP-type peptidyl-prolyl	5e-60	Highly expressed
			cis-trans isomerase		

6 ¹Up-regulated: expression quantity (RPKM) of in vivo is more than that of in vitro (>=2-fold); Highly expressed:

7 expression quantity (RPKM) of in vivo is more than 80.

8 Note: in vivo refers to *P. fructicola* infecting apple fruit about 1 month after inoculation; In vitro refers to *P.*

fructicola growing on PDA at 22 °C for 15 days; RPKM, reads per kilobase per million mapped reads.

1	Supplementary Ta	ble S2. S	ecreted p	peptidases in <i>P. fr</i>	ucticola.				
Gene ID	Pfam annotation	E-value	Nr	annotation	E-value	MEROPS ann	otation		E-value
Pelfr_5071	Asp (PF00026)	2.6e-33	Asj end	oartic-type opeptidase	9e-73	PepAc peptidas	e, subfamily	A1A	4.5e-76
Pelfr 3148	Asp (PF00026)	2.0e-52	Ası	partic-type	8e-77	PepAc peptidas	e. subfamilv	A1A	8.7e-96
	r (i i i i i i		end	opeptidase		I I I I	, j		
Pelfr_4918	Pro-kuma_activ (PF09286)	1.2e-46	Tri	peptidyl-peptidase	0.0	Grifolisin, subf	amily S53		3.6e-113
Pelfr_1460	Peptidase_M28 (PF04 389)	1.9e-29	Zin	c-metallopeptidase	0.0	Mername-AA0 subfamily M28	53 per E	otidase,	2.6e-110
Pelfr_7574	Peptidase_S8 (PF000 82)	1.2e-26	Sut	otilisin-like protein	5e-37	Subtilisin-like subfamily S8A	peptidase	3,	2.3e-26
Pelfr_0800	Peptidase_S10 (PF00 450)	3.8e-104	Ser	ine boxypeptidase	0.0	Carboxypeptida subfamily S10	ise	ОсрВ,	7.2e-172
Pelfr_6788	Peptidase_S10 (PF00	2.03e-82	Ser	ine	0.0	Carboxypeptida	ise O, sub	family	1.6e-165
	450)		car	boxypeptidase		S10			
4 5 6									
7	Supplementary Ta	ble S3. S	mall seci	eted proteins (S	SPs) in <i>P. f</i>	ructicola.			
Gene ID	Pfam annotation]	E-value	Nr annotation	ý y		E-value	Cystei	ine ¹
Pelfr_0039) _	-	-	Putative carbohyd	rate-binding	protein	7e-54	3.50%	(high)
Pelfr_0316	5 FKBP_C (PF00254) 2	2.3e-41	FKBP-type peptic	lyl-prolyl cis-	-trans isomerase	5e-60	1.46%	
Pelfr_1820) His_Phos_1 (PF003	300)	1.2e-06	Phosphoglycerate	mutase fami	ly protein	2e-83	2.87%	(high)
Pelfr_3420) -	-		Hypothetical prot	ein		5e-42	7.27%	(high)
Pelfr_6255	5 Ribonuclease (PF00)545)	1.3e-18	Ribonuclease			3e-41	2.99%	(high)
Pelfr_2097	7 _	-		Hypothetical prot	ein		4e-25	4.32%	(high)
Pelfr_7294	+ -	-		-			-	1.87%	
Pelfr_7319) -	-		-			-	0.00%	
Pelfr_7431	-	-		-			-	0.00%	
Pelfr_7511	-	-		-			-	0.72%	
Pelfr_7794	CVNH (PF08881)	1	1.3e-07	Cyanovirin-N			9e-07	5.93%	(high)
Pelfr_7907	1 _	-		-			-	4.55%	(high)

- ¹Values were labeled "high" when the percentage of cysteine residues in the protein was at least twice as high as
 the average percentage of cysteine residues in all predicted proteins of *P. fructicola*.

Fungi	Total	CE5	CE8	PL1	PL2	PL3	PL4	PL9	PL10	PL11	GH1	GH2	GH3	GH5
Neurospora	87	3	2	1	0	1	1	0	0	0	2	6	10	6
crassa														
Laccaria bicolor	61	1	4	0	0	0	0	0	0	0	0	2	2	20
Rhizophagus	12	1	0	0	0	0	0	0	0	0	0	0	0	3
irregularis														
Rhizopus oryzae	61	0	6	0	0	0	0	0	0	0	0	0	6	8
Saccharomyces	18	0	0	0	0	0	0	0	0	0	0	0	0	4
cerevisiae														
Puccinia graminis	97	9	8	2	0	0	0	0	0	0	0	7	2	28
Ustilago maydis	47	4	1	1	0	0	0	0	0	0	0	1	3	13
Botrytis cinerea	138	12	5	7	0	2	0	0	0	0	4	2	16	16
Colletotrichum	226	14	10	16	0	14	6	4	0	0	1	6	22	18
higginsianum														
Magnaporthe	156	19	1	2	0	1	1	0	0	0	2	8	18	13
oryzae														
Zymoseptoria	90	6	1	2	0	1	0	0	0	0	2	8	16	9
tritici														
Peltaster	38	6	0	0	0	0	0	0	0	0	1	2	8	7
fructicola														

1	Supplementary Table S4. Distribution of putative PCWDEs in selected fungi according to
2	the CAZy database.

E	CIIC	CHIZ	CIII	CIIIA	CIII1	CIII12	CHA	CHAT	CII20	CHO	CII21	CH25	CHI2	CII42
Fungi	GH0	GH/	GH9	GHIU	GHII	GHIZ	GH20	GH2/	GH2ð	GH29	GH31	GH35	GH30	GH43
Neurospora	3	5	1	4	2	2	1	0	2	0	6	2	0	7
crassa														
Laccaria bicolor	0	0	1	0	0	3	0	1	6	0	4	1	0	0
Rhizophagus	0	0	2	0	0	0	1	0	0	0	2	2	0	0
irregularis														
Rhizopus oryzae	0	0	3	0	0	0	1	0	18	0	3	1	1	2
Saccharomyces	0	0	0	0	0	0	0	0	1	0	1	0	0	0
cerevisiae														
Puccinia graminis	0	10	0	5	0	3	6	7	1	0	2	1	0	2
Ustilago maydis	0	0	1	2	1	0	1	1	1	0	3	1	0	2
Botrytis cinerea	1	3	0	2	2	3	2	4	21	0	0	4	0	6
Colletotrichum	3	7	0	7	5	10	1	1	13	1	7	4	1	21
higginsianum														
Magnaporthe	3	7	0	6	5	3	0	3	3	4	6	0	0	20
oryzae														
Zymoseptoria	0	1	1	2	1	1	0	1	2	1	7	2	1	9
tritici														
Peltaster	0	0	0	0	0	0	0	1	1	0	5	1	0	1
fructicola														

Fungi	GH45	GH51	GH53	GH54	GH62	GH67	GH74	GH78	GH88	GH93	GH95	GH105	GH115
Neurospora	1	1	1	1	0	1	6	2	0	3	0	2	2
crassa													
Laccaria bicolor	0	0	0	0	0	0	5	0	1	0	1	9	0
Rhizophagus	0	0	0	0	0	0	1	0	0	0	0	0	0
irregularis													
Rhizopus oryzae	5	0	0	0	0	0	7	0	0	0	0	0	0
Saccharomyces	0	0	0	0	0	0	12	0	0	0	0	0	0
cerevisiae													
Puccinia graminis	0	0	0	0	0	0	2	0	0	0	0	2	0
Ustilago maydis	3	2	0	0	1	0	2	0	0	0	0	2	1
Botrytis cinerea	2	2	2	1	1	0	2	7	1	1	3	2	2
Colletotrichum	1	2	2	0	1	1	9	5	1	1	1	6	4
higginsianum													
Magnaporthe	1	3	1	1	4	1	6	3	1	1	2	3	4
oryzae													
Zymoseptoria	1	2	2	1	1	0	1	3	0	1	0	3	1
tritici													
Peltaster	0	2	0	1	0	0	1	1	0	0	0	0	0
fructicola													
1													
2													
3													
4													
5													
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													
24													

Gene ID	Substrate	Enzyme activity	Abbreviation	EC number	CAZyme	Secretion
					family	signal
Pelfr_4541	Pectin (backbone chain)	Exopolygalacturonas	PGX	3.2.1.67	GH28	Y
		e				
Pelfr_4343	Pectin (backbone/side chain)	α -L-rhamnosidase	RHA	3.2.1.40	GH78	Ν
Pelfr_0259	Pectin (side chain)/Hemicellulose	β -1,4-Galactosidase	LAC	3.2.1.23	GH2	Ν
	(Xyloglucan, side chain)					
Pelfr_4976	Pectin (side chain)/Hemicellulose	β -1,4-Galactosidase	LAC	3.2.1.23	GH35	Y
	(Xyloglucan, side chain)					
Pelfr_3609	Pectin (side chain)	Endoarabinase	ABN	3.2.1.99	GH43	Ν
Pelfr_2065	Pectin (side chain)/Hemicellulose (Xylan,	α -Arabinofuranosida	ABF	3.2.1.55	GH51	Ν
	side chain)	se				
Pelfr_1270	Pectin (side chain)/Hemicellulose (Xylan,	α -Arabinofuranosida	ABF	3.2.1.55	GH51	Ν
	side chain)	se				
Pelfr_5292	Pectin (side chain)/Hemicellulose (Xylan,	α -Arabinofuranosida	ABF	3.2.1.55	GH54	Ν
	side chain)	se				
Pelfr_6616	Pectin (side chain)/Hemicellulose (Xylan,	β-1,4-Xylosidase	BXL	3.2.1.37	GH3	Y
	backbone chain)					
Pelfr_2228	Cellulose (backbone chain)/Hemicellulose	β-1,3-Glucosidase	BGL	3.2.1.21	GH3	Ν
	(Xyloglucan, backbone chain)					
Pelfr_2067	Cellulose (backbone chain)/Hemicellulose	β -1,4-Glucosidase	BGL	3.2.1.21	GH3	Ν
	(Xyloglucan, backbone chain)					
Pelfr_1452	Cellulose (backbone chain)/Hemicellulose	β -1,4-Glucosidase	BGL	3.2.1.21	GH3	Ν
	(Xyloglucan, backbone chain)					
Pelfr_4358	Cellulose (backbone chain)/Hemicellulose	β -1,4-Glucosidase	BGL	3.2.1.21	GH3	Ν
	(Xyloglucan, backbone chain)					
Pelfr_3458	Cellulose (backbone chain)/Hemicellulose	β -1,4-Glucosidase	BGL	3.2.1.21	GH3	Y
	(Xyloglucan, backbone chain)					
Pelfr_6030	Cellulose (backbone chain)/Hemicellulose	β -1,4-Glucosidase	BGL	3.2.1.21	GH3	Y
	(Xyloglucan, backbone chain)					
Pelfr_6282	Cellulose (backbone chain)/Hemicellulose	β -1,4-Glucosidase	BGL	3.2.1.21	GH1	Ν
	(Xyloglucan, backbone chain)					
Pelfr_6050	Hemicellulose (Galactomannan, side chain)	α -1,4-Galactosidase	BGL	3.2.1.22	GH27	Ν
Pelfr_0281	Hemicellulose (Galactomannan, backbone	β -1,4-Mannosidase	MND	3.2.1.25	GH2	Y
	chain)					
Pelfr_2106	Cutin	Cutinase	-	3.1.1.74	CE5	Ν
Pelfr_1390	Cutin	Cutinase	-	3.1.1.74	CE5	Ν
Pelfr_5491	Cutin	Cutinase	-	3.1.1.74	CE5	Ν
Pelfr_3966	Cutin	Cutinase	-	3.1.1.74	CE5	Ν
Pelfr_3219	Cutin	Cutinase	-	3.1.1.74	CE5	Y
Pelfr_1915	Cutin	Cutinase	-	3.1.1.74	CE5	Y

1 Supplementary Table S5. Manually annotated PCWDE-coding genes in *P. fructicola*.

Gene ID	Substrate	Enzyme activity	Abbreviation	EC number	CAZvme family	Secretion
					<i>v v</i>	signal
Mycgr3_66866	Pectin (side chain)	Pectin methyl esterase	PME	3.1.1.11	CE8	Y
Mycgr3_85457	Pectin (backbone chain)	Pectate lyase	PLY	4.2.2.2	PL1	Y
Mycgr3_42327	Pectin (backbone chain)	Pectate lyase	PLY	4.2.2.2	PL1	Y
Mycgr3_27839	Pectin (backbone chain)	Pectate lyase	PLY	4.2.2.2	PL3	Ν
Mycgr3_86032	Pectin (backbone chain)	Exopolygalacturonase	PGX	3.2.1.67	GH28	Ν
Mycgr3_77196	Pectin (backbone chain)	Rhamnogalacturonase	RHG	3.2.1.171	GH28	Y
Mycgr3_51381	Pectin (side chain)	β-1,4-Endogalactanase	GAL	3.2.1.89	GH53	Ν
Mycgr3_25958	Pectin (side chain)	β-1,4-Endogalactanase	GAL	3.2.1.89	GH53	Ν
Mycgr3_33711	Pectin (backbone/side chain)	α-L-rhamnosidase	RHA	3.2.1.40	GH78	Ν
Mycgr3_69329	Pectin (backbone/side chain)	α-L-rhamnosidase	RHA	3.2.1.40	GH78	Ν
Mycgr3_95102	Pectin (side chain)	Exoarabinanase	ABX	3.2.1	GH93	Y
Mycgr3_57259	Pectin (backbone chain)	Unsaturated glucuronyl hydrolase	UGH	3.2.1.179	GH105	Ν
Mycgr3_50077	Pectin (backbone chain)	Unsaturated rhamnogalacturonyl hydrolase	URH	3.2.1.172	GH105	Ν
Mycgr3_68586	Pectin (side chain)/Hemicellulose	β-1,4-Galactosidase	LAC	3.2.1.23	GH2	Ν
	(Xyloglucan, side chain)					
Mycgr3_43384	Pectin (side	β-1,4-Galactosidase	LAC	3.2.1.23	GH2	Ν
	chain)/Hemicellulose					
	(Xyloglucan, side chain)					
Mycgr3_87705	Pectin (side	β-1,4-Galactosidase	LAC	3.2.1.23	GH2	Y
	chain)/Hemicellulose					
	(Xyloglucan, side chain)					
Mycgr3_51250	Pectin (side	β -1,4-Galactosidase	LAC	3.2.1.23	GH2	Ν
	chain)/Hemicellulose					
Mara	(Xyloglucan, side chain)	0.1.4 Calcata sidara	LAC	2 2 1 22	CUD	N
Mycgr5_86272	Pectin (side	p-1,4-Galactosidase	LAC	5.2.1.25	GH2	N
	(Xyloglucan side chain)					
Mucar 3 12617	(Ayloglucali, side challi)	B 1 4 Galactosidasa	LAC	3 2 1 23	CH2	N
Wrycg15_42047	chain)/Hemicellulose	p-1,4-Galaciosidase	LAC	5.2.1.25	0112	IN
	(Xyloglucan side chain)					
Mycgr3 75961	Pectin (side	B-1 4-Galactosidase	LAC	32123	GH35	N
1190210_70701	chain)/Hemicellulose (Xyloglucan, side chain)	p 1,1 Guidetostaise		5.2.1.25	Gillo	
Mycgr3 101693	Pectin (side	β-1.4-Galactosidase	LAC	3.2.1.23	GH35	Ν
	chain)/Hemicellulose	r -,. Culletoblaube			51100	

1 Supplementary Table S6. Manually annotated PCWDE-coding genes in Z. *tritici*.

	(Xyloglucan, side chain)					
Mycgr3_105728	Pectin (side	β-1,4-Xylosidase	BXL	3.2.1.37	GH43	Y
	chain)/Hemicellulose					
	(Xylan, backbone chain)					
Mycgr3_75584	Pectin (side	β-1,4-Xylosidase	BXL	3.2.1.37	GH43	Y
	chain)/Hemicellulose					
	(Xylan, backbone chain)					
Mycgr3_73095	Pectin (side	β-1,4-Xylosidase	BXL	3.2.1.37	GH43	Ν
	chain)/Hemicellulose					
	(Xylan, backbone chain)					
Mycgr3_105323	Pectin (side chain)	Endoarabinase	ABN	3.2.1.99	GH43	Y
Mycgr3_30121	Pectin (side	β-1,4-Xylosidase	BXL	3.2.1.37	GH43	Y
	chain)/Hemicellulose					
	(Xylan, backbone chain)					
Mycgr3_98714	Pectin (side	β-1,4-Xylosidase	BXL	3.2.1.37	GH43	Ν
	chain)/Hemicellulose					
	(Xylan, backbone chain)					
Mycgr3_84076	Pectin (side	β-1,4-Xylosidase	BXL	3.2.1.37	GH43	Ν
	chain)/Hemicellulose					
	(Xylan, backbone chain)					
Mycgr3_96505	Pectin (side	β-1,4-Xylosidase	BXL	3.2.1.37	GH43	Y
	chain)/Hemicellulose					
	(Xylan, backbone chain)					
Mycgr3_40215	Pectin (side	α -Arabinofuranosidase	ABF	3.2.1.55	GH51	Ν
	chain)/Hemicellulose					
	(Xylan, side chain)					
Mycgr3_111130	Pectin (side	α -Arabinofuranosidase	ABF	3.2.1.55	GH51	Y
	chain)/Hemicellulose					
	(Xylan, side chain)					
Mycgr3_70396	Pectin (side	α -Arabinofuranosidase	ABF	3.2.1.55	GH54	Y
	chain)/Hemicellulose					
	(Xylan, side chain)					
Mycgr3_68922	Pectin (side	α -Arabinofuranosidase	ABF	3.2.1.55	GH62	Y
	chain)/Hemicellulose					
	(Xylan, side chain)					
Mycgr3_71284	Pectin (side	β-1,4-Xylosidase	BXL	3.2.1.37	GH3	Y
	chain)/Hemicellulose					
	(Xylan, backbone chain)					
Mycgr3_38178	Pectin (side	β-1,4-Xylosidase	BXL	3.2.1.37	GH3	Ν
	chain)/Hemicellulose					
	(Xylan, backbone chain)					
Mycgr3_85505	Cellulose (backbone	β-1,4-Glucosidase	BGL	3.2.1.21	GH3	Y
	chain)/Hemicellulose					
	(Xyloglucan, backbone					

	chain)						
Mycgr3_41307	Cellulose (bac	ckbone	β -1,4-Glucosidase	BGL	3.2.1.21	GH3	Ν
	chain)/Hemicellulos	se					
	(Xyloglucan, bac	ckbone					
	chain)						
Mycgr3_99970	Cellulose (bad	ckbone	β -1,4-Glucosidase	BGL	3.2.1.21	GH3	Y
	chain)/Hemicellulos	se					
	(Xyloglucan, bac	ckbone					
	chain)						
Mycgr3_45540	Cellulose (bad	ckbone	β-1,4-Glucosidase	BGL	3.2.1.21	GH3	Ν
	chain)/Hemicellulos	se					
	(Xyloglucan, bac	ckbone					
	chain)						
Mycgr3_107206	Cellulose (bad	ckbone	β-1,4-Glucosidase	BGL	3.2.1.21	GH3	Ν
	chain)/Hemicellulos	se					
	(Xyloglucan, bad	ckbone					
	chain)						
Mycgr3_20995	Cellulose (bad	ckbone	β -1,4-Glucosidase	BGL	3.2.1.21	GH3	Ν
	chain)/Hemicellulos	se					
	(Xyloglucan, bac	ckbone					
	chain)						
Mycgr3_54587	Cellulose (bad	ckbone	β-1,4-Glucosidase	BGL	3.2.1.21	GH3	Ν
	chain)/Hemicellulos	se					
	(Xyloglucan, bac	ckbone					
	chain)						
Mycgr3_38222	Cellulose (bad	ckbone	β -1,4-Glucosidase	BGL	3.2.1.21	GH3	Ν
	chain)/Hemicellulos	se					
	(Xyloglucan, bac	ckbone					
	chain)						
Mycgr3_42620	Cellulose (bad	ckbone	β-1,4-Glucosidase	BGL	3.2.1.21	GH3	Ν
	chain)/Hemicellulos	se					
	(Xyloglucan, bac	ckbone					
	chain)						
Mycgr3_42323	Cellulose (bad	ckbone	β -1,4-Glucosidase	BGL	3.2.1.21	GH3	Y
	chain)/Hemicellulos	se					
	(Xyloglucan, bac	ckbone					
	chain)						
Mycgr3_64142	Cellulose (bad	ckbone	β -1,4-Glucosidase	BGL	3.2.1.21	GH3	Y
	chain)/Hemicellulos	se					
	(Xyloglucan, bac	ckbone					
	chain)						
Mycgr3_77647	Cellulose (bad	ckbone	β -1,4-Glucosidase	BGL	3.2.1.21	GH3	Ν
	chain)/Hemicellulos	se					
	(Xyloglucan, bac	ckbone					

	chain)					
Mycgr3_70973	Cellulose (backbone	β -1,4-Glucosidase	BGL	3.2.1.21	GH1	Ν
	chain)/Hemicellulose					
	(Xyloglucan, backbone					
	chain)					
Mycgr3_49899	Cellulose (backbone	β -1,4-Glucosidase	BGL	3.2.1.21	GH1	Y
	chain)/Hemicellulose					
	(Xyloglucan, backbone					
	chain)					
Mycgr3_100252	Cellulose (backbone	Cellobiohydrolase I	CBHI	3.2.1.176	GH7	Ν
	chain)/Hemicellulose					
	(Xyloglucan, backbone					
	chain)					
Mycgr3_76589	Cellulose (backbone	β-1,4-Endoglucanase	EG	3.2.1.4	GH45	Y
	chain)/Hemicellulose					
	(Xyloglucan, backbone					
	chain)					
Mycgr3_71664	Cellulose (backbone	β -1,4-Endoglucanase	EG	3.2.1.4	GH5	Ν
	chain)/Hemicellulose					
	(Xyloglucan, backbone					
	chain)					
Mycgr3_105871	Cellulose (backbone	β -1,4-Endoglucanase	EG	3.2.1.4	GH12	Y
	chain)/Hemicellulose					
	(Xyloglucan, backbone					
	chain)					
Mycgr3_94846	Hemicellulose (Xylan,	β -1,4-Endoxylanase	XLN	3.2.1.8	GH10	Y
	backbone chain)					
Mycgr3_61141	Hemicellulose (Xylan,	β -1,4-Endoxylanase	XLN	3.2.1.8	GH10	Y
	backbone chain)					
Mycgr3_60105	Hemicellulose (Xylan,	β -1,4-Endoxylanase	XLN	3.2.1.8	GH11	Y
	backbone chain)					
Mycgr3_107208	Hemicellulose	α -1,4-Galactosidase	AGL	3.2.1.22	GH27	Ν
	(Galactomannan, side					
	chain)					
Mycgr3_110289	Hemicellulose	α-1,4-Galactosidase	AGL	3.2.1.22	GH36	Y
	(Galactomannan, side					
	chain)					
Mycgr3_68054	Hemicellulose	β-1,4-Mannosidase	MND	3.2.1.25	GH2	Ν
	(Galactomannan,					
	backbone chain)					
Mycgr3_107565	Hemicellulose	β -1,4-Mannosidase	MND	3.2.1.25	GH2	Y
	(Galactomannan,					
	backbone chain)					
Mycgr3_92097	Hemicellulose	β -1,4-Endomannanase	MAN	3.2.1.78	GH5	Y

	(Galactomannan,					
	backbone chain)					
Mycgr3_38237	Hemicellulose	α-Fucosidase	AFC	3.2.1.51	GH29	Ν
	(Xyloglucan, side chain)					
Mycgr3_68483	Cutin	Cutinase	-	3.1.1.74	CE5	Y
Mycgr3_99331	Cutin	Cutinase	-	3.1.1.74	CE5	Y
Mycgr3_18212	Cutin	Cutinase	-	3.1.1.74	CE5	Ν
Mycgr3_43394	Cutin	Cutinase	-	3.1.1.74	CE5	Y
Mycgr3_35055	Cutin	Cutinase	-	3.1.1.74	CE5	Ν
Mycgr3_77282	Cutin	Cutinase	-	3.1.1.74	CE5	Y
1						

Supplementary Table S7. Secondary metabolism (SM) key genes in P. fructicola.

Gene ID	SM cluster	SM class	Nr annotation	E-value
Pelfr_2368	Cluster1	PKS	Conidial pigment biosynthesis polyketide synthase	0.0
Pelfr_4242	Cluster2	PKS	Conidial yellow pigment biosynthesis polyketide synthase	0.0
Pelfr_6860	Cluster3	PKS	Lovastatin nonaketide synthase	0.0
Pelfr_1160	Cluster4	PKS-NRPS	Hybrid PKS-NRPS enzyme	0.0
Pelfr_0875	Cluster5	PKS-NRPS	Lovastatin nonaketide synthase	0.0
Pelfr_0462	Cluster6	NRPS	HC-toxin synthetase-like protein	1e-151
Pelfr_0485	Cluster6	NRPS	HC-toxin synthetase-like protein	0.0
Pelfr_0978	Cluster7	NRPS	Linear gramicidin synthase subunit D	0.0
Pelfr_6327	Cluster8	NRPS	Nonribosomal siderophore peptide synthase	0.0
Pelfr_6213	Cluster9	NRPS	Linear gramicidin synthetase subunit C	0.0
Pelfr_6610	Cluster10	NRPS	Peroxisomal-coenzyme A synthetase	0.0
Pelfr_3849	Cluster11	NRPS	Acetyl-CoA synthetase-like protein	0.0
Pelfr_1264	Cluster12	TS	Squalene synthase	0.0
Pelfr_6032	Cluster13	TS	Geranylgeranyl diphosphate synthase	0.0
Pelfr_4219	Cluster14	TS	Lycopene beta-cyclase	0.0

	-
t	
•	-

10 Supplementary Table S8. DHN-melanin biothythesis-related genes in *P. fructicola*.

Gene ID	Gene name	Description	GenBank number of reference gene ¹	Identity	Similarity
Pelfr_2368	PKS18	Polyketide synthase	AY495659	65%	76%
Pelfr_6774	BRN2	T4HN reductase	EF060260	82%	91%
Pelfr_0341	SCD1	Scytalone dehydratase	EF060261	69%	83%
Pelfr_2393	BRN1	T3HN reductase	AB001564	78%	87%

12 ¹GenBank numbers of the referenced gene models are from *Cochliobolus heterostrophus*.

1 Supplementary Table S9. Genes and their expression, which involve in four major signal

2 transduction pathways, autophagy and Ros in *P. fructicola* and related species.

Gene name	M. oryzae	Z. tritici	P. fructicola	In vivo ¹	In vitro ²
cAMP-PKA pa	thway: pathogenicity	, surface recognition, and tu	rgor generation		
Cap1	MGG_01722	Mycgr3_76018	Pelfr_1322	77.62	51.78
Cpk2	MGG_02832	Mycgr3_38697	Pelfr_6488	0	24.24
CpkA	MGG_06368	Mycgr3_99725	Pelfr_2492	5.07	52.35
Ctdf	MGG_11346	Mycgr3_89219	Pelfr_8173	0	0
Mac1	MGG_09898	Mycgr3_86659	Pelfr_5544	8.45	52.81
MagA	MGG_01818	Mycgr3_76503	Pelfr_1576	12.05	191.43
MagB	MGG_00365	Mycgr3_52873	Pelfr_5694	0.53	65.31
Mgb1	MGG_05201	Mycgr3_68892	Pelfr_6673	0	13.2
Mgg1	MGG_10193	Mycgr3_102649	Pelfr_0632	20.11	201.07
Mstu1	MGG_00692	Mycgr3_93828	Pelfr_4840	4.19	60.81
PdeH	MGG_05664	Mycgr3_33550	Pelfr_0043	18.16	37.6
Pth11	MGG_05871	Mycgr3_16078	Pelfr_1389	12.48	48.99
Pth12	MGG_12865	-	-	-	-
Rgs1	MGG_14517	Mycgr3_50182	Pelfr_1219	0	11.19
Som1	MGG_04708	Mycgr3_109061	Pelfr_0213	11.44	31.45
Pmk1 pathway	: appressorium forma	tion, pathogenicity, and inv	asive growth		
Cdc42	MGG_00466	Mycgr3_99553	Pelfr_2379	0	155.43
Gap1	MGG_11062	Mycgr3_86730	Pelfr_1799	227.76	206.74
Gas1	MGG_12337	-	-	-	-
Gas2	MGG_04202	-	-	-	-
Mcm1	MGG_02773	Mycgr3_31170	Pelfr_2334	24.51	122.36
Msb2	MGG_06033	-	Pelfr_2676	53.06	247.9
Mst7	MGG_00800	Mycgr3_52389	Pelfr_2369	0.41	104.79
Mst11	MGG_14847	Mycgr3_71128	Pelfr_0435	54.77	49.18
Mst12	MGG_12958	Mycgr3_46840	Pelfr_4757	12.95	212.64
Mst50	MGG_05199	Mycgr3_91070	Pelfr_6694	15.19	55.78
Pic5	MGG_08600	Mycgr3_100168	Pelfr_0651	37.83	19.23
Pmk1	MGG_09565	Mycgr3_73071	Pelfr_4994	0	96.23
Ras1	MGG_06154	Mycgr3_75299	Pelfr_4161	64.57	246.68
Ras2	MGG_09499	Mycgr3_59862	Pelfr_5632	0	58.67
Rgf1	MGG_03064	Mycgr3_57099	Pelfr_6633	99.02	59.32
Sfl1	MGG_06971	Mycgr3_38379	Pelfr_6316	18.59	42.51
Sho1	MGG_09125	Mycgr3_108657	Pelfr_6493	45.94	191.34
Mps1 pathway	: pathogenicity, penet	ration, cell wall integrity, a	nd conidiation		
Cch1	MGG_05643	Mycgr3_32076	Pelfr_3280	103.55	51.04
Cnal	MGG_07456	Mycgr3_100967	Pelfr_3472	28.61	90.75
Cnb1	MGG_06933	Mycgr3_68731	Pelfr_5246	13.52	260.24
Crz1	MGG_05133	Mycgr3_117712	Pelfr_1135	20.69	43.23
Mck1	MGG_00883	-	Pelfr_2301	3.48	18.81
Mig1	MGG_01204	Mycgr3_117729	Pelfr_5664	2.89	36.74

Mkk1	MGG_06482	Mycgr3_71299	Pelfr_6025	9.15	213.35
Mkk2	MGG_00800	Mycgr3_52389	Pelfr_2369	0.41	104.79
Mps1	MGG_04943	Mycgr3_102121	Pelfr_1869	53.27	287.2
Pkc1	MGG_08689	Mycgr3_87605	Pelfr_4305	12.31	47.68
Plc1	MGG_02444	Mycgr3_66273	Pelfr_5462	0	14.59
Pmc1	MGG_02487	Mycgr3_35226	Pelfr_3000	19.93	55.7
Rho1	MGG_07176	Mycgr3_106397	Pelfr_0710	164.12	892.02
Swi6	MGG_09869	Mycgr3_48696	Pelfr_1581	2.82	16.89
Oms1 pathway: o	smoregulation, stress re	sponse, and fungicide sensiti	ivity		
Ap1	MGG_12814	Mycgr3_35076	Pelfr_3144	83.7	89.36
Atf1	MGG_08212	Mycgr3_98304	Pelfr_6217	45.26	127.81
Hik1	MGG_11174	Mycgr3_35302	Pelfr_0583	86	67.86
Oms1	MGG_01822	Mycgr3_76502	Pelfr_1558	1.87	534
Pbs2	MGG_10268	Mycgr3_76249	Pelfr_5316	65.72	121.39
Skn7	MGG_03516	Mycgr3_109990	Pelfr_3787	14.4	41.27
Sln1	MGG_07312	Mycgr3_63909	Pelfr_0738	18.23	47.59
SSk1	MGG_02897	Mycgr3_70181	Pelfr_5884	5.1	108.13
Ssk2	MGG_00183	Mycgr3_67344	Pelfr_3555	5.52	22.77
Ypd1	MGG_07173	Mycgr3_32785	Pelfr_0942	23.6	184.13
Autophagy-relate	d genes: conidiation, ap	pressorium formation and p	athogenicity		
Atg1	MGG_06393	Mycgr3_73716	Pelfr_1850	0.83	16.61
Atg2	MGG_05998	Mycgr3_83423	Pelfr_1077	1.14	11.44
Atg3	MGG_02959	Mycgr3_99699	Pelfr_1591	13.75	173.12
Atg4	MGG_03580	Mycgr3_49421	Pelfr_1738	0	58.2
Atg5	MGG_09262	Mycgr3_86699	Pelfr_2519	0	1.28
Atg6	MGG_03694	Mycgr3_72630	Pelfr_6195	3.26	51.55
Atg7	MGG_07297	Mycgr3_100434	Pelfr_4877	43.06	55.44
Atg8	MGG_01062	-	Pelfr_3311	190.88	1511.44
Atg9	MGG_09559	Mycgr3_100550	Pelfr_3729	14.7	75.6
Atg10	MGG_14737	-	Pelfr_1301	0	7.06
Atg12	MGG_00598	Mycgr3_40907	Pelfr_3199	0	7.09
Atg13	MGG_00454	Mycgr3_58223	Pelfr_3154	2.6	44.51
Atg15	MGG_12828	Mycgr3_108706	Pelfr_6428	11	68.77
Atg16	MGG_05255	Mycgr3_90647	Pelfr_6215	0	156.39
Atg17	MGG_07667	Mycgr3_70424	Pelfr_6704	21.13	18.96
Atg18	MGG_03139	Mycgr3_75475	Pelfr_5073	9.29	61.54
Ros related genes	: conidium germination	and appressorium formation	n		
Des1	MGG_04163	-	-	-	-
Hyr1	MGG_07460	Mycgr3_102589	Pelfr_5909	161.59	535.79
Nox1	MGG_00750	Mycgr3_65626	Pelfr_0062	0	32.21
Nox2	MGG_06559	-	-	-	-
NoxR	MGG_05280	Mycgr3_67898	Pelfr_6118	32.13	120.48
Rac1	MGG_02731	Mycgr3_106564	Pelfr_4271	1.51	164.27

Rho3	MGG_10323	Mycgr3_64768	Pelfr_4285	14.82	127.61
1					
2	¹ Gene expression was quantifi	ed by RPKM in RNA-seq a	nalysis; RPKM, reads per	kilobase per millio	n mapped
3	reads.				
4	² In vivo refers to transcripts exp	pressed by P. fructicola infec	cting apple fruit about 1 mo	onth after inoculatio	n; <i>In vitro</i>
5	refers to transcripts expressed b	by P. fructicola growing on I	PDA at 22 °C for 15 days.		
6	Note: Orthologous genes were	aligned in the same lines.			
7					
8					
9					
10					
11					
12					
13					
14					
15					
10					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					
34					
35					
30 27					
20					
20					
40					
41					
42					
43					
-					

Supplementary Table S10. Fungi used for identification of multigene families and phylogenetic analysis in this study.

Species	Taxonomy	Lifestyle	Gene number
Laccaria bicolor	Basidiomycota	Symbiosis	23,132
Rhizophagus irregularis	Glomeromycota	Symbiosis	30,282
Rhizopus oryzae	Zygomycota	Saprotroph	17,467
Saccharomyces cerevisiae	Ascomycota	Saprotroph	6,575
Neurospora crassa	Ascomycota	Saprotroph	10,785
Puccinia graminis	Basidiomycota	Biotroph	20,534
Ustilago maydis	Basidiomycota	Biotroph	6,522
Botrytis cinerea	Ascomycota	Necrotroph	16,447
Colletotrichum higginsianum	Ascomycota	Hemibiotroph	16,172
Magnaporthe oryzae	Ascomycota	Hemibiotroph	11,054
Zymoseptoria tritici	Ascomycota	Hemibiotroph	10,933
Peltaster fructicola	Ascomycota	Ectophyte	8,334

- J

Substrate	,	Enzyme activity	Abbreviation	EC number	CAZyme family(ies)
Cutin	Backbone chain	Cutinase	-	3.1.1.74	CE5
Cellulose	Backbone chain	β-1,4-Endoglucanase	EG	3.2.1.4	GH3, -5, -6, -7, -9,
					-12, -45
	Backbone chain	Cellobiohydrolase (reducing end)	CBHI	3.2.1.176	GH7
	Backbone chain	Cellobiohydrolase (nonreducing end)	CBHII	3.2.1.91	GH6
	Backbone chain	β-1,4-Glucosidase	BGL	3.2.1.21	GH1, -3
Pectin	Backbone chain	Endopolygalacturonase	PGA	3.2.1.15	GH28
	Backbone chain	Exopolygalacturonase	PGX	3.2.1.67	GH28
	Backbone chain	Endo-xylogalacturonan hydrolase	XGH	3.2.1	GH28
	Backbone chain	Rhamnogalacturonase	RHG	3.2.1.171	GH28
	Backbone chain	Rhamnogalacturonan	RHX	3.2.1.173	GH28
		α -1,2-galacturonohydrolase			
	Backbone chain	Rhamnogalacturonan	RGXB	3.2.1.174	GH28
		α-L-rhamnopyranohydrolase			
	Backbone/side chain	α-L-rhamnosidase	RHA	3.2.1.40	GH78
	Backbone chain	Pectin lyase	PEL	4.2.2.10	PL1
	Backbone chain	Pectate lyase	PLY	4.2.2.2	PL1, -2, -3, -9, -10
	Backbone chain	Rhamnogalacturonan lyase	RGL	4.2.2.23	PL4, -11
	Backbone chain	Unsaturated rhamnogalacturonan	URH	3.2.1.172	GH105
		hydrolase	(Bacillus		
			subtilis)		
	Backbone chain	Unsaturated glucuronyl hydrolase	UGH	3.2.1.179	GH88, -105
			(Bacillus sp.)		
	Side chain	Endoarabinanase	ABN	3.2.1.99	GH43
	Side chain	Exoarabinanase	ABX	3.2.1	GH93
	Side chain	β -1,4-Endogalactanase	GAL	3.2.1.89	GH53
	Side chain	α-Arabinofuranosidase	ABF	3.2.1.55	GH51, -54, -62
	Side chain	β-1,4-Xylosidase	BXL	3.2.1.37	GH3, -43
	Side chain	β-1,4-Galactosidase	LAC	3.2.1.23	GH2, -35
	Side chain	Pectin methyl esterase	PME	3.1.1.11	CE8
Xylan/Heteroxylan	Backbone chain	β-1,4-Endoxylanase	XLN	3.2.1.8	GH10, -11
	Backbone chain	β-1,4-Xylosidase	BXL	3.2.1.37	GH3, -43
	Side chain	α-Arabinofuranosidase	ABF	3.2.1.55	GH51, -54, -62
	Side chain	α-Glucuronidase	AGU	3.2.1.139	GH67, -115
Galactomannan	Backbone chain	β-1,4-Endomannanase	MAN	3.2.1.78	GH5, -26
	Backbone chain	β-1,4-Mannosidase	MND	3.2.1.25	GH2
	Side chain	α-1,4-Galactosidase	AGL	3.2.1.22	GH27, -36

1 Supplementary Table S11. Summary of CAZyme families involved in plant cell wall 2 degradation.

Xyloglucan	Backbone chain	Xyloglucan β -1,4-endoglucanase	XEG	3.2.1.151	GH12, -74
	Backbone chain	β-1,4-Endoglucanase	EG	3.2.1.4	GH3, -5, -6, -7, -9,
					-12, -45
	Backbone chain	Cellobiohydrolase (reducing end)	CBHI	3.2.1.176	GH7
	Backbone chain	Cellobiohydrolase (nonreducing end)	CBHII	3.2.1.91	GH6
	Backbone chain	β-1,4-Glucosidase	BGL	3.2.1.21	GH1, -3
	Side chain	α-Xylosidase	AXL	3.2.1.177	GH31
	Side chain	α-Fucosidase	AFC	3.2.1.51	GH29, -95
	Side chain	β-1,4-Galactosidase	LAC	3.2.1.23	GH2, -35
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					
34					

1 Supplementary Notes

2

3 Gene prediction and annotation.

4 The draft genome of *P. fructicola* was closed by GapFiller¹ with the dataset of paired reads, then 5 masked using RepeatMasker² with both the latest RepBase fungal library³ and *ab initio* library 6 generated by RepeatModeler². The modified assembly containing only scaffolds larger than 200 7 bp was used as input for gene model prediction and other downstream analyses. Gene calling was 8 conducted using an annotation pipeline and genome-database management tool MAKER2⁴, which combines three different *ab initio* predictors: GeneMark-ES⁵, Augustus⁶, and SNAP⁷. In addition, 9 10 proteomes of several fungi within the same order as P. fructicola were downloaded from JGI Fungal Genome Portal MycoCosm⁸ and served as experimental evidence for quality control of the 11 12 result of the above computational methods. A set of 248 CEGs identified by Parra et al.9 were used 13 to evaluate the completeness of the gene space in the genome of *P. fructicola*.

All predicted gene models were functionally annotated using an all-in-one bioinformatics software 14 suite, Blast2GO, based on the Gene Ontology vocabulary¹⁰. This high-throughput functional 15 annotation pipeline integrates various annotation strategies and tools, including BLASTp 16 17 alignment against GenBank with non-redundant set¹¹, GO (Gene Ontology) terms mapping¹², 18 InterProScan¹³, Enzyme Commission (EC) numbers assigning¹⁴, and Kyoto Encyclopedia of Genes and Genomes (KEGG)¹⁵. In addition, they were subjected to Conserved Domains Database 19 (CDD)¹⁶, Pfam¹⁷, and Clusters of Orthologous Group (COG) analysis¹⁸. The rRNA-coding region 20 (rDNA) was designated using RNAmmer¹⁹, but the copy number of rDNA (tandem repeat and low 21 polymorphism)²⁰ in the assembly could be estimated only by calculating its average sequencing 22 23 depth (divided by the global depth).

24

25 Multigene families and phylogenetic analysis.

Eleven representative fungi (Supplementary Table S10) that collectively span diverse lifestyles
(symbiotic, saprophytic, biotrophic, hemibiotrophic and necrotrophic) and phyla (Ascomycota,
Basidiomycota, Zygomycota and Glomeromycota) were selected to predict multigene families
along with *P. fructicola*. Gene clusters containing both orthologs and paralogs were built among a
total of 178,237 proteins (retrieved from JGI Fungal Genome Portal MycoCosm except *P. fructicola*) using OrthoMCL²¹ based on the Markov cluster algorithm (MCL)²².

To construct a genome-based phylogenetic tree of the above 12 species, single-copy orthologous 32 33 families (having exactly one gene for each organism) were collected from the MCL clustering 34 result. Multiple alignments of the protein sequences belonging to the same families were parallelly performed in batch mode using MAFFT²³. Conservative positions in the alignment result were 35 extracted through GBlocks²⁴ and then used to estimate the best protein evolution model with 36 37 ProtTest 3.4²⁵. Maximum-likelihood phylogenetic analysis of the concatenated well-aligned regions was carried out using RAxML²⁶ with a bootstrap value of 1000 replications. The RAxML 38 tree obtained was visualized in FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/). The divergence 39 times between species were estimated with the method provided by MEGA 6^{27} , using the 40 previously published calibration points as a reference: Ascomycota-Basidiomycota split 500 Myr, 41 42 and Pezizomycotina-Saccharomycotina split 350 Myr²⁸.

43 We also constructed the phylogenetic profiles for all gene families to reflect the absence or 44 presence of a particular gene family in a given species. These profiles were combined with the above species tree using the DOLLOP program from the PHYLIP package²⁹ to reconstruct the parsimonious series of gene gain and loss events for these fungal genomes. To define the minimum gene set for each ancestral node, the DOLLOP program was used, which follows the Dollo parsimony principle assuming that every gene appears exactly once on the tree and can be lost independently in different evolutionary lineages.

6

7 CAZymes and plant cell wall degrading enzymes.

8 Proteomes were screened for carbohydrate-active modules using a web server for automated 9 carbohydrate-active enzyme (CAZyme) annotation, dbCAN³⁰. CAZyme module annotation by 10 this program uses E-value, alignment length and coverage, with an E-value of <1e-5 for 11 alignments of >80 amino acids and an E-value of <1e-3 for alignments of <80 amino acids. To 12 eliminate those selected by dbCAN but not really CAZymes, proteins with CAZyme motifs with a 13 dbCAN E-value >e-10 were individually examined using two online tools, Pfam¹⁷ and BLASTp of 14 non-redundant protein sequences in NCBI (http://www.ncbi.nlm.nih.gov).

15 Cellulases, hemicellulases, pectinases and cutinases collectively constituted the plant cell wall-degrading enzymes (PCWDEs) that we considered in this study. According to previous 16 research³¹⁻³³, the above four types of PCWDEs are distributed in a range of different CAZyme 17 18 families (despite including some non-PCWDEs) (Supplementary Table S11) belonging to three functional classes, i.e., glycoside hydrolases (GHs), polysaccharide lyases (PLs), and carbohydrate 19 20 esterases (CEs). We could therefore pick out these PCWDE-involved families from the predicted 21 CAZymes and considered them as putative PCWDEs. Additionally, to identify the function of 22 each putative PCWDE more accurately and discard the false positives, the BLASTp program and two online databases, mycoCLAP³⁴ and Fungal PCWDE Database³⁵ were jointly applied. 23

24

25 Secretomes, secreted peptidases and small secreted proteins.

In the current study, secretomes were identified using a custom pipeline including SignalP version 26 27 4.1³⁶, TMHMM Server version 2.0³⁷, TargetP 1.1 Server³⁸, GPIsom³⁹ and WoLF PSORT⁴⁰. Initially, all proteins of one organism with a Signal PSP = 'YES' or a Target PLoc = S were 28 selected and combined⁴¹. These proteins were then scanned for transmembrane (TM) domains 29 30 using TMHMM and those with 0 TM or 1 TM, if located in or very close to the predicted N-terminal signal peptide (this often corresponds to the secretion signal), were kept. Of the 31 32 retained set, proteins containing a potential GPI-anchor signal as predicted by the GPIsom web 33 service were discarded. Eventually, WoLF PSORT was used to estimate the located sites and only 34 those proteins that were credibly positioned in the extracellular space (i.e., extracellular score >15) 35 were included into in the final secretome. The secreted proteins were submitted to the Merops 36 database (e-value = 1e-04) (Release 9.12; http://merops.sanger.ac.uk/) for predicting peptidases⁴², 37 and false positives were eliminated by parsing hits obtained following a BLASTp search (e-value = 1e-04) on the NCBI nr protein database. Small secreted proteins (SSPs) were defined here as the 38 secreted proteins that are smaller than 200 aa, and an SSP was labeled as "cysteine-rich" when the 39 40 percentage of cysteine residues in the protein was at least twice as high as the average percentage of cysteine residues in all predicted proteins of that species⁴³. 41

42

43 Secondary metabolism genes.

44 Nonribosomal peptide synthase (NRPS), polyketide synthase (PKS), hybrid NRPS-PKS,

1	dimethylallyl tryptophan synthase (DMATS), and terpene cyclase (TC) genes were identified in all				
2	12 genomes by using the web-based software packages SMURF ⁴⁴ and antiSMASH 2.0 ⁴⁵ ir				
3	combination. Employing these two functionally similar methods simultaneously allowed us to				
4	detect	detect small conflicts generated between their results, which were further checked and corrected			
5	Another reason for using the packages in tandem is that although SMURF and antiSMASH alon				
6	are unable to predict TC and DMATS genes, they can complement each other for this purpose.				
7	a s				
8	Supp	lementary References			
9 10	1	Postzer M. & Direvene W. Toward almost algoed genemes with ConFiller Concerns Piel			
10	1	13 B 56 (2012)			
11	2	13, K50 (2012). Taraila Craavaa M. & Chan N. Using Danast Maskar to identify reputitive elements in			
12	Z	rarano- Graovac, M. & Chen, N. Using Repeatimasker to identify repetitive elements in genomic sequences. Curr. Protoc. Picinformatics 25, 4 10, 11, 14, 10, 14 (2000).			
13	2	genomic sequences. <i>Curr. Froioc. Bioinformatics</i> 25, 4.10.11-14.10.14 (2009).			
14 15	3	Jurka, J. <i>et al.</i> Reptase Opdate, a database of eukaryotic repetitive elements. <i>Cytogenet</i> .			
15	4	Genome Res. 110, $402-407$ (2003). Holt C & Vandall M MAKEP2: an annotation pipeline and gamema database			
10	4	mongramment tool for second generation genome projects <i>PMC</i> bioinformatics 12 401			
10		(2011)			
10	5	Ter Hovbannisvan V. Lomsadze A. Chernoff V.O. & Borodovsky M. Gene prediction			
20	5	in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome			
20		R_{PS} 18 1979-1990 (2008)			
22	6	Stanke M <i>et al</i> AUGUSTUS: <i>ab initio</i> prediction of alternative transcripts <i>Nucleic</i>			
23	0	Acids Res 34 W435-W439 (2006)			
24	7	Korf, I. Gene finding in novel genomes. <i>BMC bioinformatics</i> 5 , 59 (2004).			
25	, 8	Nordberg, H. <i>et al.</i> The genome portal of the Department of Energy Joint Genome			
26		Institute: 2014 updates. <i>Nucleic Acids Res.</i> 42 , D26-D31 (2014).			
27	9	Parra, G., Bradnam, K., Ning, Z. M., Keane, T. & Korf, I. Assessing the gene space in			
28		draft genomes. Nucleic Acids Res. 37 , 289-297 (2009).			
29	10	Gotz, S. et al. High-throughput functional annotation and data mining with the Blast2GO			
30		suite. Nucleic Acids Res. 36, 3420-3435 (2008).			
31	11	Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment			
32		search tool. J. Mol. Biol. 215, 403-410 (1990).			
33	12	Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25,			
34		25-29 (2000).			
35	13	Jones, P. et al. InterProScan 5: genome-scale protein function classification.			
36		Bioinformatics 30, 1236-1240 (2014).			
37	14	Bairoch, A. The ENZYME database in 2000. Nucleic Acids Res. 28, 304-305 (2000).			
38	15	Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG resource for			
39		deciphering the genome. Nucleic Acids Res. 32, D277-D280 (2004).			
40	16	Marchler-Bauer, A. et al. CDD: NCBI's conserved domain database. Nucleic Acids Res.			
41		43 , D222-226 (2015).			
42	17	Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222-D230			
43		(2014).			
44	18	Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool			

1		for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28,
2		33-36 (2000).
3	19	Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes.
4		Nucleic Acids Res. 35, 3100-3108 (2007).
5	20	Richard, G. F., Kerrest, A. & Dujon, B. Comparative genomics and molecular dynamics
6		of DNA repeats in eukaryotes. Microbiol. Mol. Biol. R. 72, 686-727 (2008).
7	21	Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: Identification of ortholog groups for
8		eukaryotic genomes. Genome Res. 13, 2178-2189 (2003).
9	22	Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale
10		detection of protein families. Nucleic Acids Res. 30, 1575-1584 (2002).
11	23	Katoh, K., Asimenos, G. & Toh, H. Multiple alignment of DNA sequences with MAFFT.
12		Methods Mol. Biol. 537, 39-64 (2009).
13	24	Castresana, J. Selection of conserved blocks from multiple alignments for their use in
14		phylogenetic analysis. Mol. Biol. Evol. 17, 540-552 (2000).
15	25	Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. ProtTest 3: fast selection of best-fit
16		models of protein evolution. Bioinformatics 27, 1164-1165 (2011).
17	26	Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with
18		thousands of taxa and mixed models. Bioinformatics 22, 2688-2690 (2006).
19	27	Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular
20		Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30, 2725-2729 (2013).
21	28	Padovan, A. C. B., Sanson, G. F. O., Brunstein, A. & Briones, M. R. S. Fungi evolution
22		revisited: Application of the penalized likelihood method to a bayesian fungal phylogeny
23		provides a new perspective on phylogenetic relationships and divergence dates of
24		ascomycota groups. J. Mol. Evol. 60, 726-735 (2005).
25	29	Felsenstein, J. Inferring phylogenies from protein sequences by parsimony, distance, and
26		likelihood methods. Method. Enzymol. 266, 418-427 (1996).
27	30	Yin, Y. B. et al. dbCAN: a web resource for automated carbohydrate-active enzyme
28		annotation. Nucleic Acids Res. 40, W445-W451 (2012).
29	31	Zhao, Z. T., Liu, H. Q., Wang, C. F. & Xu, J. R. Comparative analysis of fungal genomes
30		reveals different plant cell wall degrading capacity in fungi. Bmc Genomics 14, 274
31		(2013).
32	32	Rytioja, J. et al. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes.
33		Microbiol. Mol. Biol. R. 78, 614-649 (2014).
34	33	Kubicek, C. P., Starr, T. L. & Glass, N. L. Plant cell wall-degrading enzymes and their
35		secretion in plant-pathogenic fungi. Annu. Rev. Phytopathol. 52, 427-451 (2014).
36	34	Murphy, C., Powlowski, J., Wu, M., Butler, G. & Tsang, A. Curation of characterized
37		glycoside hydrolases of fungal origin. Database : the journal of biological databases and
38		<i>curation</i> 2011 , bar020 (2011).
39	35	Choi, J., Kim, K. T., Jeon, J. & Lee, Y. H. Fungal plant cell wall-degrading enzyme
40		database: a platform for comparative and evolutionary genomics in fungi and Oomycetes.
41		<i>Bmc Genomics</i> 14 . S7 (2013).
42	36	Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating
43	-	signal peptides from transmembrane regions. <i>Nat. Methods</i> 8 , 785-786 (2011).
44	37	Krogh, A., Larsson, B., von Heiine, G. & Sonnhammer, E. L. Predicting transmembrane

1		protein topology with a hidden Markov model: application to complete genomes. J. Mol.
2		<i>Biol.</i> 305 , 567-580 (2001).
3	38	Emanuelsson, O., Nielsen, H., Brunak, S. & von Heijne, G. Predicting subcellular
4		localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300,
5		1005-1016 (2000).
6	39	Fankhauser, N. & Maser, P. Identification of GPI anchor attachment signals by a Kohonen
7		self-organizing map. Bioinformatics 21, 1846-1852 (2005).
8	40	Horton, P. et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 35,
9		W585-587 (2007).
10	41	Emanuelsson, O., Brunak, S., von Heijne, G. & Nielsen, H. Locating proteins in the cell
11		using TargetP, SignalP and related tools. Nat. Protoc. 2, 953-971 (2007).
12	42	Rawlings, N. D., Waller, M., Barrett, A. J. & Bateman, A. MEROPS: the database of
13		proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42, D503 (2014).
14	43	Ohm, R. A. et al. Diverse lifestyles and strategies of plant pathogenesis encoded in the
15		genomes of eighteen Dothideomycetes fungi. PLoS Pathog. 8, e1003037 (2012).
16	44	Khaldi, N. et al. SMURF: Genomic mapping of fungal secondary metabolite clusters.
17		Fungal Genet. Biol. 47, 736-741 (2010).
18	45	Blin, K. et al. antiSMASH 2.0-a versatile platform for genome mining of secondary
19		metabolite producers. Nucleic Acids Res. 41, W204-W212 (2013).
20		
21		